Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳美環,楊偉勛
dc.contributor.authorMing-Tai Linen
dc.contributor.author林銘泰zh_TW
dc.date.accessioned2021-06-15T07:00:33Z-
dc.date.available2014-03-03
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-01-24
dc.identifier.citationAbe J, Jibiki T, Noma S, Nakajima T, Saito H, Terai M. Gene expression profiling of the effect of high-dose intravenous Ig in patient with Kawasaki disease.
J Immunol. 2005; 174:5837-5845
Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–832.
Ahn SY, Jang GC, Shin JS, Shin KM, Kim DS. Tumor necrosis factor-alpha levels and promoter polymorphism in patients with Kawasaki disease in Korea. Yonsei Med J. 2003;44:1021-1026.
Amano S, Hazama F, Kubagawa H, Tasaka K, Haebara H, Hamashima Y. General pathology of Kawasaki disease. Acta Pathol Jpn. 1980;30:681-694.
Ayusawa M, Sonobe T, Uemura S, Ogawa S, Nakamura Y, Kiyosawa N, et al. Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition). Pediatric Int. 2005;47:232-234.
Baldassano R, Baldassano R, Braegger CP, Escher JC, DeWoody K, Hendricks DF, et al. Infliximab (REMICADE) therapy in the treatment of pediatric Crohn's disease. Am J Gastroenterol. 2003;98: 833-838.
Breunis WB, Biezeveld MH, Geissler J, Kuipers IM, Lam J, Ottenkamp J, et al. Polymorphisms in chemokine receptor genes and susceptibility to Kawasaki disease. Clin Exp Immunol. 2007;150:83-90.
Breunis WB, Biezeveld MH, Geissler J, Ottenkamp J, Kuipers IM, Lam J, et al. Vascular endothelial growth factor gene haplotypes in Kawasaki disease. Arthritis Rheum. 2006;54:1588-1594.
Burgner D, Davila S, Breunis WB, Ng SB, Li Y, Bonnard C, et al. A genome-wide association study identifies novel and functionally related susceptibility loci for Kawasaki disease. PLoS Genet. 2009;5:e1000319.
Burns JC, Shimizu C, Shike H, Newburger JW, Sundel RP, Baker AL, et al. Family-based association analysis implicates IL-4 in susceptibility to Kawasaki disease. Genes and Immunity. 2005;6:438−444.
Chang LY, Chang IS, Lu CY, Chiang BL, Lee CY, Chen PJ, et al. Epidemiologic features of Kawasaki disease in Taiwan, 1996-2002. Pediatrics. 2004;114:e678- e682.
Chang LY, Chiang BL, Kao CL, Wu MH, Chen PJ, Berkhout B, et al. Lack of association between infection with a novel human coronavirus (HCoV), HCoVNH,
and Kawasaki disease in Taiwan. J Infect Dis 2006; 193:283-286.
Chen SJ, Lee WJ, Lin MT, Liu KL, Wang JK, Lue HC. Coronary artery diameters in infants and children with congenital heart disease as determined by computed tomography. Am J Cardiol. 2007;100:1696-1701.
Chen SJ, Wu MH. Coronary aneurysm in Kawasaki disease. Mayo Clin Proc. 2007; 82:271.
Cheung YF, Ho MH, Tam SC, Yung TC. Increased high-sensitivity C-reactive protein concentrations and increased arterial stiffness in children with a history of Kawasaki disease. Heart. 2004;90:1281-1285.
Cheung YF, Huang GY, Chen SB, Liu XQ, Xi L, Liang XC, et al. Inflammatory gene polymorphisms and susceptibility to kawasaki disease and its arterial sequelae. Pediatrics. 2008;122:e608-e614.
Chi H, Huang FY, Chen MR, Chiu NC, Lee HC, Lin SP, et al. ITPKC gene SNP rs28493229 and Kawasaki disease in Taiwan ese children. Hum Mol Genet. 2010;19:1147-1151.
Chien YH, Chang KW, Yang YH, Lu MY, Lin YT, Chiang BL. Association between levels of TNF-alpha and TNF-alpha promoter-308 A/A polymorphism in children with Kawasaki disease. J Form Med Assoc. 2003;102:147-150.
DeMarco JJ, Cagnon CH, Cody DD, Stevens DM, McCollough CH, Zankl M, et al. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): Cylindrical and anthropomorphic phantoms. Phys Med Biol. 2005; 50:3989-4004.
Dhillon R, Clarkson P, Donald AE, Powe AJ, Nash M, Novelli V, et al. Endothelial dysfunction late after Kawasaki disease. Circulation. 1996;94:2103-2106.
Edwards JJ. The recognition and estimation of cyclic trends. Am Hum Genet. 1961;25:83-86.
Esper F, Shapiro ED, Weibel C, Ferguson D, Landry ML, Kahn JS. Association between a novel human coronavirus and Kawasaki disease. J Infect Dis 2005;
191:499-502.
Freedman LS. The use of a Kolmogorov-Smirnov type statistic in testing hypotheses about seasonal variation. J Epidemiol Community Health. 1979;33:223-228.
Fujita Y, Nakamura Y, Sakata K, Hara N, Kobayashi M, Nagai M, et al. Kawasaki disease in families. Pediatrics. 1989;84:666-669.
Fukazawa R, Sonobe T, Hamamoto K, Hamaoka K, Sakata K, Asano T, et al. Possible synergic effect of angiotensin-I converting enzyme gene insertion/deletion polymorphism and angiotensin-II type-1 receptor 1166A/C gene polymorphism on ischemic heart disease in patients with Kawasaki disease. Pediatr Res. 2004;56:597-601.
Gavin PJ, Crawford SE, Shulman ST, Garcia FL, Rowley AH. Systemic arterial expression of matrix metalloproteinase 2 and 9 in acute Kawasaki disease. Arterioscler Thromb Vasc Biol. 2003;23:576-581.
Goo HW, Park IS, Ko JK, Kim YH, Seo DM, Yun TJ, et al. Visibility of the origin and proximal course of coronary arteries on non-ECG-gated heart CT in patients with congenital heart disease. Pediatr Radiol. 2005;35:792–798.
Goo HW, Park IS, Ko JK, Kim YH. Coronary CT angiography and MR angiography of Kawasaki disease. Pediatr Radiol. 2006;36:697–705.
Hamaoka K, Onouchi Z, Ohmochi Y. Coronary flow reserve in children with Kawasaki disease without angiographic evidence of coronary stenosis. Am J Cardiol. 1992;69:691-692.
Harada K. Intravenous gamma-globulin treatment in Kawasaki disease. Acta Paediatr Jpn. 1991;33:805–810.
Heeneman S, Cleutjens JP, Faber BC, Creemers EE, van Suylen RJ, Lutgens E, et al. The dynamic extracellular matrix: intervention strategies during heart failure and atherosclerosis. J Pathol. 2003;200:516-525.
Hirono K, Kemmotsu Y, Wittkowski H, Foell D, Saito K, Ibuki K, et al. Infliximab reduces the cytokine-mediated inflammation but does not suppress cellular infiltration of the vessel wall in refractory Kawasaki disease. Pediatr Res. 2009;65:696-701.

Horns SD. Goodness-of-fit tests for discrete data: A review and an application to a health impairment scale. Biometrics. 1977;33:237-248.
Hsueh KC, Lin YJ, Chang JS, Wan L, Tsai YH, Tsai CH, et al. Association of vascular endothelial growth factor C-634G polymorphism in Taiwanese children with Kawasaki disease. Pediatr Cardiol. 2008;29:292-296.
Hsueh KC, Lin YJ, Chang JS, Wan L, Tsai YH, Tsai CH, et al. Influence of interleukin 18 promoter polymorphisms in susceptibility to Kawasaki disease in Taiwan. J Rheumatol. 2008;35:1408-1413.
Huang FY, Chang TY, Chen MR, Lee HC, Chi H, Chiu NC, et al. Lack of association of the vascular endothelial growth factor gene polymorphisms with Kawasaki disease in Taiwanese children. J Clin Immunol. 2008;28:322-328.
Huang WC, Huang LM, Chang IS, Chang LY, Chiang BL, Chen PJ, et al. Epidemiologic features of Kawasaki disease in Taiwan, 2003-2006. Pediatrics. 2009;123:e401-e405.
Ikeda K, Ihara K, Yamaguchi K, et al. Genetic analysis of MMP gene polymorphisms in patients with Kawasaki disease. Pediatr Res. 2008;63:182-185.
Imboden JB and Pattison G. Regulation of inositol 1,4,5-trisphosphate kinase activity after stimulation of human T cell antigen receptor. J Clin Invest. 1987;79:1538-1541.
Jhang WK, Kang MJ, Jin HS, Yu J, Kim BJ, Kim BS, et al. The CCR5 (-2135C/T) polymorphism may be associated with the development of Kawasaki disease in Korean children. J Clin Immunol. 2009;29:22-28.
Jin HS, Kim HB, Kim BS, et al. The IL-10 (-627 A/C) promoter polymorphism may be associated with coronary aneurysms and low serum albumin in Korean children with Kawasaki disease. Pediatr Res. 2007;61:584-587.
Kamizono S, Yamada A, Higuchi T, Kato H, Itoh K. Analysis of tumor necrosis factor-alpha production and polymorphisms of the tumor necrosis factor-alpha gene in individuals with a history of Kawasaki disease. Pediatr Int. 1999;41:341-345.
Kariyazono H, Ohno T, Khajoee V, Ihara K, Kusuhara K, Kinukawa N, et al. Association of vascular endothelial growth factor (VEGF) and VEGF receptor gene polymorphisms with coronary artery lesions of Kawasaki disease. Pediatr Res. 2004; 56:953-959.
Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, et al. Long-term consequences of Kawasaki disease: A 10- to 21-year follow-up study of 594 patients. Circulation. 1996;94:1379-1385.
Kawasaki T. Pediatric acute febrile mucocutaneous lymph node syndrome with characteristic desquamation of fingers and toes: My clinical observation of fifty cases. Jpn J Allergy. 1967;178:178 –222.
Kim JJ, Hong SJ, Hong YM, Kim S, Kang MJ, Kim KJ, et al. Genetic variants in the HLA-G region are associated with Kawasaki disease. Hum Immunol. 2008;69:867-871.
Knight DM, Trinh H, Le J, Siegel S, Shealy D, McDonough M, et al. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol Immunol 1993; 30:1443-1453.
Kuettner A, Beck T, Drosch T, Kettering K, Heuschmid M, Burgstahler C, et al. Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol. 2005;45:123–127.
Kuniyuki S and Asada M. An ulcerated lesion at the BCG vaccination site during the course of Kawasaki disease. J Am Acad Dermatol. 1997;37:303-304.
Lau AC, Duong TT, Ito S, Wilson GJ, Yeung RSM. Inhibition of matrix metalloproteinase-9 activity improves coronary outcome in an animal model of Kawasaki disease. Clin Exp Immunol. 2009; 157: 300-309.
Lau AC, Rosenberg H, Duong TT, Mccrindle BW, Yeung RSM. Elastolytic matrix metalloproteinases and coronary outcome in children with Kawasaki disease. Pediatr Res. 2007; 61: 710-715.
Lin MT, Wu MH, Chang CC, Chiu SN, Theriault O, Huang H, et al. In utero onset of long QT syndrome with atrioventricular block and spontaneous or lidocaine-induced ventricular tachycardia: Compound effects of hERG pore region mutation and SCN5A N-terminus variant. Heart Rhythm. 2008;5:1567-1674.
Lin YH, Ho YL, Wang TD, Liu CP, Kao HL, Chao CL, et al. The relation of amino-terminal propeptide of type III procollagen and severity of coronary artery disease in patient without myocardial infarction or hibernation. Clin Biochem. 2006;39:861-866.
Lin YJ, Wan L, Wu JY, Sheu JJ, Lin CW, Lan YC, et al. HLA-E gene polymorphism associated with susceptibility to Kawasaki disease and formation of coronary artery aneurysms. Arthritis Rheum. 2009;60:604-610.
Liu AM, Ghazizadeh M, Onouchi Z, Asano G. Ultrastructural characteristics of myocardial and coronary microvascular lesions in Kawasaki disease. Microvasc Res. 1999;58:10-27.
Lopez B, Gonzalez A, Viaro N, Laviades C, Querejeta R, Diez J. Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension. 2001;38:1222-1226.
Lue HC, Philip S, Chen MR, Wang JK, Wu MH. Surveillance of Kawasaki disease in Taiwan and review of the literature. Acta Paediatr Tw. 2004;45:8-14.
Lu KT. Taiwan guidelines for TB diagnosis & treatment. 3rd edition. Centers for Disease Control, R.O.C. (Taiwan); 2008.
Mamtani M, Matsubara T, Shimizu C, Furukawa S, Akagi T, Onouchi Y, et al. Association of CCR2-CCR5 haplotypes and CCL3L1 copy number with Kawasaki Disease, coronary artery lesions, and IVIG responses in Japanese children. PLoS One. 2010 7:e11458.
Manlhiot C, Yeung RS, Chahal N, McCrindle BW. Intravenous immunoglobulin preparation type: Association with outcomes for patients with acute Kawasaki disease. Pediatr Allergy Immunol. 2010 May;21(3):515-521.
McCrindle BW, Ose L, Marais AD. Efficacy and safety of Atorvastatin in children and adolescents with familial hypercholesterolemia or severe hyperlipidemia: A multicenter, randomized, placebo-controlled trial. J Pediatr. 2003;142:74-80.
Mitani Y, Okuda Y, Shimpo H, Uchida F, Hamanaka K, Aoki K, et al. Impaired endothelial function in epicardial coronary arteries after Kawasaki disease. Circulation. 1997;96:454-461.
Mitani Y, Sawada H, Hayakawa H, Aoki K, Ohashi H, Matsumura M, et al. Elevated levels of high-sensitivity C-reactive protein and serum amyloid-A late after Kawasaki disease. Circulation. 2005;111:38-43.
Morikawa Y, Ohashi Y, Harada K, Asai T, Okawa S, Nagashima M, et al. Coronary risks after high-dose gamma-globulin in children with Kawasaki disease. Pediatr Int. 2000;42:464-469.
Murata H. Experimental candida-induced arteritis in mice. Relation to arteritis in the mucocutaneous lymph node syndrome. Microbiol Immunol. 1979;23:825-831.
Nair P, Gruberg L, Beyar R. The eccentric lumenology. Acute Card Care. 2006;8:87-94.
Nakamura Y, Yashiro M, Uehara R, Oki I, Watanabe M, Yanagawa H. Epidemiologic features of Kawasaki disease in japan: Result from the nationwide survey in 2005-2006. J Epidemiol. 2010;18:167-172.
Nakonechny KD, Fallone BG, Rathee S. Novel methods of measuring single scan dose profiles and cumulative dose in CT. Med Phys. 2005;32:98-109.
Naoe S, Takahashi K, Masuda H, Tanaka N. Kawasaki disease with particular emphasis on arterial lesions. Acta Pathol Jpn. 1991;41:785-797.
Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani, LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young. American Heart Association. Pediatrics. 2004;114:1708-1733.
Oh JH, Han JW, Lee SJ, Lee KY, Suh BK, Koh DK, et al. Polymorphisms of human leukocyte antigen genes in Korean children with Kawasaki disease. Pediatr Cardiol. 2008;29:402-408.
Ohno N. Chemistry and biology of angiitis inducer, candida albicans water-soluble mannoprotein-beta-glucan complex(CAWS). Microbiol Immunol. 2003;47:479-490.
Ohno N. Murine model of Kawasaki disease induced by mannoprotein-β-glucan complex, CAWS, obtained from candida albicans. Jpn J Infect Dis. 2004;57:s9-s10.
Onouchi Y, Onoue S, Tamari M, et al. CD40 ligand gene and Kawasaki disease. Eur J Hum Genet. 2004 ;12:1062-1068.
Onouchi Y, Gunji T, Burns JC, Shimizu C, Newburger JW, Yashiro M, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nature Genetics. 2008;40:35-42.
Onouchi Y. Molecular genetics of Kawasaki disease. Pediatr Res. 2009;65(5 Pt 2):46R-54R.
Opie LH, Gersh BJ, eds. Lipid-lowering and anti-atherosclerotic drugs. Chapter 10. In: Drugs for the heart. 6th edition, 2004; pp. 330-339.
Ouchi K, Suzuki Y, Shirakawa T, Kishi F. Polymorphism of SLC11A1 (formerly NRAMP1) gene confers susceptibility to Kawasaki disease. J Infect Dis. 2003;187:326-329.
Packard RR, Libby P. Inflammation in Atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54:24-38.

Purcell S, Cherny SS, Sham PC. Genetic power calculator: Design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003;19:149-150.
Quasney MW, Bronstein DE, Cantor RM, Zhang Q, Stroupe C, Shike H, et al. Increased frequency of alleles associated with elevated tumor necrosis factor-alpha levels in children with Kawasaki disease. Pediatr Res. 2001;49:686-690.
Raman V, Kim J, Sharkey A, Chatila T. Response of refractory Kawasaki disease to pulse steroid and cyclosporin A therapy. Pediatr Infect Dis J. 2001;20:635-637.
Research Committee on Kawasaki Disease. Report of Subcommittee on Standardization of Diagnostic Criteria and Reporting of Coronary Artery Lesions in Kawasaki Disease. Tokyo, Japan: Ministry of Health and Welfare; 1984.
Risteli J, Niemi S, Trivedi P, Mäentausta O, Mowat AP, Risteli L. Rapid equilibrium radioimmunoassay for the amino-terminal propeptide of human type III procollagen. Clin Chem. 1988; 34:715-718.
Ryan TJ, Bauman WB, Kennedy JW, Kereiakes DJ, King SB 3rd, McCallister BD, et al. Guidelines for percutaneous transluminal coronary angioplasty. A report of the American Heart Association/American College of Cardiology Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Percutaneous Transluminal Coronary Angioplasty). Circulation. 1993;88:342-345.
Sato N, Sagawa K, Sasaguri Y, Inoue O, Kato H. Immunopathology and cytokine detection in the skin lesions of patients with Kawasaki disease. Journal Pediatrics. 1993;122:198-203.
Schulte DJ, Yilmaz A, Shimada K, Fishbein MC, Lowe EL, Chen S, et al. Involvement of innate and adaptive immunity in a murine model of coronary arteritis mimicking Kawasaki disease. J Immunol. 2009;183:5311-5318.
Schweitzer M, Mitmaker B, Obrand D, Sheiner N, Abraham C, Dostanic S, et al. Atorvastatin modulates matrix metalloproteinase expression, activity, and signaling in abdominal aortic aneurysms. Vasc Endovascular Surg. 2010;44:116-122.
Senzaki H, Masutani S, Kobayashi J, Kobayashi T, Nakano H, Nagasaka H, et al. Circulating matrix metalloproteinases and their inhibitors in patients with Kawasaki disease. Circulation. 2001;104:860-863.
Shim YH, Kim HS, Sohn S, Hong YM. Insertion/deletion polymorphism of angiotensin converting enzyme gene in Kawasaki disease. J Korean Med Sci. 2006;21:208-211.
Shimizu C, Matsubara T, Onouchi Y, Jain S, Sun S, Nievergelt CM, et al. Matrix metalloproteinase haplotypes associated with coronary artery aneurysm formation in patients with Kawasaki disease. J Hum Genet. 2010 Sep 9. [Epub ahead of print]
Sireci G, Dieli F, Salerno A. T cells recognize an immunodominant epitope of heat shock protein 65 in Kawasaki disease. Molecular Medicine. 2000;6:581-588.
Stober CB, Lammas DA, Li CM, Kumararatne DS, Lightman SL, McArdle CA. ATP-mediated killing of Mycobacterium bovis bacille Calmette-Guérin within human macrophages is calcium dependent and associated with the acidification of mycobacteria-containing phagosomes. Journal of Immunology. 2001;166:6276-6286.
Sundstrom J, Vasan RS. Circulating biomarkers of extracellular matrix remodeling and risk of atherosclerotic events. Curr Opin Lipidol. 2006;17:45-53.
Suzuki A, Miyagawa-Tomita S, Nakazawa M, Yutani C. Remodeling of coronary artery lesions due to Kawasaki disease. Jpn Heart J. 2000;41:245-256.
Takahashi K, Oharaseki T, Yokouchi Y, Miura NN, Ohno N, Okawara AI, et al. Administration of human immunoglobulin suppresses development of murine systemic vasculitis induced with Candida albicans water-soluble fraction: an animal model of Kawasaki disease. Mod Rheumatol. 2010;20:160-167.
Takahashi K, Oharaseki T, Wakayama M, Yokouchi Y, Naoe S, Murata H. Histopathological features of murine systemic vasculitis caused by Candida albicans extract--an animal model of Kawasaki disease. Inflamm Res. 2004;53:72-77.
Takeuchi K, Yamamoto K, Kataoka S, Kakihara T, Tanaka A, Sato S, et al. High incidence of angiotensin I converting enzyme genotype II in Kawasaki disease patients with coronary aneurysm. Eur J Pediatr. 1997;156:266-268.

Tsai MH, Huang YC, Yen MH, Li CC, Chiu CH, Lin PY, et al. Clinical responses of patients with Kawasaki disease to different brands of intravenous immunoglobulin. J Pediatr. 2006;148:38-43.
Tzen KT, Wu MH, Wang JK, Lue HC, Lee CY, Chien SC. Prognosis of coronary arterial lesions in Kawasaki disease treated without intravenous immunoglobulin. Acta Pediatrica Sinica. 1997;38:32-37.
Uehara R, Igarashi H, Yashiro M, Nakamura Y, Yanagawa H. Kawasaki disease patients with redness or crust formation at the Bacille Calmette-Guérin inoculation site. Pediatr Infect Dis J. 2010;29:430-433.
Uehara R, Yashiro M, Nakamura Y, Yanagawa H. Kawasaki disease in parents and children. Acta Pediatrica. 2003;92:694-697.
Weng KP, Hsieh KS, Ho TY, Huang SH, Chiao YH, Cheng JT, et al. IL-1B polymorphism in association with initial intravenous immunoglobulin treatment failure in Taiwanese children with Kawasaki disease. Circ J. 2010;74:544-551.
Wu MH, Nakamura Y, Burns JC, Rowley AH, Takahashi K, Newburger JW, et al. State-of-the-art basic and clinical science of Kawasaki disease. Pediatric Health. 2008;2:405-409.

Wu SF, Chang JS, Wan L, Tsai CH, Tsai F. Association of IL-1Ra gene polymorphism, but no association of IL-1beta and IL-4 gene polymorphisms, with Kawasaki disease. J Clin Lab Anal. 2002;19:99-102.
Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117:524-529.
Yanagawa H, Nakamura Y, Yashiro M, Uehara R, Oki I, Kayaba K. Incidence of Kawasaki disease in Japan: The nationwide surveys of 1999-2002. Pediatr Int. 2006;48:356-361.
Yeung RS. Kawasaki disease: Update on pathogenesis.Curr Opin Rheumatol 2010; 22:551-560.
Zulian F, Zanon G, Martini G, Mescoli G, Milanesi O. Efficacy of infliximab in long-lasting refractory Kawasaki disease. Clin Exp Rheumatol. 2006;24:453.
黃碧桃著. 川崎病. 第25章, pp. 300-317. 兒童心臟學第二版, 呂鴻基、沈慶村、吳美環主編, 2010; 台灣兒童心臟學會出版
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48526-
dc.description.abstract川崎病(Kawasaki disease, KD)是一種原因還不太清楚的血管炎,好發於年紀較小的兒童,它有以下五個特徵:發燒持續五天以上、兩側非化膿性結膜炎、口腔黏膜發紅、四肢肢端皮膚脫皮、紅疹及頸部淋巴結。川崎病之所以愈來愈受到重視,有下列幾個原因:(1)隨著公共衛生的進步,川崎病已取代以往的風溼熱及風溼性心臟病成為兒童後天性心臟病的頭號要犯;(2)川崎病的血管炎,特別喜歡攻擊中型血管,尤其是冠狀動脈,由於冠狀動脈是心臟收縮時能量和氧氣供應的重要通道,若未得到適時而正確的治療,會有像老人家的心肌梗塞甚至猝死的風險;(3)此病在台灣的發生率高居世界第三,僅次於日本與韓國,根據健保局的資料,每一年在台灣新增的病例約有800人左右,雖然沒有感冒那麼常見,但也不算太少。
在過去這三十幾年來,人們雖然很努力的在找尋川崎病的致病機轉,但很遺憾的,截至目前為止仍然沒有突破性的進展;一般相信川崎病是擁有某些特定基因型體質的病童受到特定或一般病原體感染之後,進而造成宿主的免疫系統過度反應及失調,導致血管炎性反應,進而引起此病。
從過去的文獻我們擷取出1996到2002年之間,國民健康保險的資料庫中川崎病的流行病學資料,將其中未滿18 歲住院且符合川崎病診斷標準 (ICD: 446.1) 的病人列入統計,同時將這些資料轉型成累積分佈曲線(cumulative distribution curve);我們應用Kuiper’s test 來分析這條曲線並研究其是否有明顯的季節性分布。結果發現在研究期間,每一年的季節集中性均大於百分之九十九,意即有明顯的季節趨勢;這也支持了過去的理論,川崎病可能是由某些病原體所誘發的;有趣的現象是在台灣川崎病的高峰似乎在4-6月間較溫暖的春夏交界之際,然而在日本卻總是在最寒冷的冬天,同在東亞的兩個地域上的孩子,為何有著截然不同的發病型態,是不同的遺傳背景抑或是與環境中的微生物不同的互動模式所導致,目前仍然不明白。接下來我們就要跨進分子生物學的領域,從這個角度切入川崎病的致病機轉。
從流行病學調查結果知道川崎病在日本有全世界最高的發生率,這種情形於日本裔的移民身上也可以發現;更有其他的family based的證據發現一個家庭裏若有一個孩子得了川崎病,他(她)的兄弟姐妹未來發作川崎病的概率是同年齡孩子風險的10-20倍,而且小時候得過川崎病的病患其兒女再得川崎病的機率也較一般民眾高出兩倍之多;這些都暗示某些基因在川崎病的致病機轉上扮演著重要的角色。所以許多的基因相關性研究(genetic association study)已被廣泛的運用在搜尋像川崎病這樣的複雜性多基因疾病(complex trait disease)的致病基因(susceptible genes)。我們經過了文獻的搜尋和考慮,選擇了Dr. Onouchi在2008年所發表的川崎病風險基因ITPKC作為我們這個研究切入的開始。
我們一方面選定了這個ITPKC基因上的rs28493229作為研究的目標,另一方面也思考這個SNP如果能影響T淋巴球的活化,造成免疫系統的過度反應,那它是否與川崎病的某種臨床表現有關,這個部分的相關性是沒有文獻提過的,特別是冠狀動脈的影響或是卡介苗接種部位的紅腫與這個SNP的相關性如何,我們將一併來探討。這個部分的研究總共收錄了280位典型川崎病的病患,其中男性佔了61.8%,年齡的中位數是21.5個月大;其中有162位(佔57.9%)曾患有冠狀動脈病變 (coronary lesions);這162位曾有冠狀動脈影響的病人包含了51位中型或巨大冠狀動脈瘤(coronary aneurysm)的病人,以及111位曾有冠狀動脈輕度擴張或是小型動脈瘤者;在rs28493229這個SNP上共有三種基因型分別是GG、GC和CC,這三種基因型在我們研究的280位川崎病人的分布是GG:GC:CC是236:43:1,對照組的分布則是454:37:1,若以對偶基因頻率(Allele frequency)的角度來看,C allele的出現頻率在病人組及對照組分別為8.04%及3.96%,兩組間的差異,不論是基因型頻率或是對偶基因頻率,在統計上都非常顯著(勝算比分別為2.23及2.12,p值均小於0.001)。在這些病人的臨床表現,我們依照rs28493229上基因型的不同分成兩組(GG組及GC+CC組),觀察他們在臨床表現(六大診斷基準,diagnostic criteria)及卡介苗接種部位是否紅腫及膿尿(pyuria)的比例是否在兩組間有所不同,結果發現GC+CC這一組(也就是carrier of C allele)的病患相較於GG組有較高比例有卡介苗接種部位紅腫的現象(19/44 vs. 66/236; OR: 1.96,p=0.044);我們也進一步的分析了這個研究中病患年齡小於20個月的150位病人,結果發現帶有C allele的幼童(小於20個月)發病時卡介苗紅腫的比例高達71.4%(15/21),遠高於相同年齡群未帶有C allele(即GG基因型)的病童(56/129, 43.4%),兩者之間的差異更大,更顯著(勝算比3.26,95%,信賴區間:1.19∼8.94,p=0.017)。
我們同時也將病人依照冠狀動脈是否受到影響分成兩組,各有162及118人,利用χ2 test檢驗C allele的有無是否與冠狀動脈病變的產生有關,結果發現沒有顯著相關(勝算比:0.85,95%信賴區間:0.45∼1.63),接著再依據冠狀動脈病變的嚴重度,區分病人為無影響、輕度影響及重度影響三類,利用3×2 χ2 test(卡方)分析,結果依然發現這個ITPKC基因的rs28493229多型性變化與冠狀動脈病變的嚴重度無關。
在這個部份的研究中,我們首先發現基因ITPKC的多型性(SNP)與川崎病急性期的表現之一:卡介苗接種處紅腫有關,這是從來沒有人注意到或報告過的,同時我們也証實了,即使基因頻率遠較日本為低(8.04%相對於日本22.6%),這個遺傳變異(genetic variant)在台灣地區確實與川崎病的發生有關,也因為這個C allele與卡介苗紅腫相關,似乎也暗示了這個ITPKC的多型性,是經由過度激發的免疫功能,進而促進川崎病的發生。
最後一個部份則是關於川崎病冠狀動脈病變重塑的探討;已經有報告顯示川崎病病人即使在病程晚期,血管周圍及心肌的纖維化及細胞間質的重組仍持續活躍的進行,所以我們猜測纖維化的相關指標可能可以作為偵測相關心臟事件的指標。
在這部份的研究中,我們收錄了35位青少年及年輕人[25位為川崎病-無冠狀動脈病變(KD-N(on)CAL)組,10位為川崎病-冠狀動脈持續病變(KD-P(ersistent)CAL)組] 和25位類似年齡(age-matched)的控制組參與這個研究。冠狀動脈持續病變的病人均接受過電腦斷層檢查(佔8/10或80%個案數)或血管攝影(佔7/10或70%個案數)來確認冠狀動脈損傷狀態,並藉由影像學來定義和定量冠狀動脈損傷情形,包括冠狀動脈瘤的數目、冠狀動脈的鈣化負擔(calcium burden)、在冠狀動脈瘤中是否有血栓形成以及冠狀動脈的狹窄(stenosis)程度。
基本的實驗室測量包括血清中的膽固醇、高密度脂蛋白、低密度脂蛋白、三酸甘油脂、肝臟酵素[(包括天門冬胺酸轉胺酶(AST)及丙胺酸轉胺酶(ALT) ]以及高感度的C反應蛋白等,至於纖維化的指標則以血漿中的amino-terminal propeptide of type III procollagen (PIIINP)、matrix metalloproteinase-9 (MMP-9)及tissue inhibitor of matrix metalloproteinase-1 (TIMP-1)來代表。我們分析了這些標記在三組病人間的分佈有無差異,也評估所選定的纖維化指標是否與影像學上定量的指標呈現某種有意義的相關。結果發現KD-PCAL組的PIIINP的濃度明顯地比從來沒有冠狀動脈問題的病患(KD-NCAL)組來得高;更有趣的是這兩群病人PIIINP值均比同年齡的對照組要來的高;MMP-9、TIMP-1的濃度以及MMP-9/TIMP-1的比值則低於對照組;與電腦斷層上各個冠狀動脈異常分數相關的生物指標中以PIIINP的相關性最好,如果進一步分析可以發現PIIINP與冠狀動脈狹窄分數(stenosis score)和血栓形成分數(thrombus score)的相關性最好(r值分別是0.72與0.64,p=0.01);運用趨勢分析(trend test)調整(adjust)了年紀、性別、身體質量指數(BMI)、血壓及HDL-cholesterol的濃度等可能的干擾因子(confounding factor)之後,P IIINP的濃度仍然與電腦斷層上冠狀動脈病變嚴重度分數呈現有意義的相關,特別是狹窄分數(coronary stenosis score,p=0.03)與血栓分數(coronary thrombus score,p=0.05)。
根據文獻,這篇研究應該是第一篇研究川崎病在發病十餘年後細胞間介質(extracellular matrix)相關的生物指標(biomarker)變化的文章,我們有以下叁個重要的發現:(1) 膠原蛋白(collagen)合成的指標之一,PIIINP,在有川崎病病史的青少年或年輕人是高於一般的健康人,特別是在有持續性冠狀動脈病變的病人,(2)更重要的是這個PIIINP的濃度高低是與病人定量化的冠狀動脈病變指標(包括狹窄分數與血栓分數)呈現正相關;而且(3) 看似沒有冠狀動脈病變的病人,這個膠原蛋白合成的指標PIIINP還是處於不正常的狀態。整體而言,我們可以推論在川崎病發病的晚期(十數年之後) 膠原蛋白的合成(turnover)仍處於不正常的狀態,而且可能與冠狀動脈病變的嚴重度、細微血管病變或是心肌的纖維化都有關係。
總結來說,由這三個部份的研究,我們證實了川崎病的確有明顯的季節性分布;再由遺傳的角度切入,肯定了與ITPKC 基因相關的T淋巴球活化是川崎病發生的重要步驟;最後應用間質重塑的指標監測,我們發現在川崎病的晚期,纖維化的相關指標仍然不正常,這個新發現不但呼應了過去的病理報告,也為日後川崎病的追蹤與治療開啟了一個新的研究方向。
zh_TW
dc.description.abstractKawasaki disease (KD) is an acute systemic vasculitis that occurs predominantly in infants and young children. KD is characterized by fever, bilateral nonexudative conjunctivitis, erythema of the lips and oral mucosa, changes in the extremities, rash and cervical lymphadenopathy. Coronary artery aneurysms or ectasia develop in 5% to 10% of affected children even after the recommended intravenous immunoglobulin therapy. With an ever increasing incidence almost worldwide, KD is now the leading cause of acquired heart disease in children. The annual incidence of KD in Taiwan has increased steadily since 1976 and is now 66-69 patients per 100,000 children <5 years old, the third highest rate in the world.
The etiology and pathogenesis of KD are still uncertain. It is generally agreed that KD is related to ubiquitous infectious agents that cause the disease in genetically predisposed individuals. In the present doctoral thesis, we first sought to examine the seasonality of KD in Taiwan by using the epidemiologic data of KD in Taiwan between 1996 and 2002. Basically, the database came from the National Health Insurance data and hospitalized patients who were under 18 years old and met criteria listed for KD (ICD-9-CM code: 446.1) were selected. The data were transformed and analyzed in the form of cumulative distribution curve. Kuiper’s test was applied to test the seasonality, and we found the results of Kuiper’s test for seasonality in each year between 1996 and 2002 showed statistical significance for all years examined, (p <0.01) and ascertained the presence of seasonality for KD. This will support the theory that certain infectious agents may cause KD. The most interesting is the peak rmonth of patient numbers is April to June in Taiwan, rather than January (in Japan). The reasons for such differences between Japan and Taiwan remain unclear. But, the possibility that different interaction between infectious agents and genetic predisposing factors may be elucidated in the future studies.
The highest incidences of KD are found in three countries in Japan. The risk of KD in siblings of affected children is ten times higher as compared to the general population, while it is twice as high in children born to parents with a history of KD compared to the general population. Echoing these epidemiological data, previous studies have demonstrated the associations of genetic markers with a susceptibility to KD and/or increased risk of developing CAL in KD patients. Of the studied genetic markers, we picked up the functional single nucleotide polymorphism (SNP) rs28493229 of ITPKC (inositol 1,4,5-trisphosphate 3-kinase C) gene as the candidate and studied its association with susceptability to KD. Furthermore, if the C allele of ITPKC may lead to immune hyper-reactivity and susceptibility to KD, its presence may be also associated with different clinical manifestations (ex: erythema at BCG scar) during the acute phase of KD. Based on a Taiwanese KD cohort with complete medical data, we sought to define the role of the C allele of ITPKC rs28493229 polymorphism played in the disease susceptibility, clinical manifestation and the development and severity of CAL in KD patients.
We enrolled 280 unrelated Taiwanese children with KD and 492 healthy ethnically and gender-matched controls. Genotyping for the ITPKC polymorphism was conducted and the clinical manifestations and laboratory data were systemically collected. We found that the GC and CC genotypes of ITPKC gene SNP rs28493229 were over-represented in KD patients (GG:GC:CC was 236:43:1, C allele frequency: 8.04%) than in the controls (GG:GC:CC was 454:37:1, C allele frequency: 3.96%; OR:2.23, p=0.001). In KD patients, patients with GC or CC genotypes of SNP rs28493229 (19/44) were more likely to have reactivation at the Bacille Calmette-Gu&eacute;rin (BCG) inoculation site than those with GG genotypes (66/236; OR= 1.96, p=0.044). Such association was particularly strong in patients aged < 20 months (OR= 3.26, p=0.017). The other clinical manifestations were not related to this SNP. In this cohort, there were 160 (57.1%) patients with coronary arterial lesions (CAL). The development and the severity of CAL was not associated with this SNP either. Comparison between patients with and without BCG reactivation revealed only one difference: patients with reactivation were younger. Therefore, we concluded, in a cohort from a population with the world’s third highest incidence of KD, the C-allele of ITPKC SNP rs28493229 is associated with KD susceptibility and BCG scar reactivation during the acute phase, though its frequency is lower than that in Japanese cohort (22.6%), suggesting this SNP contributes to KD susceptibility via induced hyperimmune function reflected in the BCG reactivation.
The final part of the doctoral thesis is regarding to the research on matrix remodeling of coronary lesions in KD patients. Pathological data from the hearts of KD patients who suffered from sudden death showed thickening of coronary arteries and arterioles as well as perivascular and myocardial fibrosis. Alterations in the build-up and breakdown of arterial extracellular matrix are key features in vascular remodeling. Therefore, serum biomarkers of fibrosis may be sensitive indices for late cardiac complications of KD. We studied a cohort of 60 adolescents and young adults, which comprised 10 KD patients with persistent coronary artery lesions (CAL) 14.5 ± 4.4 years since onset, 25 KD patients with no CAL since onset and 25 healthy age-matched volunteers. The lipid profile, liver function, amino-terminal propeptide of type III procollagen (PIIINP), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and the MMP-9/TIMP-1 ratios were compared. Severity of CAL was based on computer tomography determinations of the frequency of aneurysms, the extent of coronary stenosis/occlusion, thrombosis and calcification.
We found elevated PIIINP, and decreased MMP-9, TIMP-1 and MMP-9/TIMP-1 ratios not only in KD patients with persistent CAL but also in those without, although to a lesser extent in the latter group. In KD patients, the concentrations of PIIINP were positively associated with the severity of coronary stenosis/occlusion (r=0.72, p= 0.011) and with the extent of coronary thrombus (r=0.64, p=0.014). The concentrations of high sensitivity C reactive protein, however, were not found different across groups. This is the first study of profiling for biomarkers of the extracellular matrix in KD adult patients more than ten years after disease onset. We report the following novel findings: (1) the index of collagen synthesis, PIIINP, was elevated and the concentrations of MMP-9, TIMP and the MMP-9/TIMP ratio were diminished in KD adolescents and young adults, especially in patients with persistent CAL. (2) In patients with KD, the concentrations of PIIINP were closely associated with quantifiable characteristics of severity of CAL (coronary stenosis/occlusion and coronary thrombosis). (3) In patients without gross coronary complications, the collagen turnover was still abnormal. Together these findings suggest that late after the onset of KD, the collagen turnover is still far from normal and may be related to the severity of CAL, microangiopathy or myocardial fibrosis.
In conclusion, the present doctoral thesis first confirmed the seasonality of KD in Taiwan. With the genetic analysis, we then demonstrated the ITPKC-realted T cell activation were associated with the development of KD and BCG scar reactivation. Finally, in adolescents and young adults late after the onset of KD, we novelly found alterations in biomarkers of extracellular matrix and turnover of collagen, not only echoing to the previous pathology reports, but also opening a new direction for the future monitoring and treatment of Kawasaki disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:00:33Z (GMT). No. of bitstreams: 1
ntu-100-D91421006-1.pdf: 1227692 bytes, checksum: 2ca5eac8f8bb7f6726b91bafce82e49c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
論文口試委員審定書 i
致謝 ii
中文摘要及關鍵詞 iii∼vii
英文摘要及關鍵詞 viii∼xi
目錄 xii~xiii
圖目錄 xiv
表目錄 xv
正文
一、緒論 1∼21
流行病學特徵 4
冠狀動脈病變的定義及發生率 5∼6
川崎病的症狀及致病機轉 7∼14
冠狀動脈病變的發生與重塑 15∼18
本研究計畫的範疇與基本假設 19∼21
二、研究方法與材料 22∼29
第一部分 川崎病的季節性趨勢-流行病學觀點 22∼23
第二部分 ITPKC基因多型性在川崎病的臨床意義 24∼26
第三部分 川崎病晚期冠狀動脈病變的間質重塑(matrix remodeling) 27∼29
三、結果 30∼35
第一部分 川崎病的季節性趨勢-流行病學觀點 30
第二部分 ITPKC基因多型性在川崎病的臨床意義 31∼33
第三部分 川崎病晚期冠狀動脈病變的間質重塑(matrix remodeling) 34∼35
四、討論 36∼48
第一部分 川崎病的季節性趨勢-流行病學觀點 36∼37
第二部分 ITPKC基因多型性在川崎病的臨床意義 38∼43
第三部分 川崎病晚期冠狀動脈病變的間質重塑(matrix remodeling) 44∼48
五、結論與展望 49∼54
六、參考文獻 55∼66
七、圖表 67∼78
八、附錄 79
dc.language.isozh-TW
dc.subject川崎病zh_TW
dc.subject間質重塑zh_TW
dc.subject冠狀動脈病變zh_TW
dc.subject基因多型性zh_TW
dc.subject季節性分布zh_TW
dc.subjectseasonalityen
dc.subjectmatrix remodelingen
dc.subjectgenetic polymorphismsen
dc.subjectcoronary arterial lesionsen
dc.subjectKawasaki diseaseen
dc.title川崎病病童的冠狀動脈病變
-由高危險基因到動脈病變之重塑與逆轉
zh_TW
dc.titleCoronary Lesions in Patients with Kawasaki Disease
-- from High-risk Genetic Factors to Remodeling of Coronary Arterial Lesions
en
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.advisor-orcid,楊偉勛(wsyang@ntu.edu.tw)
dc.contributor.oralexamcommittee王主科,何奕倫,吳俊明,鄭敬楓
dc.subject.keyword川崎病,冠狀動脈病變,季節性分布,基因多型性,間質重塑,zh_TW
dc.subject.keywordKawasaki disease,coronary arterial lesions,seasonality,genetic polymorphisms,matrix remodeling,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2011-01-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved