Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48523
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃青真
dc.contributor.authorYi-Chun Chouen
dc.contributor.author周怡君zh_TW
dc.date.accessioned2021-06-15T07:00:25Z-
dc.date.available2011-02-09
dc.date.copyright2011-02-09
dc.date.issued2010
dc.date.submitted2011-01-24
dc.identifier.citationAl-Hasani, H., Kunamneni, R.K., Dawson, K., Hinck, C.S., Muller-Wieland, D., and Cushman, S.W. (2002). Roles of the N- and C-termini of GLUT4 in endocytosis. J. Cell. Sci. 115, 131-140.
Alonso-Castro AJ. Miranda-Torres AC. Gonzalez-Chavez MM. Salazar-Olivo LA. (2008). Cecropia obtusifolia Bertol and its active compound, chlorogenic acid, stimulate 2-NBDglucose uptake in both insulin-sensitive and insulin-resistant 3T3 adipocytes. J. Ethnopharmacol. 120, 458-464.
Alonso-Castro AJ. Zapata-Bustos R. Romo-Yanez J. Camarillo-Ledesma P. Gomez-Sanchez M. Salazar-Olivo LA. (2010). The antidiabetic plants Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae) and Teucrium cubense Jacq (Lamiaceae) induce the incorporation of glucose in insulin-sensitive and insulin-resistant murine and human adipocytes. J. Ethnopharmacol. 127, 1-6.
Bachmann, O.P., Dahl, D.B., Brechtel, K., Machann, J., Haap, M., Maier, T., Loviscach, M., Stumvoll, M., Claussen, C.D., Schick, F., Haring, H.U., and Jacob, S. (2001). Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes 50, 2579-2584.
Bakhtiyari, S., Meshkani, R., Taghikhani, M., Larijani, B., and Adeli, K. (2010). Protein tyrosine phosphatase-1B (PTP-1B) knockdown improves palmitate-induced insulin resistance in C2C12 skeletal muscle cells. Lipids 45, 237-244.
Bhattacharya, S., Dey, D., and Roy, S.S. (2007). Molecular mechanism of insulin resistance. J. Biosci. 32, 405-413.
Brechtel, K., Dahl, D.B., Machann, J., Bachmann, O.P., Wenzel, I., Maier, T., Claussen, C.D., Haring, H.U., Jacob, S., and Schick, F. (2001). Fast elevation of the intramyocellular lipid content in the presence of circulating free fatty acids and hyperinsulinemia: a dynamic 1H-MRS study. Magn. Reson. Med. 45, 179-183.
Chang, C.I., Chen, C.R., Liao, Y.W., Cheng, H.L., Chen, Y.C., and Chou, C.H. (2008). Cucurbitane-type triterpenoids from the stems of Momordica charantia. J. Nat. Prod. 71, 1327-1330.
Chao, C.Y., and Huang, C.J. (2003). Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J. Biomed. Sci. 10, 782-791.
Cheng, H.L., Huang, H.K., Chang, C.I., Tsai, C.P., and Chou, C.H.(2008). A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. J Agric Food Chem56,6835-6843.
Chow, L., From, A., and Seaquist, E. (2010). Skeletal muscle insulin resistance: the interplay of local lipid excess and mitochondrial dysfunction. Metabolism 59, 70-85.
Chan, L.L., Chen, Q., Go, A.G., Lam, E.K., and Li, E.T. (2005). Reduced adiposity in bitter melon (Momordica charantia)-fed rats is associated with increased lipid oxidative enzyme activities and uncoupling protein expression. J. Nutr. 135, 2517-2523.
Corvera, S., Chawla, A., Chakrabarti, R., Joly, M., Buxton, J., and Czech, M.P. (1994). A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal. J. Cell Biol. 126, 979-989.
Cummings, E., Hundal, H.S., Wackerhage, H., Hope, M., Belle, M., Adeghate, E., and Singh, J. (2004). Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes. Molecular & Cellular Biochemistry 261, 99-104.
Dentin, R., Liu, Y., Koo, S.H., Hedrick, S., Vargas, T., Heredia, J., Yates, J.,3rd, and Montminy, M. (2007). Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366-369.
Egawa-Takata, T., Endo, H., Fujita, M., Ueda, Y., Miyatake, T., Okuyama, H., Yoshino, K., Kamiura, S., Enomoto, T., Kimura, T., and Inoue, M. (2010). Early reduction of glucose uptake after cisplatin treatment is a marker of cisplatin sensitivity in ovarian cancer. Cancer Science 101, 2171-2178.
Fantuzzi, G. (2005). Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol. 115, 911-919.
Ferrannini, E., Natali, A., Bell, P., Cavallo-Perin, P., Lalic, N., and Mingrone, G. (1997).
Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J. Clin. Invest. 100, 1166-1173.
Gao, Y., Zhou, Y., Xu, A., and Wu, D. (2008). Effects of an AMP-activated protein kinase inhibitor, compound C, on adipogenic differentiation of 3T3-L1 cells. Biol. Pharm. Bull. 31, 1716-1722.
Gao, H., Wang, X., Zhang, Z., Yang, Y., Yang, J., Li, X., and Ning, G. (2007). GLP-1 amplifies insulin signaling by up-regulation of IRbeta, IRS-1 and Glut4 in 3T3-L1 adipocytes. Endocrine 32, 90-95.
Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C.Z., Uysal, K.T., Maeda, K., Karin, M., and Hotamisligil, G.S. (2002). A central role for JNK in obesity and insulin resistance. Nature 420, 333-336.
Hoehn, K.L., Hohnen-Behrens, C., Cederberg, A., Wu, L.E., Turner, N., Yuasa, T., Ebina, Y., and James, D.E. (2008). IRS1-independent defects define major nodes of insulin resistance. Cell Metabolism 7, 421-433.
HongxiangHui, GeorgeTang2, and VayLiang WGo. (2009). Hypoglycemic herbs and their action mechanisms. Chinese Medicine 4,
Huang, C., Somwar, R., Patel, N., Niu, W., Torok, D., and Klip, A. (2002). Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity. Diabetes 51, 2090-2098.
Huang, H.L., Hong, Y.W., Wong, Y.H., Chen, Y.N., Chyuan, J.H., Huang, C.J., and Chao, P.M. (2008). Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats. Br. J. Nutr. 99, 230-239.
Huang, S., and Czech, M.P.,(2007). The GLUT4 glucose transporter
Huang, Y.C., Lin, C.Y., Huang, S.F., Lin, H.C., Chang, W.L., and Chang, T.C. (2010). Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. J. Agric. Food Chem. 58, 6039-6047.
Huang ,YC., Chang, WL., Huang, SF., Lin, CY., Lin, HC., and Chang, YC. (2010). Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. European Journal of Pharmacology 648, 39-49.
Kahn, B.B. (1992). Facilitative glucose transporters: regulatory mechanisms and dysregulation in diabetes. J. Clin. Invest. 89, 1367-1374.
Kandror, K.V. (2003). A long search for GLUT4 activation. Sci. STKE 2003, PE5.
Khanna, P., Jain, S.C., Panagariya, A., and Dixit, V.P. (1981). Hypoglycemic activity of polypeptide-p from a plant source. J. Nat. Prod. 44, 648-655.
Kumar, R., Balaji, S., Uma, T.S., and Sehgal, P.K. (2009). Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K. J. Ethnopharmacol. 126, 533-537.
Leila Parvaneh, Reza Meshkani, Salar Bakhtiyari, Narges MohammadTaghvaie, Sattar GorganiFiruzjaee, GholamReza TaheriPak, Abolfazl Golestani, Mehdi Foruzandeh, Bagher Larijani, and Mohammad Taghikhani. (2010). Palmitate and inflammatory state additively induce the expression of PTP1B in muscle cells. Biochemical and Biophysical Research Communications 396, 467-471.
Li, Q.Y., Chen, H.B., Liu, Z.M., Wang, B., and Zhao, Y.Y. (2007). Cucurbitane triterpenoids from Momordica charantia. Magn. Reson. Chem. 45, 451-456.
Liu, Y.Q., Tornheim, K., and Leahy, J.L. (1999). Glucose-fatty acid cycle to inhibit glucose utilization and oxidation is not operative in fatty acid-cultured islets. Diabetes 48, 1747-1753.
Liao, W., Nguyen, M.T., Yoshizaki, T., Favelyukis, S., Patsouris, D., Imamura, T., Verma, I.M., and Olefsky, J.M. (2007). Suppression of PPAR-gamma attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 293, E219-27.
Lopez, V., Saraff, K., and Medh, J.D. (2009). Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells. BBRC, 389, 34-39.
MacLaren, R., Cui, W., and Cianflone, K. (2008). Adipokines and the immune system: an adipocentric view. Advances in Experimental Medicine & Biology 632, 1-21.
Martinez-Arca, S., Lalioti, V.S., and Sandoval, I.V. (2000). Intracellular targeting and retention of the glucose transporter GLUT4 by the perinuclear storage compartment involves distinct carboxyl-tail motifs. J. Cell. Sci. 113, 1705-1715.
McGarry, J.D. (2002). Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51, 7-18.
Minokoshi, Y., Kim, Y.B., Peroni, O.D., Fryer, L.G., Muller, C., Carling, D., and Kahn, B.B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339-343.
Mohammadtaghvaei N, Meshkani R, Taghikhani M, Larijani B, and Adeli K. (2010). Palmitate Enhances Protein Tyrosine Phosphatase 1B (PTP1B) Gene Expression at Transcriptional Level in C2C12 Skeletal Muscle Cells. Inflammation
Ntambi, JM. and Kim, YC. (2000). Adipocyte differentiation and gene expression. J. Nutr. 3122S-3126S.
Na LX, Zhang YL, Li Y, Liu LY, Li R, Kong T, and Sun CH. (2010). Curcumin improves insulin resistance in skeletal muscle of rats. Nutr Metab Cardiovase Dis (2010),dio:10.1016/j.numecd.2009.11.009
Olsen, G.S., and Hansen, B.F. (2002). AMP kinase activation ameliorates insulin resistance induced by free fatty acids in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 283, E965-70.
Olsen, G.S., and Hansen, B.F. (2002). AMP kinase activation ameliorates insulin resistance induced by free fatty acids in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 283, E965-70.
O'Neil, R.G., Wu, L., and Mullani, N. (2005). Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Molecular Imaging & Biology 7, 388-392.
Picardi, P.K., Calegari, V.C., Prada Pde, O., Moraes, J.C., Araujo, E., Marcondes, M.C., Ueno, M., Carvalheira, J.B., Velloso, L.A., and Saad, M.J. (2008). Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats. Endocrinology 149, 3870-3880.
Piper, R.C., Tai, C., Kulesza, P., Pang, S., Warnock, D., Baenziger, J., Slot, J.W., Geuze, H.J., Puri, C., and James, D.E. (1993). GLUT-4 NH2 terminus contains a phenylalanine-based targeting motif that regulates intracellular sequestration. J. Cell Biol. 121, 1221-1232.
Popovich,D.G., Lu,li. And Zhang,W.(2010). Bitter melon (Momordica charantia) triterpenoid extract reduces preadipocyte viability, lipid accumulation and adiponectin expression in 3T3-L1 cells. Food Chem. Toxicol.48(6)(2009)1619-1626.
Poulain-Godefroy, O., and Froguel, P. (2007). Preadipocyte response and impairment of differentiation in an inflammatory environment. Biochem. Biophys. Res. Commun. 356, 662-667.
Prusty, D., Park, B.H., Davis, K.E., and Farmer, S.R. (2002). Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma ) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 277, 46226-46232.
Qi, L., Saberi, M., Zmuda, E., Wang, Y., Altarejos, J., Zhang, X., Dentin, R., Hedrick, S., Bandyopadhyay, G., Hai, T., Olefsky, J., and Montminy, M. (2009). Adipocyte CREB promotes insulin resistance in obesity. Cell Metabolism 9, 277-286.
Qinghua W, Romel S, Philip J. B, Zhi L, Jing J, James R. W, and Amira K. (1999). Protein Kinase B/Akt Participates in GLUT4 Translocation by Insulin in L6 Myoblasts. Molecular and Cellular Biology 4008-4018.
Qiu, Z., Wei, Y., Chen, N., Jiang, M., Wu, J., and Liao, K. (2001). DNA synthesis and mitotic clonal expansion is not a required step for 3T3-L1 preadipocyte differentiation into adipocytes. J. Biol. Chem. 276, 11988-11995.
Radin MS, Sinha S, Bhatt BA, Dedousis N, and O'Doherty RM. (2008). Inhibition or deletion of the lipopolysaccharide receptor Toll-like receptor-4 confers partial protection against lipid-induced insulin resistance in rodent skeletal muscle. Diabetologia 51(2), 336-346.
Ragheb, R., Shanab, G.M., Medhat, A.M., Seoudi, D.M., Adeli, K., and Fantus, I.G. (2009). Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem. Biophys. Res. Commun. 389, 211-216.
Randle PJ, Garland PB, Hales CN, and Newsholme EA. (1963). The glucose fatty-acid cycle.Its role in insulin sensitivity and the metabolic disturbance of diabetes mellitus. Lancet 1, 785-789.
Roehr, B. (2010). FDA committee urges tight restrictions on rosiglitazone. BMJ 341, 3862.
Rosenfalck, A.M., Hendel, H., Rasmussen, M.H., Almdal, T., Anderson, T., Hilsted, J., and Madsbad, S. (2002). Minor long-term changes in weight have beneficial effects on insulin sensitivity and beta-cell function in obese subjects. Diabetes Obes. Metab. 4, 19-28.
Reaven, G.M., Chang, H., and Hoffman, B.B. (1988). Additive hypoglycemic effects of drugs that modify free-fatty acid metabolism by different mechanisms in rats with streptozocin-induced diabetes. Diabetes 37, 28-32.
Song, M.J., Kim, K.H., Yoon, J.M., and Kim, J.B. (2006). Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochemical & Biophysical Research Communications 346, 739-745.
Solinas, G., Vilcu, C., Neels, J.G., Bandyopadhyay, G.K., Luo, J.L., Naugler, W., Grivennikov, S., Wynshaw-Boris, A., Scadeng, M., Olefsky, J.M., and Karin, M. (2007). JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metabolism 6, 386-397.
Sudha B.B, and C.Ronald Kahn. (2006). from mice to men:insight into the insulin resistance syndromes. Annu. Rev. Physiol 68, 123-158.
Taylor, E.B., An, D., Kramer, H.F., Yu, H., Fujii, N.L., Roeckl, K.S., Bowles, N., Hirshman, M.F., Xie, J., Feener, E.P., and Goodyear, L.J. (2008). Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J. Biol. Chem. 283, 9787-9796.
Tan, M.J., Ye, J.M., Turner, N., Hohnen-Behrens, C., Ke, C.Q., Tang, C.P., Chen, T., Weiss, H.C., Gesing, E.R., Rowland, A., James, D.E., and Ye, Y. (2008). Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem. Biol. 15, 263-273.

Tremblay, F., and Marette, A. (2001). Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J. Biol. Chem. 276, 38052-38060.
Viollet, B., Lantier, L., Devin-Leclerc, J., Hebrard, S., Amouyal, C., Mounier, R., Foretz, M., and Andreelli, F. (2009). Targeting the AMPK pathway for the treatment of Type 2 diabetes. Frontiers in Bioscience 14, 3380-3400.
Yibchok-anun, S., Adisakwattana, S., Yao, C.Y., Sangvanich, P., Roengsumran, S., and Hsu, W.H. (2006). Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities. Biol. Pharm. Bull. 29, 1126-1131.
Yoon, M.J., Lee, G.Y., Chung, J.J., Ahn, Y.H., Hong, S.H., and Kim, J.B. (2006). Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55, 2562-2570.
Yuasa T, uchiYama K, Ogura Y, Kimura M, Teshigawara K, OsaKa T, TanaKa Y, ObaTa , Sano H, Kishi K, and Ebina Y. (2009). The Rab GTPase-Activating Protein AS160 as a Common Regulator of Insulin- and Gαq-Mediated Intracellular GLUT4 Vesicle Distribution. Endocrine Journal 56, 345-359.

行政院衛生署國民健康局(2007)修正我國代謝症候群之判定標準。
行政院衛生署國民健康局(2010)公告含 rosiglitazone 成分藥品之再評估結果相關事宜。署授食字第 1001412652 號。
鄭瑋宜(2007)山藥具雌激素活性成分脂單離與鑑定研究。國立台灣大學微生物與生化學研究所博士論文。
呂佩諭、林育嬋(2007)探討山苦瓜改善血糖與血脂代謝異常可能活性成分。Unpublished
李天瑞(2008)數種食材萃物對脂肪或肌肉細胞葡萄糖攝取脂影響。國立台灣大學微生物與生化學研究所碩士論文。
黃婷妮(2010)山苦瓜萃物暨其區分物之腸泌素效應。 國立台灣大學微生物與生化學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48523-
dc.description.abstract苦瓜是熱帶地區常見蔬菜,印度傳統醫療則用來治療糖尿病。近代研究報告亦有證據支持苦瓜具有降血糖功能。早期研究曾自苦瓜分離出類胰島素胜肽,近年也有研究自苦瓜分離出含三萜類物質,可促進細胞攝入葡萄糖,顯示苦瓜降血糖的活性成分與機制不只一種。本實驗以山苦瓜作為試驗食材,以肌肉及脂肪細胞模式探討山苦瓜水萃物及區分物對細胞汲取葡萄糖之影響及改善胰島素抗性上的潛力及其作用的相關機制。
本研究採用之細胞包括 L6 肌肉細胞株及 3T3-L1 脂肪細胞株,其分化後進行實驗。實驗分為正常及以棕櫚酸誘發細胞胰島素阻抗等兩種模式中,山苦瓜水萃物及各種區分物分別處理 30 分鐘或 12 小時後,對此兩株細胞分別於添加或不添加胰島素狀態下,以偵測 2-Deoxy-D-[1-3H]glucose 進行葡萄糖汲取試驗。試驗樣品包括:山苦瓜水萃物(WE)、水萃物酵素水解後乙酸乙酯萃物(We-E)、水萃物酵素水解後正丁醇萃物(We-B)、水萃物中 3Kd 以下小分子(WES)、小分子酵素水解後之乙酸乙酯萃物(Se-E)、小分子酵素水解後正丁醇萃物(Se-B)與植物類胰島素(Pf)。結果顯示,在脂肪細胞試驗中, WE、WES、Se-E 與 Pf 在有無誘發胰島素抗性、各種處理時間皆增加脂肪細胞汲取葡萄糖,並增加細胞對胰島素之反應。經由前述結果進一步分析以樣品處理 12 小時的脂肪細胞中之訊息傳遞,蛋白質表現及其磷酸化由西方墨點分析。結果顯示,山苦瓜樣品經酵素處理後之萃取物:We-B、Se-E、Se-B 可增加脂肪細胞中 Akt 磷酸化。而在肌肉細胞實驗中,經酵素水解後之樣品 We-E、Se-E 及 Pf 處理 30 分鐘、Se-E 處理肌肉細胞 12 小時可增加細胞汲取葡萄糖。所有樣品與棕櫚酸共處理 12 小時皆可改善肌肉細胞胰島素抗性。本研究結果,花蓮四號山苦瓜水萃物中含有增加脂肪與肌肉細胞汲取葡萄糖的活性成分,其中又以 Se-E 於多種試驗模式中皆有促進之效果,其增加 Akt 磷酸化、增加脂肪與肌肉細胞汲取葡萄糖,而具調控血糖的潛力。
zh_TW
dc.description.abstractBitter gourd (Momordica Charantia, BG) is a common tropical vegetable that has also been used in traditional medicine for treating diabetes. Numerous research in past decades have provided evidences supporint the hypoglycemic effect of BG. Insulin like polypeptide-p and triterpenoids from BG have been demonstrated for their hypoglycemic effect in vivo and in vitro. This study aims at examing the effects of BG water extract and its feactions on the glucose uptake of 3T3-L1 adipocytes and L6 myotute.
Lyophilized powder of wild bitter gourd (Hualian NO.4) was extracted with water (WE), treated with enzyme and extracted with ethyl acetate(We-E), and butanol (We-B). Small molecular weight fraction of WE (WES) was treated similarly and give rise to fractions Se-E and Se-B. Insulin-like peptide fraction (Pf) was isolated from WE. Cells, treated with various BG samples for 30min or 12 hr, were examined for their 3H-labeled 2-deoxyglucose uptake at basal or palmitate-induced insulin resistant state and in the presence or presence of insulin. In 3T3-L1 adipocytes, WE, WES, Se-E and Pf were increased glucose uptake in both basal and insulin resistant state (p<0.05), and also improved insulin resistance and amplified insulin action. Associated with these effects, 3T3-L1 adipocytes treated with BG WE and fractions for 12hr showed enhanced Akt phosphorylation, detected by western-blot analysis. In L6 myotubes, We-E, Se-E, and Pf increased glucose uptake after 30min treatment. Myotubes treated with Se-E for 12 hrs also showed higher glucose uptake. Most importantly, all BG samples prevented palmitate-induced inhibition of glucose uptake.
These datas suggested that the wild bitter gourd contains hypoglycemic components wihich increased adipocytes and myptubes uptake glucose. Among our BG fraction, Se-E might be the most effective fraction.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:00:25Z (GMT). No. of bitstreams: 1
ntu-99-R97b47304-1.pdf: 20277664 bytes, checksum: 93b24f586566b2e599aca7a7cc3bd82d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書……………………………………………………………………………i
謝辭…………………………………………………………………………………………ii
中文摘要……………………………………………………………………………………iv
英文摘要……………………………………………………………………………………v
第一章 緒論………………………………………………………………………… 1
第一節 前言……………………………………………………………………1
第二節 文獻回顧………………………………………………………………1
一、 第二型糖尿病與代謝症候群…………………………………… 1
二、 胰島素抗性……………………………………………………… 2
(一) 胰島素訊息傳遞路徑………………………………………2
(二) 葡萄糖轉運子………………………………………………4
(三) AMPK pathway…………………………………………… 6
(四) PTP1B…………………………………………………… 8
(五) JNK…………………………………………………………8
三、 脂肪組織胰島素抗性……………………………………………8
四、 肌肉組織胰島素抗性………………………………………… 12
五、 苦瓜…………………………………………………………… 14
第三節 實驗設計…………………………………………………………… 19
第二章 苦瓜樣品對脂肪細胞汲取葡萄糖的影響……………………………… 20
第一節 前言………………………………………………………………… 20
第二節 材料與方法………………………………………………………… 21
一、 實驗架構……………………………………………………… 21
二、 細胞株………………………………………………………… 21
三、 培養基與試劑………………………………………………… 21
四、 儀器設備……………………………………………………… 23
五、 實驗材料……………………………………………………… 24
六、 實驗方法……………………………………………………… 24
第三節 結果………………………………………………………………… 27
一、 脂肪細胞分化方法調整…………………………………………27
二、 花蓮四號山苦瓜區分物對已分化脂肪細胞葡萄糖汲取之影響 28
第四節 討論………………………………………………………………… 40
第五節 結論………………………………………………………………… 43
第三章 苦瓜樣品對肌肉細胞汲取葡萄糖的影響……………………………… 45
第一節 前言………………………………………………………………… 45
第二節 材料與方法………………………………………………………… 46
一、 實驗架構……………………………………………………… 46
二、 細胞株………………………………………………………… 46
三、 培養基與試劑………………………………………………… 46
四、 儀器設備……………………………………………………… 47
五、 實驗材料……………………………………………………… 47
六、 實驗方法……………………………………………………… 47
第三節 結果………………………………………………………………… 49
一、 細胞模式建立……………………………………………………49
二、 山苦瓜樣品對已分化肌肉細胞汲取葡萄糖的影響……………50
第四節 討論………………………………………………………………… 64
第五節 結論………………………………………………………………… 66

第四章 山苦瓜樣品增加細胞葡萄糖汲取之訊息傳遞機制………………………… 68
第一節 前言………………………………………………………………………69
第二節 材料與方法………………………………………………………………69
一、 實驗架構…………………………………………………………… 69
二、 細胞培養與樣品處理……………………………………………… 69
三、 藥品試劑…………………………………………………………… 69
(一) 細胞蛋白質萃取…………………………………………… 69
(二) 西方墨點法…………………………………………………70
四、 儀器設備 ……………………………………………………………72
五、 實驗材料 ……………………………………………………………72
六、 實驗方法 ……………………………………………………………73
第三節 結果………………………………………………………………………75
一、 山苦瓜樣品對 Akt 磷酸化之影響………………………………… 75
二、 山苦瓜樣品對 AMPK 磷酸化之影響………………………………75
三、 山苦瓜樣品對 GLUT4 蛋白質表現量之影響 …………………… 75
四、 AMPK 磷酸化程度及 GLUT4 蛋白質表現量與細胞葡萄糖汲取之
相關性分析……………………………………………………… 75
第四節 討論………………………………………………………………………85
第五節 結論………………………………………………………………………86
第五章 綜合討論………………………………………………………………………87
第一節 綜合討論…………………………………………………………………87
第二節 總結論……………………………………………………………………89
第六章 文獻回顧………………………………………………………………………91
dc.language.isozh-TW
dc.subject細胞葡萄糖汲取zh_TW
dc.subject血糖調控異常zh_TW
dc.subject苦瓜zh_TW
dc.subject脂肪細胞zh_TW
dc.subject肌肉細胞zh_TW
dc.subjectglucose uptakeen
dc.subjectbitter gourden
dc.subjectblood glucose homeostasisen
dc.subjectadipocytesen
dc.subjectmyotubeen
dc.title以脂肪與肌肉細胞模式評估山苦瓜水萃物暨其區分物對細胞汲取葡萄糖之影響與其機制探討zh_TW
dc.titleEffect and Mechanisms of Momordica charantia Extract on Glucose Uptake in 3T3-L1 Adipocytes and L6 Myotubesen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林璧鳳,趙蓓敏,呂紹俊,蔡帛蓉
dc.subject.keyword血糖調控異常,苦瓜,脂肪細胞,肌肉細胞,細胞葡萄糖汲取,zh_TW
dc.subject.keywordblood glucose homeostasis,bitter gourd,adipocytes,myotube,glucose uptake,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2011-01-24
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
19.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved