請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48460完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬(Yu-Bin Lin) | |
| dc.contributor.author | Lun-Wei Liao | en |
| dc.contributor.author | 廖倫偉 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:57:43Z | - |
| dc.date.available | 2013-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-01-28 | |
| dc.identifier.citation | 參考文獻
1. Andrew, M. S. (2003) Calibration and sensitivity analysis of a river water quality model under unsteady flow conditions. Journal of Hydrology, 277(3-4), 214-229. 2. Beven, K. & Binley, A. (1992) The future of distributed models: Model calibration and uncertainty prediction. Hydrological processes, 6, 279-298. 3. Bacca, R.G. & Arnett,R.C. (1976) A limnological model for eutrophic lakes and impoundment. Battele Inc., Pacific Northwest Laboratories, Richland. 4. Chavan, P.V. & Dennett, K. E. (2008) Wetland simulation model for nitrogen, phosphorus, and sediments retention in constructed wetlands. Water,Air, & Soil Pollution, 187(1-4), 109-118. 5. Christensen, N., Mitsch, W. J., Jorgensen, S. E. (1994) A first generation ecosystem model of the Des Plains river experimental wetlands. Ecological Engineering, 3(4), 495-521. 6. David, W. Dilks, Raymond, P.Canale, Peter, G. Meier (1992) Development of Bayesian Monte Carlo techniques for water quality model uncertainty. Ecological Modelling, 62, 149-162. 7. David A. Chin (2009) Predictive Uncertainty in Water-Quality Modeling. JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 135(12), 1315-1325. 8. Dean, S., Freer , J., Beven, K. (2009) Uncertainty assessment of a process-based integrated catchment model of phosphorus. Stochastic Environmental Research and Risk Assessment , 23(7), 991-1010. 9. Dorge, J. (1994) Modeling nitrogen transformations in freshwater wetlands. Estimating nitrogen retention and removal in natural wetlands in relation to their hydrology and nutrient loadings. Ecological Modelling, 75/76, 409-420. 10. Forrester, J. W. (1968) Principles of Systems. Productivity Press, Cambridge, MA. 11. Fedra,K., (1980) Mathematical modelling — a management tool for aquatic ecosystems? Helgoland Marine Research, 34(2),221-235. 12. Jorgensen, S.E. (1983) Application of ecological modeling in environmental management, part A. Elsevier Scientific Publishing Company, New York, NY. 13. Gabriele, F. (2008) Uncertainty in urban stormwater quality modeling: The effect of acceptability threshold in the GLUE methodology. Water Research, 42(8-9), 2061-2072. 14. Gidley, T. M. (1995) Development of a constructed subsurface flow wetland simulation model. M.S. Thesis, North Carolina State University, Raleigh, NC. 15. Hafner, S. D. & Jewell, W. J. (2006) Predicting nitrogen and phosphorus removal in wetlands due to detritus accumulation: A simple mechanistic model. Ecological Engineering, 27(1), 13-21. 16. Heliotis, F. D. & DeWitt, C.B. (1983) A conceptual model of nutrient cycling in wetlands used for wastewater treatment: A literature analysis. Wetlands, 3(1), 134-152. 17. Kadlec, J. A. (1986) Nutrient dynamics in wetlands. In: Reddy, K.R., Smith, W.H. (Eds.), Aquatic Plants for Water Treatment and Resource Recovery. 18. Kadlec, R. H. (1988) Modeling nutrient behavior in wetlands. Ecological Modelling, 40(1), 37-66. 19. Kadlec, R. H. & Knight, R. L. (1996) Treatment wetlands. Boca Raton, FL: CRC Press. 20. Lee, E. R. (1999) Set-Wet: A Wetland simulation model to optimize NPS pollution control. M.S. Thesis., Virginia State University, Blacksburg, VA. Magnolia Publishing, Orlando, FL, pp.393-419. 21. Mayo, A. W. & Mutamba, J. (2004) Effect of HRT on nitrogen removal in a coupled HRP and unplanted subsurface flow gravel bed constructed wetland. Physics and Chemistry of the Earth, 29(15-18),1253-1257. 22. Mayo, A.W. & Bigambo, T. (2005) Nitrogen transformation in horizontal subsurface flow constructed wetlands I: Model development. Physics and Chemistry of the Earth, 30(11-16), 658-667. 23. Metropolisn, U. (1949) The monte carlo method. Journal of the American statictical association, 44(247), 335-341. 24. Mitsch, W. J. & Gosselink, J. G. (1986) Wetlands, Reinhold, NY. 25. Nash, J. E. & Sutcliffe, J. V. (1970) River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. 26. Novotny, V. & Olem, H. (1994) Water quality: prevention, identification and management of diffuse pollution, Van Nostrand Reinhold, New York, NY. 27. Pantip, K. (2005) Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere, 58(5), 585-593. 28. Reddy, K.R., Kadlec, R.H., Gale, P.M. (1999) Phosphorus retention in streams and wetlands: A review. Environ. Sci. Technol., 29 (1), 83–146. 29. Sheng, Z. (2008) Nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water treatment using forage rice in Japan. Ecological Engineering, 32(2),147-155. 30. Steven, G. B. & George, B. S. (1995) An approach toward rational design of constructed wetlands for wastewater treatment. Ecological Engineering, 4(4), 249-275. 31. STELLA, 1009–1997, High Performance Systems, Hanover NH. 32. Timothy, M. W. & Kadlec, R. H. (2000) Stochastic simulation of partially-mixed, event-driven treatment wetlands. Ecological Engineering, 14(3), 253-267. 33. Tunçsiper, B. (2009) Nitrogen removal in a combined vertical and horizontal subsurface-flow constructed wetland system. Desalination, 247(1-3), 466-475. 34. Viola, F. & Noto, L.V. (2009) Daily streamflow prediction with uncertainty in ephemeral catchments using the GLUE methodology. Physics and Chemistry of the Earth, 34(10-12), 701-706. 35. Wang, Y.C., Y.P. Lin* , H.J. Chu, C.W. Huang, W.H. Ou, (2010) Developing a hybrid system dynamic model for the removal of domestic pollution in free water surface constructed wetlands. (Submitted to SCI journal) 36. Wynn, T. M. & Liehr, S. K. (2001) Development of a constructed subsurface-flow wetland simulation model. Ecological Engineering, 16(4), 519-536. 37. 王咏潔,2009。模擬表面流人工濕地營養物質循環─系統動力模型建立與應用,台灣大學生物環境系統工程學研究所碩士論文。 38. 吳佩佳,2003。沉水植物對於水中磷的去除之研究─以水蘊草為例,台灣大學環境工程學研究所碩士論文。 39. 吳佩璇,2007。以複合垂直流與水平潛流人工濕地去除湖水中營養鹽之研究,中山大學海洋環境與工程學研究所碩士論文。 40. 李勝、梁忠民,2006。GLUE方法分析新安江模型參數不確定性的應用研究。 41. 施孟亨,2005。成功大學人工濕地維護管理之研究,成功大學建築學研究所碩士論文。 42. 徐寧光,2006。人工溼地在不同負荷及操作條件下處理效能之研究,台灣大學環境工程學研究所碩士論文。 43. 陳有祺,2005。濕地生態工程、滄海書局•鼎隆圖書股份有限公司。 44. 陳均美,2005。人工濕地對懸浮固體排除機制之數值模擬,台灣大學生物環境系統工程學研究所碩士論文。 45. 陳怡伶,2006。以複合式水平流人工濕地處理中高埋齡垃圾滲出水之研究,碩士論文。 46. 湯國璋,2005。以系統動態學探討人工濕地模擬模型之應用,中國文化大學景觀研究所碩士論文。 47. 黃國如、解河海,2007。基於GLUE方法的流域水文模型的不確定性分析。 48. 黃誌川,2004。集水區土地利用變遷對河川水文的影響,行政院國家科學委員會補助專題研究計畫。 49. 楊皓程,2006。垂直流人工濕地氮循環過程研究與操作機制探討,中山大學海洋環境與工程學研究所碩士論文。 50. 鄭為民、枋志深,2007。選擇權定價與風險值之蒙地卡羅財務計算模擬,管理與資訊學報,12期,129-154頁。 51. 盧師敏,2006。人工濕地水質淨化與能值分析之研究─以高屏溪舊鐵橋人工溼地為例,中山大學海洋環境及工程學研究所碩士論文。 52. 駱莉玲,2003。河川高灘地漫地流之最適草種評選,成功大學環境工程學研究所碩士論文。 53. 羅時麒,2005。以系統性機率模式鑑定量化與整合生命週期評估之不確定性,台灣大學環境工程學研究所博士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48460 | - |
| dc.description.abstract | 溼地為一種尊重自然、遵循生態平衡的自然淨化單元。早期溼地研究多半關注在水質淨化成效上,近年來,針對溼地內部機制之模式研究不斷增加,但要能完整呈現溼地複雜機制卻相當困難。模式中參數的維度因模式結構複雜度而異,並且因季節、溫度與空間的變化,對模式預測結果之影響甚巨,為模式不確定性的主要來源之一。然而在眾多溼地模式的應用中,以系統動力模式可清楚描述溼地系統中物質傳輸機制,讓使用者清楚了解溼地系統結構和影響去除效能的參數,因此本研究運用概似不確定性估計(Generalized Likelihood Uncertainty Estimation,GLUE)進行系統動力溼地模式之參數不確定性分析,提供未來溼地研究與應用上的參考。
本研究選定成功大學人工溼地場址收集之水質數據,來探究溼地機制並預測溼地中溶氧(DO)、五日生化需氧量(BOD5)、總氮(TN)、總懸浮固體(TSS)、總磷(TP)之水質變化情形。經過模式的率定及驗證後,探討模擬結果的表現及各營養鹽預測時之敏感性參數,並透過對合宜模擬參數解集合(behavioral simulations)分析參數不確定性對模式預測之影響程度。研究結果顯示,系統動力溼地模式已能初步掌握溼地模場水質變化之趨勢。在同時擾動多個參數下,對溼地各營養鹽預測結果有明顯影響的參數為BOD中含碳比例(BODC)、Arrhenius常數(θ1)、顆粒粒徑大小(dss)、懸浮顆粒中含磷比例(FacP/SS )四種。而當參數解集合中BODC範圍在0.6至0.72、θ1在0.85至1.10、dss大於4.95E-6與dss及FacP/SS參數值分別小於3.5E-6及0.1313時,模擬結果較佳,並進一步透過多目標分析探討較佳之參數解集合。綜觀以上結果,研究分析各別營養鹽之參數敏感度及水質變化的不確定性邊界,提供後續溼地工程施作及操作上,更多參考依據,期望能對人工溼地的應用發展有幫助。 | zh_TW |
| dc.description.abstract | Wetland is a kind of natural treatment that always follow the balance of ecosystem and respect the nature. Wetland researches concerned about the cleaning ability of westewater in the beginning, but the studies of the interaction inside the wetland system are increace a lot in these few years. Unfortunately, it is hardly to spread out the whole system of wetland in models. The complexity of model structure can effect the dimension of model parameters. With the variation of seasons, temperature, and spaces. The parameters will have an extremely influence of the model prediction. It is one of the factor of uncertainty sources. In many kinds of wetland model applications, system dynamic(SD) model could describe the transformation of wetland structure much more clearly, let the user could easily understand the wetland system and the parameters in SD model. This research applications the Generalized Likelihood Uncertainty Estimation(GLUE) to uncertainty analysis of system dynamic wetland model‘s parameter. Hope to provide some informations for wetland researchs in the future.
The water quality data use in theis research are collected from the construct wetland in National Cheng Kung university, to analysis the wetland interactions and predicts the water quality changing about dissolve oxygen(DO), biochemical oxygen demand(BOD5), total nitrogen(TN), total suspended solid(TSS), and total phosphorous(TP). Through the model calibration and validation steps, to determine the results performance and the sensitivity parameters for the prediction of every nutrients. Then use the behavioral simulations of the divided groups to analysis the influence of uncertainty for the model predictions. According to the results, the system dynamic wetland model can already fit the water quality changing of construct wetland. If disturb the parameters at the same time, there were four parameters are more sensitive such as the carbon in the BOD(BODc), Arrhenius constant(θ1), the diameter of suspended solid(dss), and the phosphorous in the suspended solid(FacP/SS).when the value of BODC between 0.6 to 0.72、θ1 between 0.85 to 1.10、dss value is bigger than 4.95E-6 and the parameter value of dss and FacP/SS smaller than 3.5E-6 and 0.1313 that the performance are comparatively good. Finally, use the method of multi-objective analysis to find the better results of parameters. This research analysis the sensitivity of parameters for each nutrients and find the better parameter results for predict the water quality performance. Give more important informations to wetland construction and operation. Hope can help and expanding the applications for construct wetland. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:57:43Z (GMT). No. of bitstreams: 1 ntu-100-R97622030-1.pdf: 7431836 bytes, checksum: f6dea8d4a8a4bd2f2719f6bcd4dc4f56 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目 錄
謝誌...............................................................Ⅰ 中文摘要...........................................................Ⅱ Abstract...........................................................Ⅲ 目 錄.............................................................Ⅴ 圖 目 錄.........................................................Ⅶ 表 目 錄.........................................................Ⅹ 第一章 緒論.......................................................1 第一節 前言....................................................1 第二節 研究目的................................................2 第三節 研究流程................................................3 第二章 文獻回顧..................................................5 第一節 溼地....................................................5 1. 溼地類型.................................................5 2. 人工溼地模式之發展.......................................9 3. 溼地營養鹽循環..........................................12 第二節 系統動力學(System Dynamics,SD)........................17 1. 系統動力學的發展........................................17 2. 系統動力學概念與結構....................................18 第三節 不確定性分析(Uncertainty Analysis)......................19 1. 不確定性的來源與分類....................................19 2. 概似不確定性估計(Generalized Likelihood Uncertainty Estimation,GLUE).......................................21 第三章 理論與方法...............................................23 第一節 研究區域...............................................23 第二節 溼地系統動力模式.......................................25 1. 溶氧循環................................................25 2. 碳循環..................................................27 3. 氮循環..................................................30 4. 總懸浮顆粒循環..........................................36 5. 磷循環..................................................37 第三節 概似不確定性估計(GLUE).................................39 第四章 結果與討論...............................................45 第一節 系統動力溼地模式模擬與驗證.............................45 1. 模式率定與驗證..........................................45 2. 單一參數敏感度分析......................................56 第二節 溼地模式之參數不確定性估計.............................58 1. 概似不確定性估計之參數敏感度分析........................59 2. 參數累積機率分佈........................................70 3. 多目標分析(Multi-Objective Analysis)........................73 第五章 結論與建議...............................................80 第一節 結論...................................................80 第二節 建議...................................................81 參考文獻...........................................................82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多目標分析 | zh_TW |
| dc.subject | 溼地參數不確定性分析 | zh_TW |
| dc.subject | 概似不確定性估計 | zh_TW |
| dc.subject | 系統動力溼地模式 | zh_TW |
| dc.subject | 蒙地卡羅模擬 | zh_TW |
| dc.subject | 似然函數 | zh_TW |
| dc.subject | Likelihood Function | en |
| dc.subject | Multi-Objective Analysis | en |
| dc.subject | Uncertainty Analysis of Wetland Parameter | en |
| dc.subject | Generalized Likelihood Uncertainty Estimation | en |
| dc.subject | System Dynamic Model | en |
| dc.subject | Monte-Carlo Simulation | en |
| dc.title | 應用概似不確定性估計於溼地參數之不確定性分析 | zh_TW |
| dc.title | Applications of Generalized Likelihood Uncertainty Estimation to uncertainty analysis of wetland model‘s parameter | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明旭(Ming-Xu Li),童慶斌(Qing-Bin Tong),陳彥璋(Yan-Zhang Chen) | |
| dc.subject.keyword | 溼地參數不確定性分析,概似不確定性估計,系統動力溼地模式,蒙地卡羅模擬,似然函數,多目標分析, | zh_TW |
| dc.subject.keyword | Uncertainty Analysis of Wetland Parameter,Generalized Likelihood Uncertainty Estimation,System Dynamic Model,Monte-Carlo Simulation,Likelihood Function,Multi-Objective Analysis, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-01-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
