Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48505
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇(Eric Y. Chuang)
dc.contributor.authorTzu-Hung Hsiaoen
dc.contributor.author蕭自宏zh_TW
dc.date.accessioned2021-06-15T06:59:37Z-
dc.date.available2012-02-09
dc.date.copyright2011-02-09
dc.date.issued2011
dc.date.submitted2011-01-25
dc.identifier.citation1. Herbst, R.S., Heymach, J.V. and Lippman, S.M. (2008) Lung cancer. N Engl J Med, 359, 1367-1380.
2. Govindan, R., Page, N., Morgensztern, D., Read, W., Tierney, R., Vlahiotis, A., Spitznagel, E.L. and Piccirillo, J. (2006) Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol, 24, 4539-4544.
3. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J. and Thun, M.J. (2009) Cancer statistics, 2009. CA Cancer J Clin, 59, 225-249.
4. Subramanian, J. and Govindan, R. (2008) Molecular genetics of lung cancer in people who have never smoked. Lancet Oncol, 9, 676-682.
5. Tsim, S., O'Dowd, C.A., Milroy, R. and Davidson, S. Staging of non-small cell lung cancer (NSCLC): A review. Respir Med.
6. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T. and Thun, M.J. (2008) Cancer statistics, 2008. CA Cancer J Clin, 58, 71-96.
7. Tomida, S., Takeuchi, T., Shimada, Y., Arima, C., Matsuo, K., Mitsudomi, T., Yatabe, Y. and Takahashi, T. (2009) Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. J Clin Oncol, 27, 2793-2799.
8. Hirsch, F.R., Spreafico, A., Novello, S., Wood, M.D., Simms, L. and Papotti, M. (2008) The prognostic and predictive role of histology in advanced non-small cell lung cancer: a literature review. J Thorac Oncol, 3, 1468-1481.
9. Fry, W.A., Phillips, J.L. and Menck, H.R. (1999) Ten-year survey of lung cancer treatment and survival in hospitals in the United States: a national cancer data base report. Cancer, 86, 1867-1876.
10. Alberg, A.J., Brock, M.V. and Samet, J.M. (2005) Epidemiology of lung cancer: looking to the future. J Clin Oncol, 23, 3175-3185.
11. Wistuba, II. (2007) Genetics of preneoplasia: lessons from lung cancer. Curr Mol Med, 7, 3-14.
12. Little, A.G., Gay, E.G., Gaspar, L.E. and Stewart, A.K. (2007) National survey of non-small cell lung cancer in the United States: epidemiology, pathology and patterns of care. Lung Cancer, 57, 253-260.
13. Chen, K.Y., Chang, C.H., Yu, C.J., Kuo, S.H. and Yang, P.C. (2005) Distribution according to histologic type and outcome by gender and age group in Taiwanese patients with lung carcinoma. Cancer, 103, 2566-2574.
14. Detterbeck, F.C. and Gibson, C.J. (2008) Turning gray: the natural history of lung cancer over time. J Thorac Oncol, 3, 781-792.
15. Lin, P.Y., Chang, Y.C., Chen, H.Y., Chen, C.H., Tsui, H.C. and Yang, P.C. (2009) Tumor size matters differently in pulmonary adenocarcinoma and squamous cell carcinoma. Lung Cancer.
16. Mujoomdar, A., Austin, J.H., Malhotra, R., Powell, C.A., Pearson, G.D., Shiau, M.C. and Raftopoulos, H. (2007) Clinical predictors of metastatic disease to the brain from non-small cell lung carcinoma: primary tumor size, cell type, and lymph node metastases. Radiology, 242, 882-888.
17. Kelsey, C.R., Marks, L.B., Hollis, D., Hubbs, J.L., Ready, N.E., D'Amico, T.A. and Boyd, J.A. (2009) Local recurrence after surgery for early stage lung cancer: an 11-year experience with 975 patients. Cancer, 115, 5218-5227.
18. Varlotto, J.M., Recht, A., Flickinger, J.C., Medford-Davis, L.N., Dyer, A.M. and Decamp, M.M. (2009) Factors associated with local and distant recurrence and survival in patients with resected nonsmall cell lung cancer. Cancer, 115, 1059-1069.
19. Hung, J.J., Hsu, W.H., Hsieh, C.C., Huang, B.S., Huang, M.H., Liu, J.S. and Wu, Y.C. (2009) Post-recurrence survival in completely resected stage I non-small cell lung cancer with local recurrence. Thorax, 64, 192-196.
20. Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O. et al. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell, 13, 1977-2000.
21. Bass, A.J., Watanabe, H., Mermel, C.H., Yu, S., Perner, S., Verhaak, R.G., Kim, S.Y., Wardwell, L., Tamayo, P., Gat-Viks, I. et al. (2009) SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet, 41, 1238-1242.
22. Ding, L., Getz, G., Wheeler, D.A., Mardis, E.R., McLellan, M.D., Cibulskis, K., Sougnez, C., Greulich, H., Muzny, D.M., Morgan, M.B. et al. (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455, 1069-1075.
23. Kan, Z., Jaiswal, B.S., Stinson, J., Janakiraman, V., Bhatt, D., Stern, H.M., Yue, P., Haverty, P.M., Bourgon, R., Zheng, J. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 466, 869-873.
24. Rosell, R., Moran, T., Queralt, C., Porta, R., Cardenal, F., Camps, C., Majem, M., Lopez-Vivanco, G., Isla, D., Provencio, M. et al. (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med, 361, 958-967.
25. Alam, M.R., Dixit, V., Kang, H., Li, Z.B., Chen, X., Trejo, J., Fisher, M. and Juliano, R.L. (2008) Intracellular delivery of an anionic antisense oligonucleotide via receptor-mediated endocytosis. Nucleic Acids Res, 36, 2764-2776.
26. Morgan, R.A., Dudley, M.E., Wunderlich, J.R., Hughes, M.S., Yang, J.C., Sherry, R.M., Royal, R.E., Topalian, S.L., Kammula, U.S., Restifo, N.P. et al. (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 314, 126-129.
27. Pule, M.A., Savoldo, B., Myers, G.D., Rossig, C., Russell, H.V., Dotti, G., Huls, M.H., Liu, E., Gee, A.P., Mei, Z. et al. (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med, 14, 1264-1270.
28. Samad, A., Sultana, Y. and Aqil, M. (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv, 4, 297-305.
29. Chu, P.G. and Weiss, L.M. (2002) Keratin expression in human tissues and neoplasms. Histopathology, 40, 403-439.
30. Miller, M.C., Doyle, G.V. and Terstappen, L.W. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer. J Oncol, 2010, 617421.
31. Stock, R.G., Klein, T.J., Cesaretti, J.A. and Stone, N.N. (2009) Prognostic significance of 5-year PSA value for predicting prostate cancer recurrence after brachytherapy alone and combined with hormonal therapy and/or external beam radiotherapy. Int J Radiat Oncol Biol Phys, 74, 753-758.
32. Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, R., Gillette, M. et al. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A, 98, 13790-13795.
33. Garber, M.E., Troyanskaya, O.G., Schluens, K., Petersen, S., Thaesler, Z., Pacyna-Gengelbach, M., van de Rijn, M., Rosen, G.D., Perou, C.M., Whyte, R.I. et al. (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A, 98, 13784-13789.
34. Virtanen, C., Ishikawa, Y., Honjoh, D., Kimura, M., Shimane, M., Miyoshi, T., Nomura, H. and Jones, M.H. (2002) Integrated classification of lung tumors and cell lines by expression profiling. Proc Natl Acad Sci U S A, 99, 12357-12362.
35. Raponi, M., Zhang, Y., Yu, J., Chen, G., Lee, G., Taylor, J.M., Macdonald, J., Thomas, D., Moskaluk, C., Wang, Y. et al. (2006) Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res, 66, 7466-7472.
36. Shedden, K., Taylor, J.M., Enkemann, S.A., Tsao, M.S., Yeatman, T.J., Gerald, W.L., Eschrich, S., Jurisica, I., Giordano, T.J., Misek, D.E. et al. (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med, 14, 822-827.
37. Raz, D.J., Ray, M.R., Kim, J.Y., He, B., Taron, M., Skrzypski, M., Segal, M., Gandara, D.R., Rosell, R. and Jablons, D.M. (2008) A multigene assay is prognostic of survival in patients with early-stage lung adenocarcinoma. Clin Cancer Res, 14, 5565-5570.
38. Larsen, J.E., Pavey, S.J., Passmore, L.H., Bowman, R.V., Hayward, N.K. and Fong, K.M. (2007) Gene expression signature predicts recurrence in lung adenocarcinoma. Clin Cancer Res, 13, 2946-2954.
39. van 't Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T. et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-536.
40. Roepman, P., Jassem, J., Smit, E.F., Muley, T., Niklinski, J., van de Velde, T., Witteveen, A.T., Rzyman, W., Floore, A., Burgers, S. et al. (2009) An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer. Clin Cancer Res, 15, 284-290.
41. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 102, 15545-15550.
42. Bild, A.H., Yao, G., Chang, J.T., Wang, Q., Potti, A., Chasse, D., Joshi, M.B., Harpole, D., Lancaster, J.M., Berchuck, A. et al. (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature, 439, 353-357.
43. Ebi, H., Tomida, S., Takeuchi, T., Arima, C., Sato, T., Mitsudomi, T., Yatabe, Y., Osada, H. and Takahashi, T. (2009) Relationship of deregulated signaling converging onto mTOR with prognosis and classification of lung adenocarcinoma shown by two independent in silico analyses. Cancer Res, 69, 4027-4035.
44. Mori, S., Chang, J.T., Andrechek, E.R., Potti, A. and Nevins, J.R. (2009) Utilization of genomic signatures to identify phenotype-specific drugs. PLoS One, 4, e6772.
45. Creighton, C.J., Casa, A., Lazard, Z., Huang, S., Tsimelzon, A., Hilsenbeck, S.G., Osborne, C.K. and Lee, A.V. (2008) Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. J Clin Oncol, 26, 4078-4085.
46. Gatza, M.L., Lucas, J.E., Barry, W.T., Kim, J.W., Wang, Q., Crawford, M.D., Datto, M.B., Kelley, M., Mathey-Prevot, B., Potti, A. et al. A pathway-based classification of human breast cancer. Proc Natl Acad Sci U S A, 107, 6994-6999.
47. Johnson, J.M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P.M., Armour, C.D., Santos, R., Schadt, E.E., Stoughton, R. and Shoemaker, D.D. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 302, 2141-2144.
48. Shkreta, L., Froehlich, U., Paquet, E.R., Toutant, J., Elela, S.A. and Chabot, B. (2008) Anticancer drugs affect the alternative splicing of Bcl-x and other human apoptotic genes. Mol Cancer Ther, 7, 1398-1409.
49. Lee, C., Atanelov, L., Modrek, B. and Xing, Y. (2003) ASAP: the Alternative Splicing Annotation Project. Nucleic Acids Res, 31, 101-105.
50. Thierry-Mieg, D. and Thierry-Mieg, J. (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol, 7 Suppl 1, S12 11-14.
51. Kim, N., Shin, S. and Lee, S. (2005) ECgene: genome-based EST clustering and gene modeling for alternative splicing. Genome Res, 15, 566-576.
52. Gardina, P.J., Clark, T.A., Shimada, B., Staples, M.K., Yang, Q., Veitch, J., Schweitzer, A., Awad, T., Sugnet, C., Dee, S. et al. (2006) Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics, 7, 325.
53. Xi, L., Feber, A., Gupta, V., Wu, M., Bergemann, A.D., Landreneau, R.J., Litle, V.R., Pennathur, A., Luketich, J.D. and Godfrey, T.E. (2008) Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res.
54. Pan, Q., Shai, O., Lee, L.J., Frey, B.J. and Blencowe, B.J. (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet, 40, 1413-1415.
55. Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., Rogers, J. and Bahler, J. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature, 453, 1239-1243.
56. Sultan, M., Schulz, M.H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Borodina, T., Soldatov, A., Parkhomchuk, D. et al. (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 321, 956-960.
57. Hua, S. and Sun, Z. (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics, 17, 721-728.
58. Liao, B., Sun, X. and Zeng, Q. A novel method for similarity analysis and protein sub-cellular localization prediction. Bioinformatics, 26, 2678-2683.
59. Bulashevska, A. and Eils, R. (2006) Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains. BMC Bioinformatics, 7, 298.
60. Emanuelsson, O., Brunak, S., von Heijne, G. and Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc, 2, 953-971.
61. Kall, L., Krogh, A. and Sonnhammer, E.L. (2007) Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res, 35, W429-432.
62. Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J. and Nakai, K. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res, 35, W585-587.
63. Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M. and Bairoch, A. (2007) UniProtKB/Swiss-Prot. Methods Mol Biol, 406, 89-112.
64. Sprenger, J., Lynn Fink, J., Karunaratne, S., Hanson, K., Hamilton, N.A. and Teasdale, R.D. (2008) LOCATE: a mammalian protein subcellular localization database. Nucleic Acids Res, 36, D230-233.
65. Persson, A., Hober, S. and Uhlen, M. (2006) A human protein atlas based on antibody proteomics. Curr Opin Mol Ther, 8, 185-190.
66. Barrell, D., Dimmer, E., Huntley, R.P., Binns, D., O'Donovan, C. and Apweiler, R. (2009) The GOA database in 2009--an integrated Gene Ontology Annotation resource. Nucleic Acids Res, 37, D396-403.
67. Hubbard, T.J., Aken, B.L., Ayling, S., Ballester, B., Beal, K., Bragin, E., Brent, S., Chen, Y., Clapham, P., Clarke, L. et al. (2009) Ensembl 2009. Nucleic Acids Res, 37, D690-697.
68. Singh, A., Greninger, P., Rhodes, D., Koopman, L., Violette, S., Bardeesy, N. and Settleman, J. (2009) A gene expression signature associated with 'K-Ras addiction' reveals regulators of EMT and tumor cell survival. Cancer Cell, 15, 489-500.
69. Mizuno, H., Nakanishi, Y., Ishii, N., Sarai, A. and Kitada, K. (2009) A signature-based method for indexing cell cycle phase distribution from microarray profiles. BMC Genomics, 10, 137.
70. Hallstrom, T.C., Mori, S. and Nevins, J.R. (2008) An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell, 13, 11-22.
71. Creighton, C.J., Hilger, A.M., Murthy, S., Rae, J.M., Chinnaiyan, A.M. and El-Ashry, D. (2006) Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res, 66, 3903-3911.
72. Potti, A., Dressman, H.K., Bild, A., Riedel, R.F., Chan, G., Sayer, R., Cragun, J., Cottrill, H., Kelley, M.J., Petersen, R. et al. (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med, 12, 1294-1300.
73. Benita, Y., Kikuchi, H., Smith, A.D., Zhang, M.Q., Chung, D.C. and Xavier, R.J. (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res, 37, 4587-4602.
74. Peng, T., Golub, T.R. and Sabatini, D.M. (2002) The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol, 22, 5575-5584.
75. Kaplan, E.L. and Meier, P. (1958) Nonparametric-Estimation from Incomplete Observations. J Am Stat Assoc, 53, 457-481.
76. Cox, D.R. (1972) Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B-Statistical Methodology, 34, 187-&.
77. Li, R., Fan, W., Tian, G., Zhu, H., He, L., Cai, J., Huang, Q., Cai, Q., Li, B., Bai, Y. et al. The sequence and de novo assembly of the giant panda genome. Nature, 463, 311-317.
78. Tian, L., Greenberg, S.A., Kong, S.W., Altschuler, J., Kohane, I.S. and Park, P.J. (2005) Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A, 102, 13544-13549.
79. Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., Soboleva, A., Tomashevsky, M., Marshall, K.A. et al. (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res, 37, D885-890.
80. Demeter, J., Beauheim, C., Gollub, J., Hernandez-Boussard, T., Jin, H., Maier, D., Matese, J.C., Nitzberg, M., Wymore, F., Zachariah, Z.K. et al. (2007) The Stanford Microarray Database: implementation of new analysis tools and open source release of software. Nucleic Acids Res, 35, D766-770.
81. Parkinson, H., Kapushesky, M., Kolesnikov, N., Rustici, G., Shojatalab, M., Abeygunawardena, N., Berube, H., Dylag, M., Emam, I., Farne, A. et al. (2009) ArrayExpress update--from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res, 37, D868-872.
82. Axelsen, J.B., Lotem, J., Sachs, L. and Domany, E. (2007) Genes overexpressed in different human solid cancers exhibit different tissue-specific expression profiles. Proc Natl Acad Sci U S A, 104, 13122-13127.
83. Tomida, S., Koshikawa, K., Yatabe, Y., Harano, T., Ogura, N., Mitsudomi, T., Some, M., Yanagisawa, K., Takahashi, T. and Osada, H. (2004) Gene expression-based, individualized outcome prediction for surgically treated lung cancer patients. Oncogene, 23, 5360-5370.
84. Scanlan, M.J., Simpson, A.J. and Old, L.J. (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun, 4, 1.
85. Cheng, J.Y., Chen, H.H., Kao, Y.S., Kao, W.C. and Peck, K. (2002) High throughput parallel synthesis of oligonucleotides with 1536 channel synthesizer. Nucleic Acids Res, 30, e93.
86. Koscielny, G., Le Texier, V., Gopalakrishnan, C., Kumanduri, V., Riethoven, J.J., Nardone, F., Stanley, E., Fallsehr, C., Hofmann, O., Kull, M. et al. (2009) ASTD: The Alternative Splicing and Transcript Diversity database. Genomics, 93, 213-220.
87. Flicek, P., Aken, B.L., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cunningham, F., Cutts, T. et al. (2008) Ensembl 2008. Nucleic Acids Res, 36, D707-714.
88. Majumdar, S. and Siahaan, T.J. Peptide-mediated targeted drug delivery. Med Res Rev.
89. Wollscheid, B., Bausch-Fluck, D., Henderson, C., O'Brien, R., Bibel, M., Schiess, R., Aebersold, R. and Watts, J.D. (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol, 27, 378-386.
90. Zola, H., Swart, B., Banham, A., Barry, S., Beare, A., Bensussan, A., Boumsell, L., C, D.B., Buhring, H.J., Clark, G. et al. (2007) CD molecules 2006--human cell differentiation molecules. J Immunol Methods, 319, 1-5.
91. Welsh, J.B., Sapinoso, L.M., Kern, S.G., Brown, D.A., Liu, T., Bauskin, A.R., Ward, R.L., Hawkins, N.J., Quinn, D.I., Russell, P.J. et al. (2003) Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci U S A, 100, 3410-3415.
92. Zheng, Q. and Wang, X.J. (2008) GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res, 36, W358-363.
93. Nakamura, N., Kobayashi, K., Nakamoto, M., Kohno, T., Sasaki, H., Matsuno, Y. and Yokota, J. (2006) Identification of tumor markers and differentiation markers for molecular diagnosis of lung adenocarcinoma. Oncogene, 25, 4245-4255.
94. Kim, B., Lee, H.J., Choi, H.Y., Shin, Y., Nam, S., Seo, G., Son, D.S., Jo, J., Kim, J., Lee, J. et al. (2007) Clinical validity of the lung cancer biomarkers identified by bioinformatics analysis of public expression data. Cancer Res, 67, 7431-7438.
95. McNamara, J.O., 2nd, Andrechek, E.R., Wang, Y., Viles, K.D., Rempel, R.E., Gilboa, E., Sullenger, B.A. and Giangrande, P.H. (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol, 24, 1005-1015.
96. Chang, H.Y., Nuyten, D.S., Sneddon, J.B., Hastie, T., Tibshirani, R., Sorlie, T., Dai, H., He, Y.D., van't Veer, L.J., Bartelink, H. et al. (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A, 102, 3738-3743.
97. Xing, Y. and Lee, C. (2008) Reconstruction of full-length isoforms from splice graphs. Methods Mol Biol, 452, 199-205.
98. Xing, Y., Yu, T., Wu, Y.N., Roy, M., Kim, J. and Lee, C. (2006) An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic Acids Res, 34, 3150-3160.
99. Anton, M.A., Gorostiaga, D., Guruceaga, E., Segura, V., Carmona-Saez, P., Pascual-Montano, A., Pio, R., Montuenga, L.M. and Rubio, A. (2008) SPACE: an algorithm to predict and quantify alternatively spliced isoforms using microarrays. Genome Biol, 9, R46.
100. Wang, H., Hubbell, E., Hu, J.S., Mei, G., Cline, M., Lu, G., Clark, T., Siani-Rose, M.A., Ares, M., Kulp, D.C. et al. (2003) Gene structure-based splice variant deconvolution using a microarray platform. Bioinformatics, 19 Suppl 1, i315-322.
101. Shai, O., Morris, Q.D., Blencowe, B.J. and Frey, B.J. (2006) Inferring global levels of alternative splicing isoforms using a generative model of microarray data. Bioinformatics, 22, 606-613.
102. Fehlbaum, P., Guihal, C., Bracco, L. and Cochet, O. (2005) A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res, 33, e47.
103. Klinck, R., Bramard, A., Inkel, L., Dufresne-Martin, G., Gervais-Bird, J., Madden, R., Paquet, E.R., Koh, C., Venables, J.P., Prinos, P. et al. (2008) Multiple alternative splicing markers for ovarian cancer. Cancer Res, 68, 657-663.
104. Schindler, S., Heiner, M., Platzer, M. and Szafranski, K. (2009) Comparison of methods for quantification of subtle splice variants. Electrophoresis, 30, 3674-3681.
105. Takeda, J., Suzuki, Y., Nakao, M., Kuroda, T., Sugano, S., Gojobori, T. and Imanishi, T. (2007) H-DBAS: alternative splicing database of completely sequenced and manually annotated full-length cDNAs based on H-Invitational. Nucleic Acids Res, 35, D104-109.
106. Gollmer, J.C., Ladoux, A., Gioanni, J., Paquis, P., Dubreuil, A., Chatel, M. and Frelin, C. (2000) Expression of vascular endothelial growth factor-b in human astrocytoma. Neuro Oncol, 2, 80-86.
107. He, B., Mirza, M. and Weber, G.F. (2006) An osteopontin splice variant induces anchorage independence in human breast cancer cells. Oncogene, 25, 2192-2202.
108. He, X., Ee, P.L., Coon, J.S. and Beck, W.T. (2004) Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin Cancer Res, 10, 4652-4660.
109. Leipzig, J., Pevzner, P. and Heber, S. (2004) The Alternative Splicing Gallery (ASG): bridging the gap between genome and transcriptome. Nucleic Acids Res, 32, 3977-3983.
110. Xing, Y., Resch, A. and Lee, C. (2004) The multiassembly problem: reconstructing multiple transcript isoforms from EST fragment mixtures. Genome Res, 14, 426-441.
111. Riely, G.J., Marks, J. and Pao, W. (2009) KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc, 6, 201-205.
112. Creighton, C.J. (2008) Multiple oncogenic pathway signatures show coordinate expression patterns in human prostate tumors. PLoS One, 3, e1816.
113. Beer, D.G., Kardia, S.L., Huang, C.C., Giordano, T.J., Levin, A.M., Misek, D.E., Lin, L., Chen, G., Gharib, T.G., Thomas, D.G. et al. (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med, 8, 816-824.
114. Wigle, D.A., Jurisica, I., Radulovich, N., Pintilie, M., Rossant, J., Liu, N., Lu, C., Woodgett, J., Seiden, I., Johnston, M. et al. (2002) Molecular profiling of non-small cell lung cancer and correlation with disease-free survival. Cancer Res, 62, 3005-3008.
115. Chen, H.Y., Yu, S.L., Chen, C.H., Chang, G.C., Chen, C.Y., Yuan, A., Cheng, C.L., Wang, C.H., Terng, H.J., Kao, S.F. et al. (2007) A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med, 356, 11-20.
116. Warburg, O. (1956) Origin of Cancer Cells. Science, 123, 309-314.
117. Taylor, C.T. and Pouyssegur, J. (2007) Oxygen, hypoxia, and stress. Ann N Y Acad Sci, 1113, 87-94.
118. Kroemer, G. and Pouyssegur, J. (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell, 13, 472-482.
119. (2009) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res.
120. Ono, T., Losada, A., Hirano, M., Myers, M.P., Neuwald, A.F. and Hirano, T. (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell, 115, 109-121.
121. Qiu, J., Bimston, D.N., Partikian, A. and Shen, B. (2002) Arginine residues 47 and 70 of human flap endonuclease-1 are involved in DNA substrate interactions and cleavage site determination. J Biol Chem, 277, 24659-24666.
122. Togashi, A., Katagiri, T., Ashida, S., Fujioka, T., Maruyama, O., Wakumoto, Y., Sakamoto, Y., Fujime, M., Kawachi, Y., Shuin, T. et al. (2005) Hypoxia-inducible protein 2 (HIG2), a novel diagnostic marker for renal cell carcinoma and potential target for molecular therapy. Cancer Res, 65, 4817-4826.
123. Hosokawa, M., Takehara, A., Matsuda, K., Eguchi, H., Ohigashi, H., Ishikawa, O., Shinomura, Y., Imai, K., Nakamura, Y. and Nakagawa, H. (2007) Oncogenic role of KIAA0101 interacting with proliferating cell nuclear antigen in pancreatic cancer. Cancer Res, 67, 2568-2576.
124. Le, Q.T., Kong, C., Lavori, P.W., O'Byrne, K., Erler, J.T., Huang, X., Chen, Y., Cao, H., Tibshirani, R., Denko, N. et al. (2007) Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys, 69, 167-175.
125. Yuan, R.H., Jeng, Y.M., Pan, H.W., Hu, F.C., Lai, P.L., Lee, P.H. and Hsu, H.C. (2007) Overexpression of KIAA0101 predicts high stage, early tumor recurrence, and poor prognosis of hepatocellular carcinoma. Clin Cancer Res, 13, 5368-5376.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48505-
dc.description.abstract癌症標記在醫學與研究的運用相當廣泛,可以作為治療標靶,診斷標記,或者是癒後風險評估指標等等不同的用途。雖然過去的學術研究已經發表為數不少尋找癌症標記的研究方法,但是大多數找尋到的標記只單純考慮癌症細胞與相對應細胞的表達量,忽略該標記在身體其他重大器官表達量以及在生物機能上扮演角色的探討。針對這幾個方向,本論文研發了三種創新的生物資訊演算法來尋找及鑑定肺癌相關生物標記。在第一種方法當中,本研究建立一個用以尋找肺癌相關膜蛋白以作為治療標靶的演算法。此方法結合了身體重大器官的基因表達量測以及蛋白質於細胞體中的位置兩種生物資訊來找尋標記。利用此方法鑑定出的肺癌表面特異高度表達的膜蛋白可作為肺癌治療的標靶蛋白。將經生物資訊分析鑑定之標記經由實驗驗證與人體十三個正常組織相比較,驗證結果顯示與生物資訊分析的結果相吻合。本研究更進一步地探討這些癌症標記相關的生物機轉過程以及分子層級功能,也同時分析這些生物標記在病人檢體的表現量與其存活周期的關聯。這些結果證實了在此次分析中得到的生物標記基因可作為治療肺癌的標靶蛋白。此成果對於未來發展治療肺癌的方法上將會有很大的幫助。
在第二種方法,本論文研究建立一套整合性高通量分析系統用以量測選擇性剪接反應 (splicing event)以及用來鑑定轉錄變體 (transcript variant)。此系統整合了生物資訊、高通量轉錄變體放大技術、與高解析度毛細管電泳來分析各個選擇性剪接反應以及轉錄變體。這個創新的系統不僅可用於驗證已知的轉錄變體,並可用於偵測未知的轉錄變體。此系統並可半定量地量測某個基因所有轉錄變體的表達量。此套系統成功地偵測了具有單個或多個選擇性剪接反應的轉錄變體。此結果證明此系統可用於偵測肺癌相關轉錄變體標記。
在第三種方法中,本論文使用基因組的概念來探討肺鱗狀細胞癌相關致癌基因以及肺腺癌相關癒後評估。基因組的分析結果顯示與肺腺癌相比,肺鱗狀細胞癌擁有較高的生命週期運轉的活動力,IGF1R的基因組在鱗狀細胞癌中也呈現高度表達。此結果顯示IGF1R對於鱗狀細胞癌的異常增殖功能是顯著重要的。在此次分析中發現的IGF1R可作為肺鱗狀細胞癌治療的標靶基因。
本論文亦運用基因組方法分析肺癌細胞週期、新陳代謝、以及缺氧反應等三種生物機轉的活性。運用相關的五個基因組來分析量測肺腺癌患者在此三種功能上的活動力,並探討運用其結果作為病患存活週期的預測指標的可行性。此次研究結合了傳統存活分析,並且研發了一種基因組專用Cox存活分析模型來分析基因組對於病患預後分析的能力。計算分析結果顯示此五個基因組在腫瘤有比較高的分數,此結果應與腫瘤異常增生有關。更進一步,存活分析的結果亦證實了此五個基因組可用於預測肺腺癌患者之預後,尤其是針對早期患者。結果指出當體積小可是其細胞週期、新陳代謝、以及缺氧反應活動力強的腫瘤仍然是惡性、預後較差的癌症。根據這樣的發現,此十二個標記基因可來測量此三種生物機轉過程的程度,並運用其分數來預測病人的預後。此發現顯示這十二個標記基因將有益於早期肺腺癌患者醫囑上的評判。
zh_TW
dc.description.abstractCancer markers can be utilized as therapeutic targets, diagnostic markers, and prognostic markers. Although lots of methods to identify marker genes or proteins were identified as cancer markers by directly compare the expression of the cancer tissues with its normal tissue of origin, the expression in other normal tissues and the functional impact were usually unconsidered. This thesis described three novel approaches to find out lung cancer markers based on different clinical and/or basic research purposes. In the first approaches, lung cancer associated plasma membrane protein coding genes were identified by considered with the sub-cellular location of proteins and the overall expression in the vital organs. The markers exploited by the approaches can be used as lung cancer therapeutic targets. The candidate genes were further examined for their expression in 13 kinds of normal tissues. The results were consistent with the results attained from bioinfomatic analysis. The study also delineated the enriched molecular functions and biological processes and the association of the markers to patients’ survival. The results demonstrated that the markers identified in this study may have great potential to serve as therapeutic and diagnostic targets.
In the second approaches, this thesis proposed an integrated system for high-throughput analysis to identify splicing events and transcript variants. The system resolves individual splicing events and elucidates transcript variants by integrated bioinformatic analysis, high-throughput transcript variant amplification, and high-resolution capillary electrophoresis. This novel system not only facilitates the validation of putative transcript variants and the detection of novel transcript variants, it also semi-quantitatively measures the transcript variant expression levels of each gene. The result demonstrate the system’s capability, the system used it to resolve transcript variants yielded by single and multiple splicing events, and to decipher the exon connectivity of long transcripts. The result indicated the system could be utilized to identify lung cancer associated transcript variants.
In the third approaches, this study employed gene sets to decipher the active oncogene in squamous cell carcinoma and the prognostic markers of lung adenocarcinoma. The analysis of gene set showed higher cell cycling and the IGF1R gene set were more active in squamous cell carcinoma. It indicates that the IGF1R pathway is significant in the proliferation signaling of squamous cell carcinoma. The method uncovered the signaling pathway accountable for the fast growth rate of squamous cell lung cancer and suggests that the IGF1R identified in this study may have great potential to serve as a therapeutic target of squamous cell lung cancer.
The gene set analysis was also utilized to measure the activity of the cell cycle, nutrient metabolism and the response to hypoxia in lung adenocarcinoma, and evaluate the accuracy for prognosis. Five gene sets were used to reflect the status of the three activities. Kaplan-Meier estimation, Cox hazard regression, and gene set based Cox model, a novel method developed in this study, were used to evaluate the capability of the gene sets for prognosis,. The results revealed that these gene sets have the power of risk assessment in lung adenocarcinoma, and are applicable to early stage patients. The data implicated that tumor with higher proliferation activity, greater metabolic rate, and more responsive to hypoxia is more malignant, even its size is still small. Based on the findings, 12 prognostic marker genes were used to present the status of the three processes and also applied for prognosis. The derived marker genes are valuable in risk assessment for early stage lung adenocarcinoma patients.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:59:37Z (GMT). No. of bitstreams: 1
ntu-100-D93921032-1.pdf: 4754886 bytes, checksum: 6d9c873542d986d0f644e30a05d0e7f8 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsCONTENTS
中文摘要.................................................................................................................I
ABSTRACT...............................................................................................................III
Chapter 1 Introduction ........................................................................................ 1
1.1 Non-small cell lung carcinoma ..................................................................... 1
1.2 The cancer markers ....................................................................................... 3
1.3 Identification of lung cancer associated markers through gene expression . 5
1.4 Gene set approach to identify a set of genes as the cancer markers ............. 6
1.5 Detection of expressed transcript events and variants to identify cancer
markers ............................................................................................................... 8
1.6 In silico Identification of lung cancer associated markers ........................... 9
Chapter 2 Materials and methods ....................................................................... 11
2.1 Bioinformatic algorithm and expression data .............................................. 11
2.1.1 Identification of sub-cellular location of proteins ...................... 11
2.1.2 Gene set enrichment analysis ..................................................... 13
2.1.3 Collection and generation of gene sets ....................................... 14
2.1.4 The expression score of gene sets and the association between gene
sets 16
2.1.5 Survival analysis ......................................................................... 16
2.1.6 Gene set based analysis of Cox hazard proportional model ....... 17
2.1.7 Data collection of gene expression array for identification of lung
cancer surface markers ................................................................................ 19
2.1.8 Data collection of gene expression array for gene set studies .... 20
2.1.9 Gene expression data of synchronized cell line ......................... 21
2.2 Experimental methods and materials .......................................................... 22
2.2.1 Sample collection, RNA preparation, and reverse transcription for
validation of lung cancer markers ............................................................... 22
2.2.2 Real-time quantitative PCR ........................................................ 22
2.2.3 Immunohistochemical stain ........................................................ 23
2.2.4 Samples and PCR amplification for transcript variant identification
by capillary electrophoresis ......................................................................... 23
2.2.5 The .GenTank. high-throughput thermocycler ........................... 24
2.2.6 Capillary electrophoresis and analysis of transcript variant
identification ................................................................................................ 26
Chapter 3 Identification of lung cancer associated plasma membrane protein coding
genes 28
3.1 The application of plasma membrane proteins ......................................... 28
3.2 Strategies to identify the lung cancer associated plasma membrane protein
coding genes ...................................................................................................... 29
3.3 Results ........................................................................................................ 30
3.3.1 Identification of marker genes that encode plasma membrane and
secreted proteins .......................................................................................... 30
3.3.2 Evaluation of the expression of lung tumor associated genes in
normal tissues .............................................................................................. 31
3.3.3 Experimental validation of the putative marker genes ............... 33
3.3.4 Biological significance of the lung cancer associated biomarkers34
3.3.5 Evaluation of the prognostic power of the lung cancer associated
biomarkers ................................................................................................... 36
3.4 Discussion ................................................................................................... 38
Chapter 4 Verifying expressed transcript variants by detecting and assembling
stretches of consecutive exons ..................................................................... 42
4.1 Reconstruct the exon connectivity of transcript variants.......................... 42
4.2 A novel, integrated approach to detect the exon connectivity of transcript
variants .............................................................................................................. 43
4.3 Results ........................................................................................................ 44
4.3.1 A high-throughput transcript variant analysis system ................ 44
4.3.2 PCR primer pairs for transcript variant detection ....................... 45
4.3.3 The ASprimerDB web user interface ......................................... 46
4.3.4 Transcript variants resulting from one splicing event ................ 47
4.3.5 Transcript variants resulting from multiple splicing events ....... 49
4.3.6 Transcript variants that must be obtained using multiple PCR
primer pairs ................................................................................................. 52
4.3.7 A simulation estimating the accuracy of ITGB4 analysis ........... 57
4.3.8 Simulation to assess the effect of a similarity score threshold setting
59
4.3.9 Simulation exploring the robustness of the method when splicing
event annotation is incomplete .................................................................... 62
4.4 Discussion ................................................................................................... 63
Chapter 5 Utilizes gene set approach to identify addicted oncogenes in lung squamous
carcinoma and prognostic markers for lung adenocarcinoma ........................... 72
5.1 Markers which classify the characteristics of different subtypes of lung
cancer 72
5.2 The prognostic gene signatures .................................................................. 73
5.2.1 The abnormal cell cycling and related dysregulated function in
cancer 73
5.3 Gene set approaches to identify addicted and prognostic pathways .......... 74
5.4 Study 1: Identify IGF1R as a target marker in squamous cell lung cancer 75
5.4.1 Identification of differentially expressed gene sets between
adenocarcinoma and squamous cell carcinoma ........................................... 75
5.4.2 Estimation of cell cycle and E2F1 gene sets in synchronized cell
lines 76
5.4.3 Estimation of cell cycle activity in adenocarcinoma and squamous
cell carcinoma .............................................................................................. 77
5.4.4 The enrichment of IGF1R gene set in squamous cell carcinoma 78
5.5 Study 2: Evaluate the activity of cell cycling, nutrient metabolism, and the
response to hypoxia, as prognostic index by gene set approach ....................... 80
5.5.1 The functional analysis of the five gene set and the association 80
5.5.2 High activities of cell cycling, nutrient metabolism, and the response
to hypoxia in lung adenocarcinoma ............................................................. 81
5.5.3 The correlated expression of the five gene sets .......................... 82
5.5.4 The Prognostic power of the five gene sets ................................ 83
5.5.5 Twelve genes to predict clinical outcomes ................................. 86
5.6 Discussion ................................................................................................... 86
Figures ................................................................................................ 91
Tables ...................................................................................................... 131
Reference ............................................................................................... 158
dc.language.isoen
dc.title鑑定肺癌相關生物標記zh_TW
dc.titleIdentification of Lung Cancer Associated Markersen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.coadvisor白果能(Konan Peck)
dc.contributor.oralexamcommittee蕭朱杏(Chuhsing Kate Hsiao),林文昌(Wen-chang Lin),陳一東(Yidong Chen)
dc.subject.keyword肺癌,標的基因,生物資訊,zh_TW
dc.subject.keywordlung cancer,cancer marker,bioinfomatics,en
dc.relation.page175
dc.rights.note有償授權
dc.date.accepted2011-01-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved