Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48501
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳誠亮(Cheng-Liang Chen)
dc.contributor.authorJui-Yuan Leeen
dc.contributor.author李瑞元zh_TW
dc.date.accessioned2021-06-15T06:59:27Z-
dc.date.available2011-03-14
dc.date.copyright2011-02-09
dc.date.issued2011
dc.date.submitted2011-01-25
dc.identifier.citation[1] El-Halwagi, M. M. Pollution Prevention through Process Integration: Systematic
Design Tools (Academic Press, San Diego, 1997).
[2] El-Halwagi, M. M. Process Integration (Elsevier, Amsterdam, 2006).
[3] Wang, Y. P.; Smith, R. Wastewater minimisation. Chem. Eng. Sci. 49, 981–1006
(1994).
[4] Alves, J. J.; Towler, G. P. Analysis of refinery hydrogen distribution systems. Ind.
Eng. Chem. Res. 41, 5759–5769 (2002).
[5] Foo, D. C. Y.; Manan, Z. A. Setting the minimum utility gas flowrate targets using
cascade analysis technique. Ind. Eng. Chem. Res. 45, 5986–5995 (2006).
[6] Agrawal, V.; Shenoy, U. V. Unified conceptual approach to targeting and design of
water and hydrogen networks. AIChE J. 52, 1071–1081 (2006).
[7] Bagajewicz, M. A review of recent design procedures for water networks in refineries
and process plants. Comput. Chem. Eng. 24, 2093–2113 (2000).
[8] Foo, D. C. Y. State-of-the-art review of pinch analysis techniques for water network
synthesis. Ind. Eng. Chem. Res. 48, 5125–5159 (2009).
[9] Je˙zowski, J. Review of water network design methods with literature annotations.
Ind. Eng. Chem. Res. 49, 4475–4516 (2010).
[10] Gouws, J. F.; Majozi, T.; Foo, D. C. Y.; Chen, C.-L.; Lee, J.-Y. Water minimization
techniques for batch processes. Ind. Eng. Chem. Res. 49, 8877–8893 (2010).
[11] Dudley, S. Industrial Water Management: A Systems Approach, chap. Water use in
industries of the future: Chemical industry (New York: Center for Waste Reduction
Technologies, AIChE., 2003), 2nd edn.
[12] Hallale, N. A new graphical targeting method for water minimisation. Adv. Environ.
Res. 6, 377–390 (2002).
[13] Manan, Z. A.; Tan, Y. L.; Foo, D. C. Y. Targeting the minimum water flowrate using
water cascade analysis technique. AIChE J. 50, 3169–3183 (2004).
[14] Prakash, R.; Shenoy, U. V. Targeting and design of water networks for fixed flow
rate and fixed contaminant load operations. Chem. Eng. Sci. 60, 255–268 (2005).
[15] Kuo,W. C. J.; Smith, R. Design of water-using system involving regeneration. Proc.
Safe. Environ. Prot. 76, 94–114 (1998).
[16] Wang, Y. P.; Smith, R. Design of distributed effluent treatment systems. Chem. Eng.
Sci. 49, 3127–3145 (1994).
[17] Kuo, W. C. J.; Smith, R. Effluent treatment system design. Chem. Eng. Sci. 52,
4273–4290 (1997).
[18] Kuo, W. C. J.; Smith, R. Designing for the interactions between water-use and
effluent treatment. Chem. Eng. Res. Des. 76, 287–301 (1998).
[19] Dhole, V. R.; Ramchandani, N.; Tainsh, R. A.; Wasilewski, M. Make your process
water pay for itself. Chem. Eng. 103, 100–103 (1996).
[20] El-Halwagi,M.M.; Gabriel, F.; Harell, D. Rigorous graphical targeting for resource
conservation via material recycle/reuse networks. Ind. Eng. Chem. Res. 42, 4319–
4328 (2003).
[21] Bandyopadhyay, S.; Ghanekar, M. D.; Pillai, H. K. Process water management. Ind.
Eng. Chem. Res. 45, 5287–5297 (2006).
[22] Bandyopadhyay, S. Source composite curve for waste reduction. Chem. Eng. J. 125,
99–110 (2006).
[23] Ng, D. K. S.; Foo, D. C. Y.; Tan, Y. L.; Tan, R. R. Ultimate flowrate targeting with
regeneration placement. Chem. Eng. Res. Des. 85, 1253–1267 (2007).
[24] Ng, D. K. S.; Foo, D. C. Y.; Tan, R. R. Targeting for total water network. part 1.
waste stream identification. Ind. Eng. Chem. Res. 46, 9107–9113 (2007).
[25] Ng, D. K. S.; Foo, D. C. Y.; Tan, R. R. Targeting for total water network. part 2.
waste treatment targeting and interactions with water system elements. Ind. Eng.
Chem. Res. 46, 9114–9125 (2007).
[26] Bandyopadhyay, S.; Cormos, C.-C. Water management in process industries incorporating
regeneration and recycle through a single treatment unit. Ind. Eng. Chem.
Res. 47, 1111–1119 (2008).
[27] Bandyopadhyay, S. Targeting minimum waste treatment flow rate. Chem. Eng. J.
152, 367–375 (2009).
[28] Takama, N.; Kuriyama, T.; Shiroko, K.; Umeda, T. Optimal water allocation in a
petroleum refinery. Comput. Chem. Eng. 4, 251–258 (1980).
[29] Huang, C.-H.; Chang, C.-T.; Ling, H.-C.; Chang, C.-C. A mathematical programming
model for water usage and treatment network design. Ind. Eng. Chem. Res.
38, 2666–2679 (1999).
[30] Bagajewicz, M.; Savelski, M. On the use of linear models for the design of water
utilization systems in process plants with a single contaminant. Chem. Eng. Res.
Des. 79, 600–610 (2001).
[31] Chang, C.-T.; Li, B.-H. Improved optimization strategies for generating practical
water-usage and -treatment network structures. Ind. Eng. Chem. Res. 44, 3607–3618
(2005).
[32] Gabriel, F. B.; El-Halwagi, M. M. Simultaneous synthesis of waste interception and
material reuse networks problem reformulation for global optimization. Environ.
Prog. 24, 171–180 (2005).
[33] Gunaratnam, M.; Alva-Arg´aez, A.; Kokossis, A.; Kim, J.-K.; Smith, R. Automated
design of total water systems. Ind. Eng. Chem. Res. 44, 588–599 (2005).
[34] Karuppiah, R.; Grossmann, I. E. Global optimization for the synthesis of integrated
water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006).
[35] Karuppiah, R.; Grossmann, I. E. Global optimization ofmultiscenario mixed integer
nonlinear programming models arising in the synthesis of integrated water networks
under uncertainty. Comput. Chem. Eng. 32, 145–160 (2008).
[36] Ng, D. K. S.; Foo, D. C. Y.; Tan, R. R. Automated targeting technique for singlecomponent
resource conservation networks. part 1: Direct reuse/recycle. Ind. Eng.
Chem. Res. 48, 7637–7646 (2009).
[37] Ng, D. K. S.; Foo, D. C. Y.; Tan, R. R. Automated targeting technique for singlecomponent
resource conservation networks. part 2: Single pass and partitioning
waste interception systems. Ind. Eng. Chem. Res. 48, 7647–7661 (2009).
[38] Wang, Y. P.; Smith, R. Time pinch analysis. Chem. Eng. Res. Des. 73, 905–914
(1995).
[39] Majozi, T.; Brouckaert, C. J.; Buckley, C. A. A graphical technique for wastewater
minimisation in batch processes. J. Environ. Manage. 78, 317–329 (2006).
[40] Foo, D. C. Y.; Manan, Z. A.; Tan, Y. L. Synthesis of maximum water recovery
network for batch process systems. J. Clean. Prod. 13, 1381–1394 (2005).
[41] Liu, Y.; Yuan, X.; Luo, Y. Synthesis of water utilisation system using concentration
interval analysis method (ii). discontinuous process. Chin. J. Chem. Eng. 15, 369–
375 (2007).
[42] Almat´o, M.; Espu˜na, A.; Puigjaner, L. Optimisation of water use in batch process
industries. Comput. Chem. Eng. 23, 1427–1437 (1999).
[43] Kim, J.-K.; Smith, R. Automated design of discontinuous water systems. Proc. Safe.
Environ. Prot. 82, 238–248 (2004).
[44] Majozi, T. An effective technique for wastewater minimization in batch processes.
J. Clean. Prod. 13, 1374–1380 (2005).
[45] Li, B.-H.; Chang, C.-T. A mathematical programming model for discontinuous
water-reuse system design. Ind. Eng. Chem. Res. 45, 5027–5036 (2006).
[46] Shoaib, A. M.; Aly, S. A.; Awad, M. E.; Foo, D. C. Y.; El-Halwagi, M. M. A
hierarchical approach for the synthesis of batch water network. Comput. Chem.
Eng. 32, 530–539 (2008).
[47] Rabie, A. H.; El-Halwagi, M. M. Synthesis and scheduling of optimal batch waterrecycle
networks. Chin. J. Chem. Eng. 16, 474–479 (2008).
[48] Liu, Y.; Li, G.; Wang, L.; Zhang, J.; Shams, K. Optimal design of an integrated discontinuous
water-using network coordinating with a central continuous regeneration
unit. Ind. Eng. Chem. Res. 48, 10924–10940 (2009).
[49] Foo, D. C. Y. Automated targeting technique for batch process integration. Ind. Eng.
Chem. Res. 49, 9899–9916 (2010).
[50] Majozi, T. Storage design for maximum wastewater reuse in multipurpose batch
plants. Ind. Eng. Chem. Res. 45, 5936–5943 (2006).
[51] Foo, D. C. Y.; Manan, Z. A.; Tan, Y. L. Use cascade analysis to optimise water
networks. Chem. Eng. Prog. 102, 45–52 (2006).
[52] Liu, Y.; Yuan, X.; Luo, Y. Synthesis of water utilisation system using concentration
interval analysis method (i). non-mass-transfer-based operation. Chin. J. Chem.Eng.
15, 361–368 (2007).
[53] Majozi, T. Wastewater minimization using central reusable storage in batch plants.
Comput. Chem. Eng. 29, 1631–1646 (2005).
[54] Gouws, J. F.; Majozi, T. Impact of multiple storage in wastewater minimization for
multi-contaminant batch plants: towards zero effluent. Ind. Eng. Chem. Res. 47,
369–379 (2008).
[55] Cheng, K.-F.; Chang, C.-T. Integrated water network designs for batch processes.
Ind. Eng. Chem. Res. 46, 1241–1253 (2007).
[56] El-Halwagi, M. M.; Glasgow, I. M.; Qin, X.; Eden, M. R. Property integration:
componentless design techniques and visualization tools. AIChE J. 50, 1854–1869
(2004).
[57] Shelley, M. D.; El-Halwagi, M. M. Component-less design of recovery and allocation
systems: a functionality-based clustering approach. Comput. Chem. Eng. 24,
2081–2091 (2000).
[58] Qin, X.; Gabriel, F.; Harell, D.; El-Halwagi, M. M. Algebraic techniques for property
integration via componentless design. Ind. Eng. Chem. Res. 43, 3792–3798
(2004).
[59] Kazantzi, V.; El-Halwagi, M. M. Targeting material reuse via property integration.
Chem. Eng. Prog. 101, 28–37 (2005).
[60] Foo, D. C. Y.; Kazantzi, V.; El-Halwagi, M. M.; Manan, Z. A. Surplus diagram
and cascade analysis technique for targeting property-based material reuse network.
Chem. Eng. Sci. 61, 2626–2642 (2006).
[61] Grooms, D.; Kazantzi, V.; El-Halwagi, M. M. Optimal synthesis and scheduling
of hybrid dynamic/steady-state property integration networks. Comput. Chem. Eng.
29, 2318–2325 (2005).
[62] Ng, D. K. S.; Foo, D. C. Y.; Rabie, A.; El-Halwagi,M.M. Simultaneous synthesis of
property-based water reuse/recycle and interception networks for batch processes.
AIChE J. 54, 2624–2632 (2008).
[63] Ponce-Ortega, J. M.; Hortua, A. C.; El-Halwagi, M. M.; Jim´enez-Guti´errez, A. A
property-based optimization of direct-recycle networks and wastewater treatment
processes. AIChE J. 55, 2329–2344 (2009).
[64] Ponce-Ortega, J.M.; El-Halwagi,M.M.; Jim´enez-Guti´errez, A. Global optimization
for the synthesis of property-based recycle and reuse networks including environmental
constraints. Comput. Chem. Eng. 34, 318–330 (2010).
[65] Ng, D. K. S.; Foo, D. C. Y.; Tan, R. R.; Pau, C. H.; Tan, Y. L. Automated targeting
for conventional and bilateral property-based resource conservation network. Chem.
Eng. J. 149, 87–101 (2009).
[66] Ng, D. K. S.; Foo, D. C. Y.; Tan, R. R.; El-Halwagi, M. Automated targeting technique
for concentration- and property-based total resource conservation network.
Comput. Chem. Eng. 34, 825–845 (2010).
[67] Palm Oil Research Institute of Malaysia. Part 1. general description of the palm oil
milling process. In Palm Oil Factory Process Handbook (Malindo Printers, Shah
Alam, Malaysia, 1985).
[68] Savelski, M. J.; Bagajewicz, M. J. On the optimality conditions of water utilization
systems in process plants with single contaminants. Chem. Eng. Sci. 55, 5035–5048
(2000).
[69] Kemp, I. C.; Deakin, A.W. The cascade analysis for energy and process integration
of batch processes – part 1: calculation of energy targets. Chem. Eng. Res. Des. 67,
495–509 (1989).
[70] Foo, C. Y.; Manan, Z. A.; Yunus, R. M.; Aziz, R. A. Synthesis of mass exchange
network for batch processes – part i: utility targeting. Chem. Eng. Sci. 59, 1009–1026
(2004).
[71] Rosenthal, R. E. GAMS – A User’s Guide (GAMS Development Corporation,Washington,
DC, 2008).
[72] Noureldin, M. B.; El-Halwagi, M. M. Interval-based targeting for pollution prevention
via mass integration. Comput. Chem. Eng. 23, 1527–1543 (1999).
[73] El-Halwagi, M. M.; Manousiouthakis, V. Synthesis of mass exchange networks.
AIChE J. 35, 1233–1244 (1989).
[74] Bai, J.; Feng, X.; Deng, C. Graphically based optimization of single-contaminant
regeneration reuse water systems. Chem. Eng. Res. Des. 85, 1178–1187 (2007).
[75] Feng, X.; Bai, J.; Zheng, X. On the use of graphical method to determine the targets
of single-contaminant regeneration recycling water systems. Chem. Eng. Sci. 62,
2127–2138 (2007).
[76] Li, L.-J.; Zhou, R.-J.; Dong, H.-G. State-time-space superstructurebased minlp formulation
for batch water-allocation network design. Ind. Eng. Chem. Res. 49, 236–
251 (2010).
[77] Zhou, R.-J.; Li, L.-J.; Xiao, W.; Dong, H.-G. Simultaneous optimization of batch
process schedules and water-allocation network. Comput. Chem. Eng. 33, 1153–
1168 (2009).
[78] GAMS Development Corp. GAMS: The SolverManuals (GAMS Development Corporation,
Washington, DC, 2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48501-
dc.description.abstractThis thesis deals with resource conservation in process industries through mass and property integration. For the former, the main focus is given to water network synthesis. A graphical technique is first presented for the design of batch water networks (BWNs). By generalizing some useful concepts and principles that are originally developed for continuous processes, this technique consists of a systematic procedure for stream allocation, while determining fresh water consumption and storage policy. The issue of forbidden matches between given water-using operations and its impact on design is explored. To overcome the common limitation of insight-based techniques that they are limited to single contaminant systems, a mathematical technique for the synthesis of BWN with central storage tank(s) is next presented. By assuming a fixed production schedule, the model formulation is based on a superstructure which includes all possible reuse/recycle options. In addition, the synthesis task involves the minimization of fresh water consumption and storage capacity required. An effective method is proposed to facilitate the elimination of forbidden matches.
For property integration, a generic model is developed for the synthesis of property-based resource conservation networks (PRCNs). By treating continuous processes as a special case of batch processes, this model is applicable to both operating modes. The model formulation is based on a superstructure that includes all possible network connections. Apart from direct material reuse/recycle, interception placement is considered to improve streams properties for further recovery or for discharge. In addition, storage tanks are used when a batch process is considered. The developed model is first extended into palm oil mills, with particular focus on the clay bath system for kernel/shell separation based on flotation principle. Different from previous works where the clay bath separator was simplified as a continuous unit, it is modeled more practically as a semicontinuous unit with a specific operating period. Design objectives for clay bath operation comprise the minimization of fresh resource consumption and operating cost. The second extension is to synthesize concentration-based RCNs for continuous processes, where the interaction between sinks and sources is addressed. This has yet to be considered in most previous works on RCN synthesis. Illustrative examples are solved to demonstrate the application of each technique developed in this thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:59:27Z (GMT). No. of bitstreams: 1
ntu-100-F95524063-1.pdf: 1666546 bytes, checksum: 03b40fdf3f90ed38eed3eec6eaea27df (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書. . . . . . . . . . . . . . . . . . . . . . i
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
1 Introduction 1
1.1 Background Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Process Integration and Resource Conservation . . . . . . . . . . . . . . . 2
1.2.1 Literature review of water network synthesis . . . . . . . . . . . . 2
1.2.2 Literature review of property integration . . . . . . . . . . . . . . . 8
1.3 Aim of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Graphical approach for BWN design . . . . . . . . . . . . . . . . 9
1.3.2 Mathematical approach for BWN synthesis . . . . . . . . . . . . . 10
1.3.3 Mathematical approach for PRCN synthesis . . . . . . . . . . . . . 10
1.3.4 Property integration in palm oil mills . . . . . . . . . . . . . . . . 10
1.3.5 RCN synthesis with sink-source interaction . . . . . . . . . . . . . 11
2 A Graphical Technique for the Design of Batch Water Networks 13
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Stream Allocation and Representation . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Arrangement of fixed load operations in batch processes . . . . . . 15
2.2.2 Arrangement of fixed flow rate operations in batch processes . . . . 17
2.3 Illustrative Example (Example 2.1) . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Analysis for single batch . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Analysis for repeated batches . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Verification of optimality . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Practical constraints on water reuse/recycle . . . . . . . . . . . . . 42
3 A Mathematical Technique for the Synthesis of Batch Water Networks 49
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Superstructure and Model Formulation . . . . . . . . . . . . . . . . . . . 50
3.2.1 Water balances for water-using units . . . . . . . . . . . . . . . . . 51
3.2.2 Contaminant balances for water-using units . . . . . . . . . . . . . 52
3.2.3 Water balances for storage tanks . . . . . . . . . . . . . . . . . . . 53
3.2.4 Contaminant balances for storage tanks . . . . . . . . . . . . . . . 54
3.2.5 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 Example 3.1: Agrochemical manufacturing facility . . . . . . . . . 56
3.3.2 Example 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.3 Example 3.3: Multiple contaminant case . . . . . . . . . . . . . . 59
3.3.4 For bidden water reuse/recycle . . . . . . . . . . . . . . . . . . . . 60
4 Synthesis of Property-based Resource Conservation Networks for Batch and
Continuous Processes 67
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Mixing Rule and Property Operator . . . . . . . . . . . . . . . . . . . . . 68
4.3 Superstructure and Model Formulation . . . . . . . . . . . . . . . . . . . 68
4.3.1 Mass balances for process sinks . . . . . . . . . . . . . . . . . . . 70
4.3.2 Mass balances for process sources . . . . . . . . . . . . . . . . . . 71
4.3.3 Mass balances for interception devices . . . . . . . . . . . . . . . 72
4.3.4 Mass balances for storage tanks . . . . . . . . . . . . . . . . . . . 74
4.3.5 Mass balances for waste discharge . . . . . . . . . . . . . . . . . . 76
4.3.6 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.1 Example 4.1:metaldegreasing process . . . . . . . . . . . . . . . 77
4.4.2 Example 4.2: palm oil milling process . . . . . . . . . . . . . . . . 84
4.4.3 Example 4.3: batch chemical process – 1 . . . . . . . . . . . . . . 91
4.4.4 Example 4.4: batch chemical process – 2 . . . . . . . . . . . . . . 96
5 Property Integration for Resource Conservation Network Synthesis in Palm
Oil Mills 103
5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.1 Mass balances for the clay bath system . . . . . . . . . . . . . . . 106
5.2.2 Mass balances for interception devices . . . . . . . . . . . . . . . 108
5.2.3 Mass balances for waste discharge . . . . . . . . . . . . . . . . . . 110
5.2.4 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Illustrative Example (Example 5.1) . . . . . . . . . . . . . . . . . . . . . 111
5.3.1 Case1:Fixed operating period . . . . . . . . . . . . . . . . . . . . 114
5.3.2 Case2:Variable operating period . . . . . . . . . . . . . . . . . . 118
6 Synthesis of Resource Conservation Network with Sink-Source Interaction 125
6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Superstructure and Model Formulation . . . . . . . . . . . . . . . . . . . 126
6.2.1 Mass balances for process sinks . . . . . . . . . . . . . . . . . . . 126
6.2.2 Mass balances for process sources . . . . . . . . . . . . . . . . . . 127
6.2.3 Mass balances for interception devices . . . . . . . . . . . . . . . 129
6.2.4 Mass balances for waste discharge . . . . . . . . . . . . . . . . . . 130
6.2.5 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.1 Example 6.1:Tire to fuel process . . . . . . . . . . . . . . . . . . 131
6.3.2 Example 6.2: Tricresyl phosphate process . . . . . . . . . . . . . . 139
7 Conclusions 151
Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Autobiography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
dc.language.isoen
dc.title批式與連續式製程之資源節約網路合成zh_TW
dc.titleSynthesis of Resource Conservation Networks for Batch and Continuous Processesen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee錢義隆,吳哲夫(Jeffery Ward),鄭西顯,張玨庭,符傳藝(Dominic Chwan Yee Foo),Raymond Tan (菲律賓籍教授)
dc.subject.keyword批式製程,數學規劃法,網路合成,程序整合,特性整合,資源節約,zh_TW
dc.subject.keywordBatch process,Mathematical optimization,Network synthesis,Process integration,Property integration,Resource conservation,en
dc.relation.page164
dc.rights.note有償授權
dc.date.accepted2011-01-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved