請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48469完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐澔德(J. Bruce H. Shyu) | |
| dc.contributor.author | Yen-Sheng Lin | en |
| dc.contributor.author | 林晏陞 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:58:05Z | - |
| dc.date.available | 2012-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-01-27 | |
| dc.identifier.citation | Allmendinger, R.W., Jordan, T.E., Kay, S.M. and Isacks, B.L. (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Annu. Rev. Earth Planet., 25, 139-174.
Alpers, C.N. and Brimhall, G.H. (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: Evidence from supergene mineralization at La Escondia. Geological Society of America Bulletin, 100, 1640-1656. Amilibia, A., Sabat, F., McClay, K.R., Munoz, J.A., Roca, E. and Chong, G. (2008) The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: Insights from the Cordillera de Domeyko. Journal of Structural Geology, 30, 1520-1539. Arriagada, C., Cobbold P.R. and Roperch P. (2006) Salar de Atacama basin: A record of compressional tectonics in the central Andes since the mid-Cretaceous. Tectonics, 25, 19 pp. Audin, L., Herail, G., Riquelme, R., Darrozes, J., Martinod J. and Font E. (2003) Geomorphological markers of faulting and neotectonic activity along the western Andean margin, northern Chile. Journal of Quaternary Science, 18, 681-694. Bobst, A.L., Lowenstein, T.K., Jordan, T.E., Godfrey, L.V., Ku, T.L. and Luo, S.D. (2001) A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeography Palaeoclimatology Palaeoecology, 173, 21-42. Burbank, D. and Anderson, R.S. (2001) Tectonic Geomorphology. Black-well Science, Massachusetts, 273pp. Cheng, H., Edward, R.L., Hoff, J., Gallup, C.D., Richards, D.A. and Asmersom, Y. (2000) The half-lives of uranium-234 and thorium-230. Chem. Ceol., 169, 17-33. Comte, D., Pardo, M., Dorbath, L., Dorbath, C., Haessler, H., Rivera, L., Cisternas, A. and Ponce, L. (1994) Determination of seismogenic interplate contact zone and crustal seismicity around Antofagasta, northern Chile using local data. Geophysical Journal International, 116, 553-561. Coutand, I., Cobbold, P.R., de Urreiztieta M., Gautier, P., Chauvin, A., Gapais, D., Rossello, E.A. and López-Gamundí, O. (2001) Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics, 20, 210-234. Damm, K.W., Pichowiak, S., Harmon, R.S., Todt, W., Kelley, S., Omarini, R. and Niemeyer, H. (1990) Pre-Mesozoic evolution of the central Andes; The basement revisited. In: Plutonism from Antarctica to Alaska, Geol. Soc. Am. Spec. Pap, 241, 101-126. Delouis, B., Philip, H., Dorbath, L. and Cisternas, A. (1998) Recent crustal deformation in the Antofagasta region (northern Chile) and the subduction process. Geophysical Journal International, 132, 302-338. Delouis, B., Cisternas, A., Dorbath, L., Rivera, L. and Kausel, E. (1996) The Andean subduction zone between 22 and 25°S (northern Chile): precise geometry and state of stress. Tectonophysics, 259, 81-100. Demets, C., Gordon, R.G., Argus, D.F. and Stein, S. (1990) Current plate motions. Geophysical Journal International, 101, 425-478. Dunai, T.J., González López, G.A. and Juez-Larré, J. (2005) Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology, 33, 321-324. Flint, S., Turner, P., Jolley, E.J. and Hartley, A.J. (1993) Extensional Tectonics in Convergent Margin Basins - an Example from the Salar-De-Atacama, Chilean Andes. Geological Society of America Bulletin, 105, 603-617. Garcia, M. and Herail, G. (2005) Fault-related folding, drainage network evolution and valley incision during the Neogene in the Andean Precordillera of northern Chile. Geomorphology, 65, 279-300. González L,G., Dunai, T., Carrizo, D. and Allmendinger, R. (2006) Young displacements on the Atacama Fault System, northern Chile from field observations and cosmogenic 21Ne concentrations. Tectonics, 25, 15 pp. González, G., Cembrano, J., Aron, F., Veloso, E.E. and Shyu, J.B.H. (2009) Coeval compressional deformation and volcanism in the central Andes, case studies from northern Chile (23°S–24°S). Tectonics, 28, 18 pp. Gregory-Wodzicki, K.M. (2000) Uplift history of the Central and Northern Andes: A review. Geological Society of America Bulletin, 112, 1091-1105. Gregory-Wodzicki, K.M., McIntosh, W.C. and Velasquez, K. (1998) Paleo-climate and paleoelevation of the late Miocene Jakokkota flora, Bolivian Altiplano. Journal of South American Earth Sciences, 11, 533-560. Gripp, A.E., and Gordon, R.G. (2002) Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150, 321-361. Hartley, A.J. and Chong, G. (2002) Late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology, 30, 43-46. Hartley, A.J., May, G., Chong, G., Turner, P., Kape, S.J. and Jolley, E.J. (2000) Development of a continental forearc: A Cenozoic example from the Central Andes, northern Chile. Geology, 28, 331-334. Isacks, B.L. (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. Journal of Geophysical Research, 93, 3211-3231. Jolley, E.J., Turner, P., Williams, G.D., Hartley, A.J. and Flint, S. (1990) Sedimentological Response of an Alluvial System to Neogene Thrust Tectonics, Atacama Desert, Northern Chile. Journal of the Geological Society, 147, 769-784. Jordan, T.E., Munoz, N., Hein, M., Lowenstein, T., Godfrey L. and Yu, J. (2002) Active faulting and folding without topographic expression in an evaporite basin, Chile. Geological Society of America Bulletin, 114, 1406-1421. Jordan, T.E., Mpodozis, C., Munoz, N., Blanco, N., Pananont P. and Gardeweg M. (2007) Cenozoic subsurface stratigraphy and structure of the Salar de Atacama Basin, northern Chile. Journal of South American Earth Sciences, 23, 122-146. Jourdan, F. and Renne, P.R. (2007) Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K-Ar standards. Geochemica Cosmochimica Acta., 71, 387-402. Kober, F., Ivy-Ochs, S., Schluneggere, F., Baurb, H., Kubikf, P.W. and Wielerb, R. (2007) Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets. Geomorphology, 83, 97-120 Kuhn, D. (2002) Fold and thrust belt structures and strike-slip faulting at the SE margin of the Salar de Atacama basin, Chilean Andes. Tectonics, 21, 17 pp. Lamb, S., Hoke, L., Kennan, L. and Dewey, J. (1997) Cenozoic evolution of the Central Andes in Bolivia and northern Chile. Geol. Soc. Spec. Publ. 121, 237-264. Liu, M., Yang, Y., Stein, S., Zhu, Y. and Engeln, J. (2000) Crustal shortening in the Andes: Why do GPS rates differ from geological rates? Geophysical Research Letters, 27, 3005-3008. McQuarrie, N. (2002) Initial plate geometry, shortening variations, and evolution of the Bolivian orocline. Geology, 30, 867-870. Moraga, A., Chong, G., Fortt, M.A. and Henriquez, H. (1974) Estudio geológico del Salar de Atacama, Provincia de Antofagasta. Instituto Investigaciones Geológicas, 29, 56 pp. Mpodozis, C., Arriagada, C., Basso, M., Roperch, P., Cobbold, P. and Reich, M. (2005) Late mesozoic to paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonic evolution of the Central Andes. Tectonophysics, 399, 125-154. Norabuena, E., Leffler-Griffin, L., Mao, A.L., Dixon, T., Stein, S., Sacks, I.S., Ocola L. and Ellis, M. (1998) Space geodetic observations of Nazca-South America convergence across the central Andes. Science, 279, 358-362. Ramírez, C., and Gardeweg, M., (1982) Hoja Toconao, Región de Antofagasta: Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 54, 122pp. Rech, J.A., Currie, B.S., Michalski, G. and Cowan, A.M. (2006) Neogene climate change and uplift in the Atacama Desert, Chile. Geology, 34, 761-764. Riquelme, R., Martinod, J., Hérail, G., Darrozes, J. and Charrier, R. (2003) A geomorphological approach to determining the Neogene to Recent tectonic deformation in the Coastal Cordillera of northern Chile (Atacama). Tectonophysics, 61, 255–275. Scheuber, E. and González, G. (1999) Tectonics of the Jurassic–Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°-26°S): a story of crustal deformation along a convergent plate boundary. Tectonics, 18, 895-910. Schmitz, M. (1994) A balanced model of the southern central Andes. Tectonics, 13, 484-492. Schurr, B. and Rietbrock, A. (2004) Deep seismic structure of the Atacama basin, northern Chile. Geophysical Research Letters, 31, 4 pp. Schurr, B., Asch, G., Rietbrock, A., Kind, R., Pardo, M., Heit, B. and Monfret, T. (1999) Seismicity and average velocity beneath the Argentine Puna. Geophysical Research Letters, 26, 3025-3028. Sheffels, B.M. (1990) Lower bound on the amount of crustal shortening in the central Bolivian Andes. Geology, 18, 812-815. Shyu, J.B.H., Sieh, K., Chen, Y.G., Chuang, R.Y., Wang, Y. and Chung, L.H. (2008) Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan. Tectonics, 27, 22 pp. Somoza, R. (1998) Updated Nazca (Farallon) - South America relative motions during the last 40 My: implications for mountain building in the central Andean region. Journal of South American Earth Sciences, 11, 211-215. Soto, R., Martinod, J., Riquelme, R., Herail G. and Audin L. (2005) Using gemorphological markers to discriminate Neogene tectonic activity in the Precordillera of North Chilean forearc (24-25 degrees S). Tectonophysics, 411, 41-55. Steiger, R.H. and Jäger, E. (1977) Subcommission on geochronology: convention of the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359-362. Suppe, J. and Medwedeff, D.A. (1990) Geometry and kinematics of fault-propagation folding. Eclogae geol. Helv., 83, 409-454. Suppe, J., Connors, C.D. and Zhang, Y. (2004) Shear fault-bend folding. In: Thrust tectonics and hydrocarbon systems: AAPG Memoir, 82, 303-323. Tassara, A. (2005) Interaction between the Nazca and South American plates and formation of the Altiplano-Puna plateau: Review of a flexural analysis along the Andean margin (15°-34°S). Tectonophysics, 399, 39-57. Valero-Garces, B.L., Grosjean, M., Kelts, K., Schreier, H. and Messerli, B. (1999) Holocene lacustrine deposition in the Atacama Altiplano: facies models, climate, and tectonic forcing. Palaeogeography, Palaeoclimatology, Palaeoecology, 151, 101-125. Victor, P., Oncken O. and Glodny J. (2004) Uplift of the western Altiplano plateau: Evidence from the Precordillera between 20° and 21°S (northern Chile). Tectonics, 23, 24 pp. Chang, C.C. (2007) Coral geochemical proxy records of the East Asian winter monsoon and hydrological conditions in the central Vietnam from 1978-2004 AD. M.S.thesis, Department of Geosciences, National Taiwan University, Taipei, 53 pp. Edward, R.L., Chen, J.H. and Wasserburg, G.J. (1986/1987) 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett., 81, 175-192. Lo, C.H. and Lee, C.J. (1994) 40Ar/39Ar method of K-Ar age determination of geological samples using Tsing-Hua Open-Pool (THOR) reactor. Journal of the Geological Society of China, 37, 143-164. Shen, C.-C., Cheng, H., Edwards, R.L., Moran, S.B., Edmonds, H.N., Hoff, J.A. and Thomas, R.B. (2003) Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotopedilution thermal ionization mass spectroscopy. Analytical Chem., 75, 1075-1079. 林立虹 (1995) 中國東部蘇魯超高壓變質帶之熱定年學研究。國立台灣大學理學院地質科學研究所碩士論文,共 86 頁。 陳嘉俞 (2009) 台灣花蓮北部地區的新構造與近期地殼變形運動。國立台灣大學理學院地質科學研究所碩士論文,共 121 頁。 曾清涼、儲慶美 (1997) GPS衛星測量原理與應用。成功大學衛星資訊研究中心。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48469 | - |
| dc.description.abstract | 南美大陸的西岸是地球上主要的板塊交界帶之一,Nazca板塊在此以每年63~80公釐的速度向東北隱沒至南美板塊之下。但儘管板塊聚合的速度如此之快,現今在中部安地斯山脈西側的弧前區域,並未發現太多因板塊聚合而產生的擠壓變形,或是構造活動現象。因此我們運用構造地形學的觀念,在智利北部,安地斯山脈西側的Atacama Basin東南隅,選定一處由地下構造活動所造成的地表變形作為研究區域,以期瞭解此弧前區域變形的機制與其在板塊聚合中所扮演的角色。
由於Atacama Basin處在氣候極為乾燥的區域,其侵蝕與沉積速率皆相當緩慢,因此,我們假設研究區域中現今的地表起伏都是受到新期構造活動所造成的。我們利用SRTM (Shuttle Radar Topographic Mission)所製作出的數值地形模型圖 (Digital Elevation Models)套疊上Quickbird高解析度衛星影像後,可看出六條南北向發育的山脊,彼此約略平行,各自高數公尺到十數公尺。接著我們使用RTK (Real Time Kinematic)-GPS至現地進行三條剖面量測,獲得了精確的座標與量化之地形起伏樣貌。可知這些山脊的東翼較陡且短,而西翼的坡度則較緩,延伸較長。推測這些山脊皆發育在一個較主要的背斜之西翼上;而此主要的背斜構造則是一個受到下部向西傾斜之逆斷層活動所形成的,具剪切滑移之斷層彎曲褶皺(shear fault-bend fold)。 利用Suppe等人(2004)所提出的模型與方程式,假設此構造於活動過程中深度、剪切滑移角度、斷坡角度等都不隨時間改變,我們便可將RTK量測出的地表剖面向下推衍,繪製出此構造於深部的發育形貌。同時我們也自受到褶皺拱彎的地層中採集不同的岩石樣本,例如:中酸性凝灰岩(ignimbrite)、湖相沉積岩(lake deposits)。藉由氬-氬定年與鈾-釷定年的結果輔助,我們知道表層的凝灰岩年代約在中更新世mid-Pliocene (~3Ma),而局部覆蓋的湖相沉積岩則沉積於~440ka。如果上述觀察到的構造在此湖相沉積物覆蓋、成岩之時就已開始活動,那麼我們可將地表變形量歸因於此構造活動所致,便能藉此進一步推算出此構造系統長期的活動速率約為~ 0.1 mm/yr。 如此慢速的活動速率與其他同樣位於中部安地斯山之弧前區域的研究結果大略一致,顯示Nazca板塊向東推擠的應力似乎未累積在南美大陸上部地殼的弧前區域,而可能移轉到了其他地方。因此,不同於北部、南部安地斯山,在此區域可能仍有其他因素扮演了控制應變機制的重要角色。 | zh_TW |
| dc.description.abstract | Atacama Basin (~23°S, ~68°W) lies on the western edge of the Central Andes. It is a unique compressional depression in the forearc region of the South American plate boundary, which was formed by the oblique convergence between the Nazca and the South American plates. The Nazca plate is subducting northeastward beneath the South American plate at a rate of about 68~80 mm/yr based on different methods. However, this forearc region does not seem to absorb a lot of deformation at present.
In order to understand the characteristics and mechanisms of active forearc deformation related to the plate convergence, we chose to investigate the SE margin of the Atacama Basin, where active structures have been described previously. Since the hyper-aridity of the Atacama Basin results in extremely low erosion and sedimentation rates, we believe the present relief of land surface there is mostly produced by neotectonic activity, and can be used as a deformation marker. Combining various remote-sensing data sets, such as an SRTM-DEM, Google Earth platform, and higher resolution QuickBird satellite images, several N-S trending ridges are mapped in this area. For further investigating tectono-geomorphic features, we performed detailed geomorphic surveys by real-time kinematic (RTK) GPS in the field to obtain high resolution topographic profiles across these features. These ridges are generally several tens of meters high, with their height decreasing northward. These ridges are interpreted to minor duplex fault-bend folds which grew on the backlimb of one larger asymmetric anticline. This major fold with steep forelimb facing east is likely formed by a shear fault-bend fold, and may be associated with an underlying west-dipping thrust fault. According to the principle proposed by Suppe (2004), the model without changes in depth, ramp angle, shear angle, and backlimb angle is selected to reconstruct the geometry of the structure beneath. We also suggest that this fault would merge at depth with the major active thrust system as a branch. We also performed 40Ar/39Ar and U-Th dating of deformed strata. The surface ignimbrites mostly deposited in late Pliocene (3.0~3.2 Ma), and part of them are covered by a thin layer of lake deposits during ~440ka. If the structures have been active since the deposition of the lake deposits, the total deformation would yield a very low long-term slip rate of the faults, in an order of 10-1 mm/yr. This result is similar to other researches in the forearc region of Central Andes, but is distinctly different from the Northern and Southern Andes. This very low slip rate of active structures may thus play important roles in the evolution of the forearc deformation belt, as well as the landscape development in this area. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:58:05Z (GMT). No. of bitstreams: 1 ntu-100-R97224110-1.pdf: 3550838 bytes, checksum: ad1166a4ce18dfa1645c71bbf0eaf910 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致 謝 II 中文摘要 IV Abstract VI List of Figures IX List of Tables X Introduction 1 Geological Setting 4 The Central Andes 4 Structural districts 5 Climates 5 Stratigraphy at the southeastern edge of the Salar de Atacama Basin 9 Neotectonic features of the Tilocalar region 11 Topographic measurement from RTK-GPS 12 Geochronology of deformed strata 19 Discussion 23 Structural cross-section 23 Slip rate calculation 29 Conclusions 31 References 32 Appendix I Methodology 37 Geomorphology Analysis 37 Mapping 37 RTK-GPS 37 Geochronology 42 Ar-Ar Dating 42 U-Th Dating 44 Appendix II Ar-Ar Dating Results 46 Appendix III References 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 慢速滑移速率 | zh_TW |
| dc.subject | 新期構造 | zh_TW |
| dc.subject | 活動斷層 | zh_TW |
| dc.subject | 阿塔加馬盆地 | zh_TW |
| dc.subject | 中部安地斯山 | zh_TW |
| dc.subject | active faults | en |
| dc.subject | Central Andes | en |
| dc.subject | slow slip rates | en |
| dc.subject | Neotectonics | en |
| dc.subject | Atacama Basin | en |
| dc.title | 智利北部阿塔加馬盆地之一慢速滑移褶皺逆衝構造系統 | zh_TW |
| dc.title | A slow-slipping active fold and thrust system at the SE corner of the Atacama basin, northern Chile | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅清華,陳于高,李建成,張中白 | |
| dc.subject.keyword | 新期構造,活動斷層,阿塔加馬盆地,中部安地斯山,慢速滑移速率, | zh_TW |
| dc.subject.keyword | Neotectonics,active faults,Atacama Basin,Central Andes,slow slip rates, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-01-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
