請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48536完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾孝文(Hsiao-Wen Chung) | |
| dc.contributor.author | Shr-Tai Liou | en |
| dc.contributor.author | 劉時泰 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:01:00Z | - |
| dc.date.available | 2011-07-01 | |
| dc.date.copyright | 2011-02-09 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-01-21 | |
| dc.identifier.citation | Allen, B. and M. Ghavami (2005). Adaptive array systems : fundamentals and applications. Chichester, West Sussex, England ; Hoboken, NJ, John Wiley & Sons.
Barroso, V. A. and J. M. F. Moura (1989). Adaptive beamforming as an inverse problem. Acoustics, Speech, and Signal Processing, 1989. ICASSP-89., 1989 International Conference on. Barroso, V. A. N. and J. M. F. Moura (1994). 'l<sub>2</sub> and l<sub>1</sub> beamformers: recursive implementation and performance analysis.' Signal Processing, IEEE Transactions on 42(6): 1323-1334. Belliveau, J. W., D. N. Kennedy, Jr., et al. (1991). 'Functional mapping of the human visual cortex by magnetic resonance imaging.' Science 254(5032): 716-9. Bernstein, M. A., K. F. King, et al. (2004). Handbook of MRI pulse sequences. Amsterdam ; Boston, Academic Press. Boynton, G. M., S. A. Engel, et al. (1996). 'Linear systems analysis of functional magnetic resonance imaging in human V1.' J Neurosci 16(13): 4207-21. Brainard, D. H. (1997). 'The Psychophysics Toolbox.' Spat Vis 10(4): 433-6. Brookes, M. J., J. Vrba, et al. (2008). 'Optimising experimental design for MEG beamformer imaging.' Neuroimage 39(4): 1788-802. Dale, A. M. (1999a). 'Optimal experimental design for event-related fMRI.' Hum Brain Mapp 8(2-3): 109-14. Dale, A. M., B. Fischl, et al. (1999b). 'Cortical surface-based analysis. I. Segmentation and surface reconstruction.' Neuroimage 9(2): 179-94. de Zwart, J. A., P. J. Ledden, et al. (2002). 'Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging.' Magn Reson Med 47(6): 1218-27. de Zwart, J. A., P. J. Ledden, et al. (2004). 'Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla.' Magn Reson Med 51(1): 22-6. Fischl, B., A. Liu, et al. (2001). 'Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex.' IEEE Trans Med Imaging 20(1): 70-80. Fischl, B., M. I. Sereno, et al. (1999). 'Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system.' Neuroimage 9(2): 195-207. Frost, O. L., III (1972). 'An algorithm for linearly constrained adaptive array processing.' Proceedings of the IEEE 60(8): 926-935. Gibson, A., A. M. Peters, et al. (2006). 'Echo-shifted multislice EPI for high-speed fMRI.' Magn Reson Imaging 24(4): 433-42. Glover, G. H. (1999). 'Deconvolution of impulse response in event-related BOLD fMRI.' Neuroimage 9(4): 416-29. Grant, M. and S. Boyd (2009) 'CVX: Matlab software for disciplined convex programming.' http://stanford.edu/~boyd/cvx. Griswold, M. A., P. M. Jakob, et al. (2002). 'Generalized autocalibrating partially parallel acquisitions (GRAPPA).' Magn Reson Med 47(6): 1202-10. Hamalainen, M., R. Hari, et al. (1993). 'Magnetoencephalography - Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain.' Reviews of Modern Physics 65(2): 413-497. Hennig, J., K. Zhong, et al. (2007). 'MR-Encephalography: Fast multi-channel monitoring of brain physiology with magnetic resonance.' Neuroimage 34(1): 212-9. Huang, M. X., A. M. Dale, et al. (2006). 'Vector-based spatial-temporal minimum L1-norm solution for MEG.' Neuroimage 31(3): 1025-37. Ishii, R., K. Shinosaki, et al. (1999). 'Medial prefrontal cortex generates frontal midline theta rhythm.' Neuroreport 10(4): 675-9. Jezzard, P., P. M. Matthews, et al. (2001). Functional MRI : an introduction to methods. Oxford ; New York, Oxford University Press. Jones, R. A., O. Haraldseth, et al. (1993). 'K-space substitution: a novel dynamic imaging technique.' Magn Reson Med 29(6): 830-4. Kwong, K. K., J. W. Belliveau, et al. (1992). 'Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.' Proc Natl Acad Sci U S A 89(12): 5675-9. Lauterbur, P. (1973). 'Image Formation by Induced Local Interactions - Examples Employing Nuclear Magnetic-Resonance.' Nature 242(5394): 190-191. Liberti, J. C. and T. S. Rappaport (1999). Smart antennas for wireless communications : IS-95 and third generation CDMA applications. Upper Saddle River, NJ, Prentice Hall PTR. Lin, F. H., J. W. Belliveau, et al. (2006). 'Distributed current estimates using cortical orientation constraints.' Hum Brain Mapp 27(1): 1-13. Lin, F. H., L. L. Wald, et al. (2006). 'Dynamic magnetic resonance inverse imaging of human brain function.' Magn Reson Med 56(4): 787-802. Lin, F. H., T. Witzel, et al. (2010). 'K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems.' Neuroimage 49(4): 3086-98. Lin, F. H., T. Witzel, et al. (2008a). 'Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing.' Neuroimage 42(1): 230-47. Lin, F. H., T. Witzel, et al. (2008b). 'Linear constraint minimum variance beamformer functional magnetic resonance inverse imaging.' Neuroimage 43(2): 297-311. Madore, B., G. H. Glover, et al. (1999). 'Unaliasing by fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI.' Magn Reson Med 42(5): 813-28. Mansfield, P. (1977). 'Multi-Planar Image-Formation Using Nmr Spin Echoes.' Journal of Physics C-Solid State Physics 10(3): L55-L58. Mosher, J. C., P. S. Lewis, et al. (1992). 'Multiple dipole modeling and localization from spatio-temporal MEG data.' Biomedical Engineering, IEEE Transactions on 39(6): 541-557. Nishimura, D. G. (1996). 'Principles of Magnetic Resonance Imaging.' Noll, D. C., D. G. Nishimura, et al. (1991). 'Homodyne detection in magnetic resonance imaging.' IEEE Trans Med Imaging 10(2): 154-63. Ohliger, M. A., A. K. Grant, et al. (2003). 'Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations.' Magn Reson Med 50(5): 1018-30. Pruessmann, K. P., M. Weiger, et al. (1999). 'SENSE: sensitivity encoding for fast MRI.' Magn Reson Med 42(5): 952-62. Sarkar, T. K. e. a. (2003). Smart antennas. Hoboken, NJ :, Wiley-Interscience. Schmidt, R. (1986). 'Multiple emitter location and signal parameter estimation.' Antennas and Propagation, IEEE Transactions on 34(3): 276-280. Sekihara, K. (2008). Adaptive spatial filters for electromagnetic brain imaging. New York, Springer. Sekihara, K. and H. Koizumi (1996). 'Detecting cortical activities from fMRI time-course data using the MUSIC algorithm with forward and backward covariance averaging.' Magn Reson Med 35(6): 807-13. Sekihara, K., S. Nagarajan, et al. (1999). 'Time-frequency MEG-MUSIC algorithm.' Medical Imaging, IEEE Transactions on 18(1): 92-97. Sekihara, K., S. S. Nagarajan, et al. (2001). 'Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique.' IEEE Trans Biomed Eng 48(7): 760-71. Sekihara, K., S. S. Nagarajan, et al. (2002). 'Application of an MEG eigenspace beamformer to reconstructing spatio-temporal activities of neural sources.' Hum Brain Mapp 15(4): 199-215. Sekihara, K., D. Poeppel, et al. (1997). 'Noise covariance incorporated MEG-MUSIC algorithm: a method for multiple-dipole estimation tolerant of the influence of background brain activity.' Biomedical Engineering, IEEE Transactions on 44(9): 839-847. Sodickson, D. K. and W. J. Manning (1997). 'Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays.' Magn Reson Med 38(4): 591-603. Uutela, K., M. Hamalainen, et al. (1999). 'Visualization of magnetoencephalographic data using minimum current estimates.' Neuroimage 10(2): 173-80. Van Trees, H. L. (2002). Detection, estimation, and modulation theory. New York :, Wiley. van Vaals, J. J., M. E. Brummer, et al. (1993). ''Keyhole' method for accelerating imaging of contrast agent uptake.' J Magn Reson Imaging 3(4): 671-5. Van Veen, B. D. and K. M. Buckley (1988). 'Beamforming: a versatile approach to spatial filtering.' ASSP Magazine, IEEE 5(2): 4-24. Van Veen, B. D., W. van Drongelen, et al. (1997). 'Localization of brain electrical activity via linearly constrained minimum variance spatial filtering.' IEEE Trans Biomed Eng 44(9): 867-80. Wiesinger, F., P. Boesiger, et al. (2004). 'Electrodynamics and ultimate SNR in parallel MR imaging.' Magn Reson Med 52(2): 376-90. Wiggins, G., Triantafyllou, C., Potthast, A., Reykowski, A., Nittka, M. and Wald, L. (2006). '32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry.' Magnetic Resonance in Medicine(56): 216-223. Wiggins GC, P. A., Triantafyllou C, Lin F-H, Benner T, Wiggins CJ, Wald LL (2005a). 'A 96-channel MRI system with 23- and 90-channel phase array head coils at 1.5 Tesla.' Proceedings of the 13th Annual Meeting of ISMRM, Miami Beach, FL, USA: 671. Wiggins GC, P. J., Potthast A, Schmitt M, Alagappan V, Wald LL. (2009). '96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation.' Magn Reson Med(62): 754-762. Wiggins GC, T. C., Potthast A, Reykowskim A, Nittka M, Wald LL (2005b). 'A 32 channel receive-only phased array head coil for 3T with novel geodesic tiling geometry.' Proceedings of the 13th Annual Meeting of ISMRM, Miami Beach, FL, USA: 671. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48536 | - |
| dc.description.abstract | 磁振造影(Magnetic Resonance Imaging,簡稱MRI)為一種非輻射及非侵入性之醫學影像。因其影像可提供多樣之生理訊息,近年來被廣泛應用於不同之研究領域與臨床診斷。MRI其中一種影像方式為功能性磁振造影(functional MRI,簡稱fMRI),可利用大腦受刺激前後血氧濃度(Blood-Oxyen-Level-Dependent,簡稱BOLD)之不同產生影像對比,來提供大腦功能性影像。因MRI目前是唯一可同時提供非侵入性之人腦結構性與功能性的醫學影像,故被用於許多神經認知科學相關的研究領域,如醫學、生理學、經濟學、甚至社會學。此外,在生理上,因為血氧濃度變化僅是暫態之反應,為了要完整記錄大腦功能之變化,良好的時間解析度便是fMRI影像很重要的需求之一,目前普遍使用的fMRI 可在1~3秒內獲得一張全腦之功能性影像。最近所提出之動態磁振逆影像(MR Inverse Imaging,簡稱InI)可大幅提升fMRI全腦影像之時間解析度至毫秒的等級。其原理為於擷取功能磁振影像時僅取全腦二維之投射影像,再利用平行影像與陣列信號處理之方式,將陣列接收線圈中,結合不同位置線圈所獲得不同位置之空間影像,產生非良置逆運算問題(ill-posed inverse problem),進而使用數學方式解出三維空間中人腦活動訊號源之位置(source localization)。先前研究發現可利用線性限制最小變異(linearly constrained minimum variance,簡稱LCMV)之空間濾波器(spatial filtering,又稱為波數集成beamforming)的方式來改善InI影像之空間解析度,並提升重建訊號源之顯著統計值。本研究提出一種利用本徵空間最小L1範數波數集成(eigenspace minimized L1 norm beamforming)之全新方式,命名為本徵空間線性限制最小振幅(eigenspace linearly constrained minimum amplitude,簡稱eLCMA)空間濾波器,來估計InI訊號源。本研究經由模擬,與真人之視覺刺激手指活動實驗發現,eLCMA可進一步提升大腦活動訊號源之空間解析度與偵測BOLD對比之靈敏度。
本篇論文在第一章簡介MRI,fMRI,InI 成像原理,第二章介紹fMRI 資料之擷取與重建。第三章介紹利用陣列信號處理來重建InI活動訊號源之理論。第四章則介紹模擬與真人實驗之結果。最後於第五章討論本研究之結果與總結。 | zh_TW |
| dc.description.abstract | Magnetic Resonance Imaging (MRI) is a noninvasive and nonradiative medical imaging modality. It has been used in many different fields for research and clinical applications. One of its imaging applications is called functional MRI (fMRI) which can acquire functional brain imaging dynamically with the help of the blood-oxygen-level-dependent (BOLD) contrast generated by external-body stimuli. fMRI has been applied to many areas related to the cognitive neuroscience, ranging from medicine, psychology, economics, and even sociology. Such popularity comes from the advantage that MRI is by far the only noninvasive imaging method acquiring both anatomical and functional information for human brain.
The temporal resolution is crucial to fMRI since the fast transient behavior of the hemodynamic response needs to be captured correctly. Conventional fMRI can achieve the temporal resolution of one to three seconds. Recently-proposed dynamic magnetic resonance (MR) inverse imaging (InI) is a novel parallel imaging reconstruction technique capable of improving the temporal resolution of BOLD contrast fMRI to the order of milliseconds at the cost of moderate spatial resolution. Volumetric InI reconstructs spatial information from projection data by solving ill-posed inverse problems using simultaneous acquisitions from a RF coil array. Previously a spatial filtering technique based on linearly constrained minimum variance (LCMV) beamformer was suggested to localize the hemodynamic changes of dynamic InI data with improved spatial resolution and sensitivity. Here we report an advancement of the spatial filtering method, which combines the eigenspace projection of the measured data and the l1-norm minimization of the spatial filters’ output noise amplitude, to further improve the detection power of BOLD-contrast fMRI data. Using numerical simulation and in vivo data, we demonstrate that this eigen-space linearly constrained minimum amplitude (eLCMA) beamformer can reconstruct spatiotemporal hemodynamic signals with high statistical significance values and high spatial resolution in event-related two-choice reaction time visuomotor experiments. In this dissertation, we will provide the brief review for MRI, fMRI, InI in Chap.1, and introduce fMRI data acquisition reconstruction in Chap. 2. We then provide the InI reconstruction theory in Chap. 3. We will show the simulation and experimentresults in Chap. 4, and discuss and conclude our study in Chap. 5. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:01:00Z (GMT). No. of bitstreams: 1 ntu-100-D95945003-1.pdf: 6589547 bytes, checksum: 82d4f5490fc9852823d7ade8465396f5 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract v Table of Contents vii List of Figures ix List of Tables x Chap 1: Introduction 1 1-1 Magnetic Resonance Imaging 1 1-2 Functional Magnetic Resonance Imaging (fMRI) 5 1-3 Inverse Imaging (InI) 8 Chap 2: fMRI Data Acquisition and Reconstruction 12 Chap 3: Array Signal Processing for InI Reconstruction 18 3-1 Background 18 3-2 LCMV and eLCMV for InI Reconsturction 21 3-3 LCMA and eLCMA for InI Reconstruction 27 Chap 4: Simulation and Real Data Results 30 4-1 Simulation 30 4-2 Real Data 39 Chap 5: Discussion and Conclusion 51 5-1 Discussion 51 5-2 Conclusion and Future Work 54 Acknowledgements 56 References 57 | |
| dc.language.iso | en | |
| dc.subject | 最小L1範數 | zh_TW |
| dc.subject | 功能磁振造影 | zh_TW |
| dc.subject | 磁振逆影像 | zh_TW |
| dc.subject | 快速影像 | zh_TW |
| dc.subject | 波數集成 | zh_TW |
| dc.subject | 神經影像 | zh_TW |
| dc.subject | 本徵空間投影 | zh_TW |
| dc.subject | InI | en |
| dc.subject | eigenspace projection | en |
| dc.subject | L1 norm minimization | en |
| dc.subject | neuroimaging | en |
| dc.subject | MRI | en |
| dc.subject | beamformer | en |
| dc.subject | fMRI | en |
| dc.title | 陣列信號處理於大腦功能性磁振逆影像重建之應用 | zh_TW |
| dc.title | Array Signal Processing Applications in Functional Magnetic Resonance Inverse Imaging Reconstruction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李學智(Hsueh-Jyh Li),林發暄(Fa-Hsuan Lin),曾文毅(Wen-Yi Tseng),郭文瑞(Wen-Jui Kuo),吳文超(Wen-Chao Wu),王福年(Fu-Nien Wang) | |
| dc.subject.keyword | 功能磁振造影,磁振逆影像,神經影像,最小L1範數,本徵空間投影,波數集成,快速影像, | zh_TW |
| dc.subject.keyword | fMRI,InI,MRI,neuroimaging,L1 norm minimization,eigenspace projection,beamformer, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-01-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
