Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48481
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭鴻基(Hung-Chi Kuo)
dc.contributor.authorMu-Hao Hsuen
dc.contributor.author許牧豪zh_TW
dc.date.accessioned2021-06-15T06:58:36Z-
dc.date.available2012-02-20
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-01-27
dc.identifier.citationBlack, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947-957.
Cohen, J., 1988: Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Lawrence Erlbaum.
Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110-2123
────, and ────,2003: The relationship between motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366-376.
DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543.
Dodge, P., R. W. Burpee, and F. D. Marks Jr., 1999: The kinematic structure of a hurricane with sea level pressure less than 900 mb. Mon. Wea. Rev., 127, 987-1004.
Dritschel, D. G., and D. W. Waugh, 1992: Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids A., 4, 1737-1744.
Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow on tropical cyclone structure. Mon. Wea. Rev., 127, 2044-2061.
────, and ────, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249-2269.
Hawkins, J. D., T. F. Lee, F. J. Turk, C. Sampson, J. Kent, and K. Richardson, 2001: Real-time Internet distribution of satellite products for tropical cyclone reconnaissance. Bull. Amer. Meteor. Soc., 82, 567–578.
────, and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Preprints, 26th Conf. on Hurricane and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 276–277.
────, M. Helveston, T. F. Lee, F. J. Turk, K. Richardson, C. Sampson, J. Kent, and R. Wade, 2006: Tropical cyclone multiple eyewall characteristics. Preprints, 27th Conf. on Hurricane and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 6B.1. [ http://ams.confex. com/ams/27Hurricanes/techprogram/paper_108864.htm.]
Houze, R. A. Jr., S.-S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235–1239.
Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart J. Roy. Meteor. Soc., 121, 821-851.
Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane's primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 3893-3917.
Kuo, H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722-2734.
────, W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 5183-5198.
────, C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific Typhoons with Concentric Eyewalls. Mon. Wea. Rev., 137, 3758-3770.
LinHo and B. Wang, 2002: The Time-Space Structure of the Asian-Pacific Summer Monsoon: A Fast Annual Cycle View. J. Climate., 15, 2001-2019.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricane. Quart. J. Roy. Meteor. Soc., 123, 435–465.
Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-doppler radar. Mon. Wea. Rev., 128, 1653-1680.
Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325-340.
Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197-1223.
Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic. Technol., 6, 254-273.
Tao, S., and L.-X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.
Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi: 10.1029/2007JD008897.
Wang, B., R.Wu, and LinHo, 2002: Rainy Season of the Asian Pacific summer monsoon. J. Climate, 15, 386-398.
────, and Z. Fan, 1999: Choice of South Asia summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.
────, R.Wu, and X. Fu, 2000: Pacific-East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J. Climate, 13, 1517-1536.
────, R.Wu, and K. M. Lau, 2001: Interannual Variability of the Asian Summer Monsoon: Contrasts between the Indian and the Westurn North Pacific-East Asian Monsoons. J. Climate, 14, 4073-4090.
────, and Coauthors, 2008b: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449–4463.
Wang Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 1158-1181.
Willoughby, H. E., J. A. Clos, and M. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411.
黃筱晴,2010: 西北太平洋上大尺度環境與颱風特性之關係。國立台灣大學大氣科學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48481-
dc.description.abstract透過颱風中心渦旋組織外圍大範圍之不對稱對流雲帶,是颱風雙眼牆結構形成的重要機制之一。2001年利奇馬颱風形成雙眼牆前之雷達回波圖,及2003年尹布都及杜鵑等颱風之微波雲圖,颱風外圍皆有大範圍之不對稱對流雲帶。本研究利用西北太平洋1997年至2009年間69個雙眼牆微波資料,探討雙眼牆生成前外圍對流面積大小及方位之時空與綜觀環境特徵,並探討雙眼牆生成與季風之關係。
我們挑選颱風眼為中心9°×9°範圍內,定義中心渦旋為雙眼牆生成時內眼牆與moat之和,扣除此中心渦旋面積後,依據微波雲圖中小於230K之區域,計算形成雙眼牆前24小時之外圍對流面積,並以平均值及上下一個標準差之統計結果,將外圍對流分成小、中、大三種面積尺度,其大小分別為2~5、6~10、11~17 (萬平方公里)。結果顯示大對流面積之個案好發於6至8月且生成於西北太平洋中123°E ~135°E、13°N ~27°N區域;小對流面積則好發於8至9月且生成於西北太平洋126°E ~154°E、19°N ~27°N區域。進一步於外圍較大面積相對方位上,分成南側及北側主宰兩類,全部個案中,南側個案數約為北側之兩倍,其生成於夏季及西北太平洋135°E以西區域,且外圍通常有較大之對流面積。
SHIPS (Statistical Hurricane Intensity Prediction Scheme)為颱風之強度相關參數統計資料,我們以當中之200-850mb垂直風切向量,針對外圍對流之生成機制進行分析,統計相對於下風切各方位之外圍對流面積。我們發現其外圍對流皆好發於下風切處偏左側。其次在水氣參數上,依據南北側對流主宰,採不同計算範圍,進而分別將外圍對流面積與南側7個區域之水氣參數及北側3個區域之水氣參數作相關分析,結果在南側個案中,對流面積與颱風西南側水氣通量相關性較佳;北側個案中,對流面積與颱風北側環流水氣通量輻合值關係較佳。
在西北太平洋季風指數上,採用110°E ~140°E、5°N ~30°N 範圍之850hPa緯向風場南北風速差,當其值為正,表此區為氣旋式環流型態。13年中,47個雙眼牆個案生成於季風計算範圍內,其中70.5%生成時季風指數達4ms-1以上,尤其在6至9月之個案中,93.5%生成時季風指數達4ms-1以上,顯示於6至9月時,季風指數達4ms-1以上為有利雙眼牆生成之條件。最後,關於雙眼牆生成時強度分析,得知生成強度隨雙眼牆生成區域之上層海洋熱含量(UOHC)之變大,有增加之趨勢,R-square達0.15;而生成強度與SST及垂直風切無明顯關係。
zh_TW
dc.description.abstractOne of the important processes of concentric eyewall formation is the axisymmetrization of outer region asymmetric convection zone by center vortex of typhoon. Before the formation of concentric eyewall, we find a large outer region asymmetric convection zone in every concentric case from radar echoes or microwave images. For instance, typhoon-Lekima(2001) ,Dujuan(2003), and Imbudo(2003). There are 69 concentric cases at North-west Pacific Ocean in the period of 1997 to 2009. We use the cases’ microwave data to discuss about the relationship between outer region convection area and temporal and spatial distribution. Moreover, the study discusses about the relationship between concentric eyewall formation and monsoon index.
At first, we calculate the area of outer convection zone that is smaller than 230K in the 9°x9° region of microwave image, and then we subtract the center vortex which is defined as the sum of inner eyewall and moat width at the time of concentric eyewall formation. We also classify the sizes of area into three scale including small(2 to 5 million kilometers), medium(6 to 10 million kilometers), and large(11 to 17 million kilometers) by average and one standard deviation. The result shows that the large convection area cases are mostly happened in June to August and forming in the region between 123°E~135°E , and 13°N~27°N in North-west Pacific Ocean; small convection area cases are mostly happened in August to September and forming in the region between 126°E~154°E , and 13°N~27°N in North-west Pacific Ocean. Moreover, we classify the position of the outer region convection zone into two kinds- south dominate and north dominate. From all cases we choose, the number of south dominate cases is two times greater than the north dominate cases. South dominate cases were mostly formed on the west side of 135°E in North-west Pacific Ocean, and most of them have larger convection area at the outer region than north dominate cases.
We use information of vertical wind shear between 200-850hPa from SHIPS (Statistical Hurricane Intensity Prediction Scheme) to analyze the formation mechanism of outer region convections by counting the area of convection at down shear side. We find that the outer region convection happen mostly at down shear left sides. Further, we use water vapor parameters to find the relationship with convection area. For south dominate cases, we find that the area of outer region convection zone has great thing to do with the water vapor flux in the south-west of the typhoon. On the other hand, for the north dominate cases, we find that the area of outer region convections zone is better related to the convergence of water vapor flux in the north part of the typhoon.
North-west Pacific monsoon index is defined as the zonal wind speed difference at 850hPa in the 110-140°E, 5-30°N. East Asia region has cyclonic circulation when the index is positive. Among 47 cases of concentric typhoons which happened in the same domain as monsoon index during 13 years, 70.5% of them happened with monsoon index up to 4m/s. Especially during June to September, the percentage of certain cases is up to 93.5%. The fact indicates that during June to September, the environment with monsoon index higher than 4ms-1 is a benefit to concentric eyewall typhoons.
Last but not least, the analysis showed that the intensity of concentric eyewall typhoon formation is correlated to the upper ocean heat content (UOHC), with R-square value of 0.15, and it has nothing to do with SST and vertical wind shear.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:58:36Z (GMT). No. of bitstreams: 1
ntu-100-R97229002-1.pdf: 12177810 bytes, checksum: 3876f167c68131af28912a5dd9f8135e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
目次 vi
表次 viii
圖次 ix
第一章 前言 1
第二章 資料說明與分析 8
2.1 資料來源 8
2.2 雙眼牆颱風之統計 10
2.3 外圍對流區面積之分析 11
2.4 南北對流區主宰個案之分析 13
第三章 外圍對流區之探討 16
3.1 外圍對流區與垂直風切 16
3.2 外圍對流與水氣參數 17
第四章 雙眼牆生成與季風指數 21
4.1 季風指數統計與分析 21
4.2 雙眼牆生成與季風指數探討 22
4.3 雙眼牆生成強度因子探討 24
第五章 討論與總結 26
5.1 討論 26
5.2 總結 29
參考文獻 31
附錄A 92
附錄B 94
dc.language.isozh-TW
dc.subject外圍對流面積zh_TW
dc.subject雙眼牆颱風zh_TW
dc.subject西北太平洋季風指數zh_TW
dc.subjectconcentric typhoonen
dc.subjectthe area of outer convection zoneen
dc.subjectmonsoon indexen
dc.title雙眼牆颱風與西南季風探討zh_TW
dc.titleA Study of Concentric Typhoons and Southwesterly Monsoonen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳俊傑(Chun-Chieh Wu),李清勝(Cheng-Shang Lee),簡芳菁(Fang-Ching Chien),王重傑(Chung-Chieh Wang)
dc.subject.keyword雙眼牆颱風,外圍對流面積,西北太平洋季風指數,zh_TW
dc.subject.keywordconcentric typhoon,the area of outer convection zone,monsoon index,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2011-01-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
11.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved