Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48465
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorCheng-Hung Linen
dc.contributor.author林政宏zh_TW
dc.date.accessioned2021-06-15T06:57:55Z-
dc.date.available2012-02-20
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-01-28
dc.identifier.citation[1.1] L. Siozade, J. Leymarie, P. Disseix, A. Vasson, M. Mihailovic, N. Grabdjean, M. Leroux,and J. Massies, “Modeling of thermally detected optical absorption and luminescence of (In.Ga)N/GaN heterostructures,” Solid State Comun. 115, 575 (2000).
[1.2] J. Wu, W. Walukiewicz, K.M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff “Small band gap bowing in InxGa1-xN,” Appl. Phys. Lett. 80, 4741 (2002).
[1.3] J. Wu, W. Walukiewicz, K.M. Yu, J. W. Ager , S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff“Universal bandgap bowing in group- nitride allys, Solid State Comun. 127, 411 (2003).
[1.4] F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L. Wei “Energy band bowing parameter in AlxGa1-xN alloys,” J. Appl. Phys. 92, 4837 (2002).
[1.5] G. H. Gu, C. G. Park, and K. B. Nam, “Inhomogeneity of a highly efficient InGaN based blue LED studied by three-dimensional atom probe tomography,” Phys. Status Solidi RRL 3, 100 (2009).
[1.6] S. Kret, P Dłuzewski, A. Szczepanska, M. Zak, R. Czernecki, M. Krysko, M. Leszczynski, and G Maciejewski, “Homogenous indium distribution in InGaN/GaN laser active structure grown by LP-MOCVD on bulk GaN crystal revealed by transmission electron microscopy and x-ray diffraction,” Nanotechnology 18, 465707 (2007).
[1.7] http://lighting.sandia.gov/
[1.8] I. Niki, Y. Narukawa, D. Morita, S. Sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamada, T. Mukai, “White LEDs for solid state lighting,” Proc. of SPIE 5187, 1 (2004).
[1.9] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, and E. E. Haller, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967 (2002).
[1.10] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthm&uuml;ller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi B 230, R4 (2002).
[1.11] T. Matsuoka, Hiroshi Okamoto, Masashi Nakao, and Hiroshi Harima, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246 (2002).
[1.12] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff , “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94, 6477 (2003).
[1.13] J. W. Ager and W. Walukiewicz, “High efficiency, radiation-hard solar cells,” LBNL Report 56326 (2004).
[1.14] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, “InGaN-based multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. Part 2, 35, L74 (1996).
[1.15] S. Nakamura, “Characteristics of InGaN multi-quantum-well structure laser diodes,” Mater. Res. Soc. Proc. 449, 1135 (1996).
[1.16] F. A. Ponce, and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386, 351 (1997).
[1.17] E. Monroy, F. Call, E. Munoz, and F. Omnes, III-Nitride Semiconductors: Application and Devices, edited by E. Yu and M. Manasreh (Gordon and Breach), New York, (2000).
[1.18] E. Munoz, E. Monroy, J. Pau, F. Calle, F. Omnes, and P. Gibart, “III-nitrides and UV detection,” J. Phys.:Condens. Matter 13, 7115 (2001).
[1.19] T. Zimmermann, “P-channel InGaN-HFET structure based on polarization doping,” IEEE Electron Dev. Lett. 25, 450 (2004).
[1.20] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M.A. Khan, and M.S. Shur, “High-temperature performance of AlGaN/GaN HFETs on SiC substrates,” IEEE Electron Dev. Lett. 18, 492 (1997).
[1.21] B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron. Devices 48, 490 ( 2001 ).
[1.22] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett. 22, 157 (2001).
[1.23] S.Yoshida, S. Misawa, S. Gonda, “Epitaxial growth of GaN/AlN heterostructures,” J. Vac. Sci. Technol. B 1, 250 (1983).
[1.24] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638 (1997).
[1.25] X. Li, S. G. Bishop, and J. J. Coleman, “GaN epitaxial lateral overgrowth and optical characterization,” Appl. Phys. Lett. 73, 1179 (1998).
[1.26] B. Beaumont, V. Bousquet, P. Vennegues, M. Vaille, A. Bouille, P. Gibart, S. Dassonneville, A. Amokrane, and B. Sieber, “A two-step method for epitaxial lateral overgrowth of GaN,” phys. stat. sol. (a) 176, 567 (1999).
[1.27] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO),” J. Cryst. Growth 221, 316 (2000).
[1.28] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature deposited buffer layer between high-temperature grown GaN,” Jpn. J. Appl. Phys. 37, L316 (1998).
[1.29] F. Yun, Y. Moon, Y. Fu, K. Zhu, &Uuml;. Ozg&uuml;r, H. Morko&ccedil;, C. K. Inoki, T. S. Kuan, A. Sagar, and R. M. Feenstra, “Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy,” J. Appl. Phys. 98, 123502 (2005).
[1.30] T. Riemann, T. Hempel, J. Christen, P. Veit, R. Clos, A. Dadgar, A. Krost, U. Haboeck, and A. Hoffmann, “Optical and structural microanalysis of GaN grown on SiN submonolayers,” J. Appl. Phys. 99, 123518 (2006).
[1.31] K. Y. Zang, Y. D. Wang, L. S. Wang, S. Y. Chow, and S. J. Chua, “Defect reduction by periodic SiNx interlayers in gallium nitride grown on Si (111),” J. Appl. Phys. 101, 093502 (2007).
[1.32] S. Nagahama, N. Iwasa, M. Senoh, T. Matsusgita, Y. Sugimoto, H. Kiyoku, T. Kozaki, M. Sano, H. Matsumura, H. Umemoto, K. Chocho, and T. Mukai, “High-power and long-lifetime InGaN multi-quantum-well laser diodes grown on low-dislocation-density GaN substrate,” Jpn. J. Appl. Phys. 39, L647 (2000).
[1.33] T. Detchprohm, K. Hiramatsu, H. Amano and I. Akasaki, “Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer,” Appl. Phys. Lett. 61, 2688 (1992).
[1.34] N. Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson, “Growth of GaN on ZnO for solid state lighting applications”, Proc. SPIE 6337, 63370Z (2006).
[1.35] H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. K. Mishra, J. S. Speck, S. P. DenBaars, and J. A. Freitas, “Metalorganic chemical vapor deposition of GaN on Si (1 1 1): Stress control and application to field-effect transistors”, J. Appl. Phys. 89, 7846 (2001).
[1.36] A. Dadgar, M. Poschenrieder, J. Blasing, O. Contreras, F. Bertram, T. Riemann, A. Reiher, M. Kunze, I. Daumiller, A. Krtschil, A. Diez, A. Kaluza, A. Modlich, M. Kamp, J. Christen, F.A. Ponce, E. Kohn, A. Krost, “MOVPE growth of GaN on Si (1 1 1) substrates”, J. Cryst. Growth 248, 556 (2003).
[1.37] A. Dadgar, P. Veit, F. Schulze, J. Blasing, A. Krtschil, H. Witte, A. Diez, T. Hempel, J. Christen, R. Clos, A. Krost, “MOVPE growth of GaN on Si-substrates and strain”, Thin Solid Films 515, 4356 (2007).
[1.38] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, M. Umeno, “Thermal stability of GaN on (1 1 1) Si substrate”, J. Cryst. Growth 189/190, 178 (1998).
[1.39] A. Dagar, J. Blasing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic Chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 m in thickness”, Jpn. J. Appl. Phys. 39, L1183 (2000).
[1.40] A. Dadgar, M. Poschenrieder, J. Blasing, O. Contreras, F. Bertram, T. Riemann, A. Reiher, M. Kunze, I. Daumiller, A. Krtschil, A. Diez, A. Kaluza, A. Modlich, M. Kamp, J. Christen, F. A. Ponce, E. Kohn, A. Krost, “MOVPE growth of GaNon Si (1 1 1) substrates”, J. Cryst. Growth 248, 556 (2003).
[1.41] A. Krost, and A. Dadgar, “GaN-based optoelectronics on silicon substrates”, Mater. Sci. Eng. B 93, 2 (2001).
[1.42] H. Ishikawa, G.. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, “GaN on Si substrate with AlGaN/AlN intermediate layer”, Jpn. J. Appl. Phys. 38, L492 (1999).
[1.43] T. Hino, S. Tomiya, T. Miyajima, K. Yamashima, S. Hashimoto and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76, 3421 (2000).
[1.44] H. K. Cho, J. Y. Lee, G. M. Yang and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79, 215 (2001).
[1.45] J. A. Chisholm and P. D. Bristowe, “Stacking fault energies in Si doped GaN: A first principles study,” Appl. Phys. Lett. 77, 534 (2000).
[1.46] H. C. Yang, T. Y. Lin, and Y. F. Chen, “Nature of the 2.8-eV photoluminescence band in Si-doped GaN,” Phys. Rev. B 62, 12593 (2000).
[1.47] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69, 1119 (1996).
[1.48] S. J. Pearton, C. R. Abernathy, F. Ren, J. R. Lothian, P. W. Wisk, and A. Katz, “Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy,” J. Vac. Sci. Technol. A 11, 1772 (1993).
[1.49] A. T. Ping, I. Adesida, and M. A. Khan, Appl. Phys. Lett. “Study of chemically assisted ion beam etching of GaN using HCl gas,” 67, 1250 (1995).
[1.50] F. Ren, J. R. Lothian, S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. D. MacKenzie, R. G. Wilson, and R. F. Karlicek, “Effect of dry etching on surface properties of III-nitrides,” J. Electron. Mater. 26, 1287 (1997).
[1.51] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys. 86, 1 (1999).
[1.52] D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73, 2654 (1998).
[1.53] E. S. Hellman, “The polarity of GaN: a critical review,” MRS Internet J. Nitride Semicond. 3, 11 (1998).
[1.54] M. S. Minsky, M. White, and E. L. Hu, “Room‐temperature photoenhanced wet etching of GaN,” Appl. Phys. Lett. 68, 1531 (1996).
[1.55] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, “Deep ultraviolet enhanced wet chemical etching of gallium nitride,” Appl. Phys. Lett. 72, 939 (1998).
[1.56] C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN,” Appl. Phys. Lett. 71, 2151 (1997).
[1.57] C. Youtsey, I. Adesida, L. T. Romano, and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching,” Appl. Phys. Lett. 72, 560 (1998).
[1.58] C. Youtsey, L. T. Romano, and I. Adesida, “Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations,” Appl. Phys. Lett. 73, 797(1998).
[1.59] A. R. Stonas, P. Kozodoy, H. Marchand, P. Fini, S. P. DenBaars, U. K. Mishra, and E. L. Hu, “Backside-illuminated photoelectrochemical etching for the fabrication of deeply undercut GaN structures,” Appl. Phys. Lett. 77, 2610 (2000).
[1.60] A. R. Stonas, T. Margalith, S. P. DenBaars, L. A. Coldren, and E. L. Hu, “Development of selective lateral photoelectrochemical etching of InGaN/GaN for lift-off applications,” Appl. Phys. Lett. 78, 1945 (2001).
[1.61] H. M. Ng, W. Parz, N. G. Weimann and A. Chowdhury, “Patterning GaN microstructures by polarity-selective chemical etching,” Jpn. J. Appl. Phys. 42, L1405 (2003).
[1.62] Y. Gao, M. D. Craven, J. S. Speck, S. P. Denbarrs, and E. L. Hu, “Dislocationand crystallographic-dependent photoelectochemical wet etching of gallium nitride,” Appl. Phys. Lett. 84, 3322 (2004).
[1.63] R. Khare, E. L. Hu, D. Reynolds, and S. J. Allen, “Photoelectrochemical etching of high aspect ratio submillimeter waveguide filters from n+ GaAs wafers,” Appl. Phys. Lett. 61, 2890 (1992).
[1.64] P. A. Kohl, “Photoelectrochemical etching of semiconductors,” IBM J. Res. Develop. 42, 629 (1998).
[1.65] A. R. Stonas, N. C. MacDonald, K. L. Tuner, S. P. DenBaars, and E. L. Hu, “Photoelectrochemical undercut etching for fabrication of GaN microelectromechanical systems,” J. Vac. Sci. Technol. B 19, 2838 (2001).
[1.66] L. Backlin, “Photoelectrochemical laser interference etching for fabrication of 235 nm diffraction gratings on n-InP,” Electron. Lett. 23, 657 (1987).
[1.67] E. J. Twyford, C. A. Carter, P. A. Kohl, and N. M. Jokerst, “The influence of aluminum concentration on photoelectrochemical etching of first order gratings in GaAs/AlGaAs,” Appl. Phys. Lett. 67, 1182 (1995).
[2.1] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O&acute;Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[2.2] M. Lončar, T. Yoshie, and A. Scherer, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680 (2002).
[2.3] Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[2.4] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[2.5] H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444 (2004).
[2.6] Z. Zhang, T. Yoshie, X. Zhu, J. Xu, and A. Scherer, “Visible two-dimensional photonic crystal slab laser,” Appl. Phys. Lett. 89, 071102 (2006).
[2.7] A. Chen, S. J. Chua, G. C. Xing, W. Ji, X. H. Zhang, J. R. Dong, L. K. Jian, and E. A. Fitzgerald, “Two-dimensional AlGaInP/GaInP photonic crystal membrane lasers operating in the visible regime at room temperature,” Appl. Phys. Lett. 90, 011113 (2007).
[2.8] M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90, 171122 (2007)
[2.9] L. M. Chang, C. H. Hou, Y. C. Ting, C. C. Chen, C. L. Hsu, J. Y. Chang, C. C. Lee, G. T. Chen and J. I. Chyi, “Laser emission from GaN photonic crystals,” Appl. Phys. Lett. 89, 071116 (2006).
[2.10] C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91, 041101 (2007).
[2.11] T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[2.12] T. C. Lu, S. W. Chen, T. T. Kao, and T. W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93, 111111 (2008).
[2.13] Y. S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[2.14] C. Meier, K. Hennessy, E. D. Haberer, R. Sharma, Y. S. Choi, K. McGroddy, S. Keller, S. P. DenBaars, S. Nakamura, and E. L. Hu, “Visible resonant modes in GaN-based photonic crystal membrane cavities,” Appl. Phys. Lett. 88, 031111 (2006).
[2.15] M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91, 051106 (2007).
[2.16] R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett. 87, 051107 (2005).
[3.1] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., 84, 855 (2004).
[3.2]. Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light- emitting diodes,” Appl. Phys. Lett., 82, 2221 (2003).
[3.3] H. W. Choi, C. Liu, and E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light- emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett., 84, 2253 (2004).
[3.4] K. Kim and J. Choi, “Enhanced photon tunneling for light enhancements from nanopatterned surfaces with sub- wavelength nanoholes,” J. Appl. Phys., 105, 033103 (2009).
[3.5] A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett., 78, 563 (2001).
[3.6] H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett., 84, 457 (2004).
[3.7] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett., 84, 466 (2004).
[3.8] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi and Q-Han Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., 87, 203508 (2005).
[3.9] A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Appl. Phys. Lett., 92, 113514 (2008).
[3.10] C. F. Lai, C. H. Chao, H. C. Kuo, H. H. Yen, C. E. Lee, and W. Y. Yeh, “Directional light extraction enhancement from GaN-based film-transferred photonic crystal light- emitting diodes,” Appl. Phys. Lett., 94, 123106 (2009).
[3.11] Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett., 88, 171103 (2006).
[3.12] R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett., 87, 051107 (2005).
[4.1] X. A. Cao and S. D. Arthur, “High-power and reliable operation of vertical light-emitting diodes on bulk GaN,” Appl. Phys. Lett., 85, 3971 (2004).
[4.2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., 84, 855 (2004).
[4.3] W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett., 72, 599 (1998).
[4.4] W. H. Chen, X. N. Kang, X. D. Hu, R. Lee, Y. J. Wang, T. J. Yu, Z. J. Yang, G. Y. Zhang, L. Shan, K. X. Liu, X. D. Shan, L. P. You, and D. P. Yu, “Study of the structural damage in the (0001) GaN epilayer processed by laser lift-off techniques,” Appl. Phys. Lett., 91, 121114 (2007).
[4.5] D. J. Rogers, F. H. Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, “Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN,” Appl. Phys. Lett., 91, 071120 (2007).
[4.6] K. Fujii, S. Lee, J. S. Ha, H. J. Lee, H. J. Lee, S. H. Lee, T. Kato, M. W. Cho, and T. Yao, “Leakage current improvement of nitride-based light emitting diodes using CrN buffer layer and its vertical type application by chemical lift-off process,” Appl. Phys. Lett., 94, 242108 (2009).
[4.7] K. Y. Zang, D. W. C. Cheong, H. F. Liu, H. Liu, J. H. Teng, and S. J. Chua, “A new method for lift-off of III-nitride semiconductors for heterogeneous integration,” Nanoscale Res. Lett., 5, 1051 (2010).
[4.8] C. F. Lin, J. J. Dai, G. M. Wang, and M. S. Lin, “Chemical lift-off process for blue light-emitting diodes,” Appl. Phys. Express, 3, 092101 (2010).
[4.9] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, “Doping selective lateral electrochemical etching of GaN for chemical lift-off,” Appl. Phys. Lett., 94, 221907 (2009).
[4.10] R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett., 87, 051107 (2005).
[4.11] K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,” J. Phys.: Condens. Matter, 13, 6961 (2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48465-
dc.description.abstract在本論文中,我們驗證利用光致電化學蝕刻技術製作高品質之氮化物發光元件。我們首先製作一系列的氮化鎵材料之光子晶體薄膜結構,包含完美光子晶體及三種典型的光子晶體缺陷結構(H1, L3, H2)。光子晶體之形成為在氮化鎵磊晶層中製作不等邊三角形排列之圓形孔洞,薄膜結構則是利用能隙選擇性之光致電化學蝕刻技術所製作。然後,我們在室溫下利用光激發的方式研究這些光子晶體結構之光激發共振輻射模態特徵。其中,我們發現所有的光子晶體缺陷結構之光激發雷射的波長都非常靠近完美光子晶體結構之光激發雷射的波長。雖然這些光激發雷射擁有不同的光激發臨界能量,不同的頻譜寬度,不同的共振腔品質因子及不同的偏振程度,但是其偏振方向幾乎一致。其相似的雷射特徵可能由於製作缺陷結構後所產生極窄的部份能隙所導致。此外,雷射的偏振方向是由於光子晶體之不等邊三角形排列所致。其中一個光子晶體缺陷結構(H2)之光激發雷射的激發臨界值為0.82 mJ/cm2,共振腔之品質因子為1743,偏振程度為25.4,其雷射特性優於其他發表過的類似結構。
此外,我們利用光致電化學蝕刻配合相位式干涉技術,在氮化物發光二極體之平台周圍製作表面光柵結構,有效提升光汲取效率。表面光柵結構之形成乃是由光致電化學蝕刻在空間上不同之蝕刻速率之分布所造成。而光致電化學蝕刻速率乃是將所使用的雷射光穿透相位式光罩,雷射經干涉後在樣品表面形成之光強度分布所控制。此蝕刻技術並未影響發光元件之電特性表現,然而發光二極體卻由於表面光柵結構所產生的繞射效應提升高於43%的光輸出。
另外,我們還利用光致電化學蝕刻技術將側向磊晶接合方式所成長的氮化物發光二極體結構成功地從藍寶石基板剝離並製作成垂直型發光二極體。而這種藍寶石剝離技術仰賴側向磊晶接合成長時在二氧化矽條狀結構上方所形成的孔洞,可使光致電化學之蝕刻溶液得以接觸在二氧化矽結構上方之氮化鎵,而藍寶石上之氮化鎵預長層也需夠薄以使照射的光源能被二氧化矽結構上方之氮化鎵所吸收。剝離機制為光致電化學蝕刻由二氧化矽結構上方非常薄之氮化鎵層開始,之後往側向磊晶接合成長之開窗區域擴展,最後得以完全將氮化鎵磊晶層及藍寶石基板分離。我們並展示以此方式所製作之垂直型發光二極體之特性。
zh_TW
dc.description.abstractIn this dissertation, the fabrications of high-quality nitride-based light-emitting devices by using photoelectrochemical (PEC) etching technique are demonstrated. First, the implementation of a series of optically-pumped GaN photonic crystal (PhC) membrane laser at room temperature is demonstrated. The photonic crystal is composed of a scalene triangular arrangement of circular holes in GaN. Three defect structures are fabricated for comparing their lasing characteristics with those of perfect PhC. It is observed that all the lasing defect modes have the lasing wavelengths very close to the band-edge modes in the perfect PhC structure. Although those lasing modes, including band-edge and defect modes, have different optical pump thresholds, different lasing spectral widths, different quality factors (Q factors), and different polarization ratios, all their polarization distributions show the maxima in the directions around one of the hole arrangement axes. The similar lasing characteristics between the band-edge and defect modes are attributed to the existence of extremely narrow partial band gaps for forming the defect modes. Also, the oriented polarization properties are due to the scalene triangle PhC structure. In one of the defect lasing modes, the lasing threshold is as low as 0.82 mJ/cm2, the cavity Q factor is as large as 1743, and the polarization ratio is as large as 25.4. Such output parameters represent generally superior lasing behaviors when compared with previously reported implementations of similar laser structures.
Besides, the enhancement of light extraction by fabricating a surface grating structure around the mesa of a nitride-based light-emitting diode (LED) with an approach combining PEC wet etching and phase mask interferometry is demonstrated. The PEC etching rate is controlled by the intensity of illuminating UV light, which is spatially modulated by the fringe pattern of phase mask interferometry, for forming the grating structure. Without affecting the resistance characteristics of the device, the diffraction of such a grating structure leads to LED output enhancement by >43 % on either the top or bottom side.
In addition, the method of sapphire substrate liftoff for the fabrication of vertical nitride-based blue LED, based on the combination of the PEC etching and epitaxial lateral overgrowth (ELOG) techniques, is demonstrated. This method relies on the formation of connected voids during the ELOG process on a GaN template such that PEC electrolyte can approach the GaN portions above the SiO2 masks. Also, the GaN template must be thin enough for the illuminating ultraviolet light to reach the GaN portions above the SiO2 masks. It is shown that PEC etching starts from a very thin layer of GaN right above a SiO2 mask. It then extends into the window regions of ELOG to completely separate GaN from sapphire. The performances of a vertical LED are illustrated.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:57:55Z (GMT). No. of bitstreams: 1
ntu-100-D93941023-1.pdf: 2746697 bytes, checksum: b6da58bb2856f38da0fcec6855517ff3 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要..................................................i
Abstract................................................iii
Contents.................................................vi
Chapter 1
Introduction
1.1 Overviews of Nitride Compounds........................1
1.1.1 Physical Properties and Applications of Nitride Compounds.................................................2
1.1.2 Substrates for Nitride Compounds....................5
1.1.3 Defects in GaN......................................7
1.2 Photoelectrochemical (PEC) Etching of GaN
1.2.1 Brief Introduction to PEC Etching...................9
1.2.2 Mechanisms of PEC Etching..........................11
1.3 Research Motivations and Dissertation Organization...14
References...............................................17
Chapter 2
GaN Photonic Crystal Membrane Laser
2.1 Introduction.........................................33
2.2 Laser Device Structures and Fabrication Procedures...35
2.3 Laser Operation Characteristics......................38
2.4 Discussions..........................................42
2.5 Summary..............................................45
References...............................................47
Chapter 3
Light Extraction Enhancement of a GaN-based Light-emitting Diode through Grating-patterned Photoelectrochemical Surface Etching with Phase Mask Interferometry
3.1 Introduction.........................................60
3.2 Sample Preparation...................................62
3.3 Characteristics of Light-emitting Diodes.............64
3.4 Summary..............................................67
References...............................................68
Chapter 4
Sapphire Substrate Liftoff with Photoelectrochemical Etching for Vertical Light-emitting Diode Fabrication
4.1 Introduction.........................................78
4.2 Sapphire Substrate Liftoff...........................80
4.3 Vertical LED Fabrication.............................84
4.4 Summary..............................................85
References...............................................87
Chapter 5
Conculsions and Future Work
Conclusions..............................................94
Publication List.........................................97
dc.language.isoen
dc.subject光致電化學蝕刻zh_TW
dc.subject光子晶體zh_TW
dc.subject氮化物zh_TW
dc.subjectNitride compounden
dc.subjectPhotoelectrochemical etchingen
dc.subjectPhotonic crystalen
dc.title以光致電化學蝕刻技術製作氮化物發光元件zh_TW
dc.titleNitride-based Light-emitting Devices Fabricated with the Photoelectrochemical Etching Techniqueen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee江衍偉,杜立偉,張守進,黃建璋,吳育任
dc.subject.keyword氮化物,光致電化學蝕刻,光子晶體,zh_TW
dc.subject.keywordNitride compound,Photoelectrochemical etching,Photonic crystal,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2011-01-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved