請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48431
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳立仁(Li-Jen Chen) | |
dc.contributor.author | Yueh-Lin Fan | en |
dc.contributor.author | 范月霖 | zh_TW |
dc.date.accessioned | 2021-06-15T06:56:33Z | - |
dc.date.available | 2016-02-20 | |
dc.date.copyright | 2011-02-20 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-02-08 | |
dc.identifier.citation | 參考文獻
Abhijit, A. D., and V. B. Patravale, 'Current strategies for engineering drug nanoparticles', Current Opinion in Colloid and Interface Science 9, 222-235 (2004). Adeyeye, C. M., and P. K. Li, 'Diclofenac sodium', Profiles of Drug Substances, Excipients and Related Methodology 19, 123-144 (1990). Anwar, J., S. E. Tarling, and P. Barnes, 'Polymorphism of sulfathiazole', Journal of Pharmaceutical Sciences 78 (4), 337-342 (1989). Ayala, A. P., H. W. Siesler, and S. L. Cuffini, 'Polymorphism incidence in commercial tablets of mebendazole: a vibrational spectroscopy investigation', Journal of Raman Spectroscopy 39(9), 1150-1157 (2008). Bartolomei, M., P. Bertocchi, E. Antoniella, and A. Rodomonte, 'Physico-chemical characterization and intrinsic dissolution studies of a new hydrate form of diclofenac sodium: comparison with anhydrate form', Journal of Pharmaceutical and Biomedical Analysis 40 (5), 1105-1113 (2006). Bartolomei, M., A. Rodomonte, E. Antoniella, G. Minelli, and P. Bertocchi, 'Hydrate modifications of the non-steroidal anti-inflammatory drug diclofenac sodium: Solid-state characterisation of a trihydrate form', Journal of Pharmaceutical and Biomedical Analysis 45 (3), 443-449 (2007). Brittain, H. G., B. J. Elder, P. K. Isbester, and A. H. Salerno, 'Solid-state fluorescence studies of some polymorphs of diflunisal', Pharmaceutical Research 22 (6), 999-1006 (2005). Caponetti, E., D. C. Martino, M. L. Saladino, and C. Lepnelli, 'Preparation of Nd : YAG nanopowder in a confined environment', Langmuir 23 (7), 3947-3952 (2007). Chattopadhyay, P., and R. B. Gupta, 'Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer', Industrial and Engineering Chemistry Research 40, 3530-3539 (2001). Chevalier, Y., and T. Zemb, 'The structure of micelles and microemulsions', Reports on Progress in Physics 53, 279-371 (1990). Christianah, M. A., and P. K. Li, 'Diclofenac sodium', Profiles of Drug Substances, Excipients and Related Methodology 19, 123-144 (1990). Cohen, J. L., 'Theophylline', Profiles of Drug Substances, Excipients and Related Methodology 4, 466-493 (1975). Costa, P., J. Manuel, and S. Lobo, 'Modeling and comparison of dissolution profiles', European Journal of Pharmaceutical Sciences 13 (2), 123-133 (2001). Davis, J.T., and E. K. Rideal, 'Interfacial phenomena' Academic Press (1963). Debuigne, F., J. Cuisenaire, L. Jeunieau, B. Masereel, and J. B. Nagy, ' Synthesis of nimesulide nanoparticles in the microemulsion epikuron170 / isopropyl myristate / water / n-butanol (or isopropanol)', Journal of Colloid and Interface Science 243, 90-101 (2001). Destree, C., and J. B. Nagy, 'Mechanism of formation of inorganic and organic nanoparticles from microemulsions', Advances in Colloid and Interface Science 123, 353-367 (2006). Donald, E. C., and W. J. Hung, 'Nitrofurantoin', Profiles of Drug Substances, Excipients and Related Methodology 5, 345-373 (1976). Dudognon, E., F. Danede, M. Descamps, and N. T. Correia, 'Evidence for new crystalline phase of racemic ibuprofen', Pharmaceutical Researchces 25, 2853-2858 (2008). Eastoe, J., B. H. Robinson, A. J. W. G. Visser, and D. C. Steytler, 'Rotational dynamics of AOT reversed micelles in near-critical and supercritical alkanes', Journal of The Chemical Society-Faraday Transactions 87, 1899-1903 (1991). Eerikainen H, W. Watanabe, E. Kauppinen, and P. Ahonen, ' Aerosol flow reactor method for the synthesis of drug nanoparticles', European Journal of Pharmaceutics and Biopharmaceutics 55, 357-360 (2003). Ethayaraja, M., K. Dutta, D. Muthukumaran, and R. Bandyopadhyaya, 'Nanoparticle formation in water-in-oil microemulsions: Experiments, mechanism, and Monte Carlo simulation', Langmuir 23 (6), 3418-3423 (2007). Fahad, J. A., A. A. M. Neelofur, and S. M. Mohammad, 'Naproxen', Profiles of Drug Substances, Excipients and Related Methodology 21, 345-373 (1992). Feldman, Y., N. Kozlovich, I. Nir, N. Garti, V. Archipov, Z. Idiyatullin, Y. Zuev, and V. Fedotov, 'Mechanism of transport of charge carriers in the sodium bis(2-ethylhexyl) sulfosuccinate-water-decane microemulsion near the percolation temperature threshold ', Journal of Physical Chemistry 100, 3745-3748 (1996). Florey, K., 'Aspirin', Profiles of Drug Substances, Excipients and Related Methodology 8, 1-46 (1979). Furedi-Milhofer, H., N. Garti, and A. Kamyshny, 'Crystallization from microemulsions - a novel method for the preparation of new crystal forms of aspartame', Journal of Crystal Growth 198, 1365-1370 (1999). Gavuzzo, E., F. Mazza, A. Tamburrini, G. Casini, and A. Carotti, 'Covalently linked purine pyrimidine analogs–structure of 7–(4,6-dioxo-5-pyrimidinyl)- the0phylline dehydrate, C11H10N6O4.2H2O', Acta Crystallographica Section C-Crystal Structure Communications 40(May), 856-858 (1984). Griffin W. C., 'Encyclopedia of chemical technology 5' Interscience Encyclopedia (1950). Grzesiak, A., M. Lang, K. Kim, and A. Matzger, ' Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I', Journal of Pharmaceutical Sciences 92, 2260-2271 (2003). Hansen, L. K., G. L. Perlovich, and A. B. Brandl, 'The 1 : 1 hydrate of diflunisal', Acta Crystallographica Section E-Structure Reports Online 57, O477-O479 (2001). Hassan, Y. A., and A. A. Al-Bader, 'Carbamazepine', Profiles of Drug Substances, Excipients and Related Methodology 9, 87-106 (1981). Higgins, J. D., T. P. Gilmor, S. A. Martellucci, R. D. Bruce, and H. G. Brittain, 'Ibuprofen', Profiles of Drug Substances, Excipients and Related Methodology 27, 265-300 (2001). Hunter, R. J., 'Foundations of Colloid Science 2', Oxford (1989). ICDD,The International Centre for Diffraction Data® (ICDD®) is a scientific organization dedicated to collecting, editing, publishing, and distributing powder diffraction data for the identification of crystalline materials. http://www.icdd.com/ Kapoor, V. K., 'Sulfathiazole', Profiles of Drug Substances, Excipients and Related Methodology 22, 389-430 (1993). Karpinski, P. H., 'Polymorphism of active pharmaceutical ingredients.' Chemical Engineering & Technology 29 (2), 233-237 (2006). Kishi, A., M. Otsuka, and Y. Matsuda, 'The effect of humidity on dehydration behavior of nitrofurantoin monohydrate studied by humidity controlled simultaneous instrument for X-ray Diffractometry and Differential Scanning Calorimetry (XRD-DSC)', Colloids and Surfaces B-Biointerfaces 25 (4), 281-291 (2002). Kogan, A., I. Popov, V. Uvarov, S. Cohen, A. Aserin, and N. Garti, 'Crystallization of carbamazepine pseudopolymorphs from nonionic microemulsions', Langmuir 24 (3), 722-733 (2008). Legendre, B., and S. L. Randzio, 'Transitiometric analysis of solid II/solid I transition in anhydrous theophylline', International Journal of Pharmaceutics 343 (1-2), 41-47 (2007). Liu, J., C. E. Nicholson, and S. J. Cooper, 'Direct measurement of critical nucleus size in confined volumes', Langmuir 23 (13), 7286-7292 (2007). Loth, H., and E. Hemgesberg, 'Properties and dissolution of drugs micronized by crystallization from supercritical gases', International Journal of Pharmaceutics 32 (2-3), 265-267 (1986). Lu, J., and S. Rohani, 'Preparation and Characterization of Theophylline-Nicotinamide Cocrystal', Organic Process Research and Development 13 (6), 1269-1275 (2009). Marshall, P. V., and P. York, 'Crystallization solvent induced solid-state and particulate modifications of nitrofurantoin', International Journal of Pharmaceutics 55 (2-3), 257-263 (1989). Martinezoharriz, M. C., C. Martin, M. M. Gono, C. Rodriguezepinosa, M. C. T. Deilarduyaapaolaza, and M. Sanchez, 'Polymorphism of diflunisal – isolation and solid-state characteristics of a new crystal form', Journal of Pharmaceutical Sciences 83 (2), 174-177 (1994). Meredith, L. C., and R. A. Hux, 'Diflunisal', Profiles of Drug Substances, Excipients and Related Methodology 14, 491-526 (1985). Mladen, M. H. H., J. Kuftinec, B. Krile, V. Čaplar, F. Kajfež, and N. Blažević, 'Piroxicam', Profiles of Drug Substances, Excipients and Related Methodology 15 (1986). Myers, D., 'Surface, interfaces and colloids: principle and applications', 2nd edition. (1999) Wiley-Vch. Otsuka, M., R. Teraoka, and Y. Matsuda, 'Characterization of nitrofurantoin anhydrate and monohydrate, and their dissolution behaviors', Chemical and Pharmaceutical Bulletin 38 (3), 833-835 (1990). Perlovich, G. L., L. K. Hansen, and A. Bauer-Brandl, 'Interrelation between thermochemical and structural data of polymorphs exemplified by diflunisal', Journal of Pharmaceutical Sciences 91 (4), 1036-1045 (2002). Qu, H. Y., M. Louhi-Kultanen, J. Rantanen, and J. Kallas, 'Solvent-mediated phase transformation kinetics of an anhydrate/hydrate system', Crystal Growth and Design 6 (9), 2053-2060 (2006). Randolph, A. D., and M. A. Larson, 'Theory of particulate process' Academic Press (1988). Reed-Hill, R. E., and R. Abbaschian, 'Physical metallurgy principles” PWS-Kent Pub (1992). Rong, G., T. Q. Liu, and W. L. Yu, 'Phase behavior and structure of the sodium dodecyl sulfate benzyl alcohol water system', Langmuir 15 (2), 624-630 (1999). Rouland, J. C., S. Makki, J. L. Fournival, and R. Ceolin, 'Congruent melting of binary compounds with non-negligible vapour pressure. 2. Application to the sulfaguanidine-water system', Journal of Thermal Analysis 45 (6), 1507-1523 (1995). Rouviere, J., J. M. Couret, M. Lindheimer, J. L. Dejardin, and R. Marrony, 'Structure of AOT reverse aggregates. 1. Shape and size of AOT micelles', Journal de Chimie Physique et de Physico-Chimie Biologique 76, 289-196J (1979). Sacchetti, M., 'Thermodynamic analysis of DSC data for acetaminophen polymorphs”, Journal of Thermal Analysis and Calorimetry 63 (2), 345-350 (2001). Sardo, M., A. M. Amado, and P. J. A. Ribeiro-Claro, “Hydrogen bonding in nitrofurabtoin polymorphs: a computation-assisted spectroscopic study”, Journal of Raman Spectroscopy 40 (12), 1956-1965 (2009). Sajjadi, S., 'Nanoparticle formation by monomer-starved semibatch emulsion polymerization', Langmuir 23 (3), 1018-1024 (2007). Suihko, E., J. Ketolainen, A. Poso, M. Ahlgren, J. Gynther, and P. Paronen, 'Dehydration of theophylline monohydrate - a two step process', International Journal of Pharmaceutics 158 (1), 47-55 (1997). Summers, M. P., J. E. Carless, and R. P. Enever, 'Polymorphism of aspirin', Journal of Pharmacy and Pharmacology 22 (8), 615-616 (1970). Szterner, P., B. Legendre, and M. Sghaier, 'Thermodynamic properties of polymorphic forms of theophylline. Part I: DSC, TG, X-ray study', Journal of Thermal Analysis and Calorimetry 99 (1), 325-335 (2010). Szterner, P., ' Thermodynamic properties of polymorphic forms of theophylline. Part II: The enthalpies of solution in water at 298.15 K ', Journal of Thermal Analysis and Calorimetry 98 (1), 337-341 (2009). Tantishaiyakul, V., S. Songkro, K. Suknuntha, P. Permkum, and P. Pipatwarakul, 'Crystal structure transformations and dissolution studies of cimetidine-piroxicam coprecipitates and physical mixtures', Aaps Pharmscitech 10 (3), 789-795 (2009). Tarnamushi, B., and N. Watanabe, 'The formation of molecular aggregation structures in ternary system: Aerosol OT / water / iso-octane', Colloid & Polymer Science 258, 174-178 (1980). Toscani, S., 'An up-to-date approach to drug polymorphism', Thermochimica Acta 321 (1-2), 73-79 (1998). Trotta, M., M. Gallarate, F. Pattarino, and S. Morel, 'Emulsions containing partially water-miscible solvents for the preparation of drug nanosuspensions', Journal of Controlled Release 76 (1-2), 119-128 (2001). Trotta, M., M. Gallarate, F. Pattarino, and S. Morel, ' Preparation of griseofulvin nanoparticles from water - dilutable microemulsion', International Journal of Pharmaceutics 254, 235-242 (2003). Vishweshwar, P., J. A. McMahon, M. Oliveira, M. L. Peterson, and M. J. Zaworotko, 'The predictably elusive form II of aspirin', Journal of the American Chemical Society 127 (48), 16802-16803 (2005). Vrecer, F., M. Vrbinc, and A. Meden, 'Characterization of piroxicam crystal modifications', International Journal of Pharmaceutics 256 (1-2), 3-15 (2003). Yaghmur, A., A. Aserin, and N. Garti, 'Phase behavior of microemulsions based on food-grade nonionic surfactants: effect of polyols and short-chairs alcohols', Colloids and Surfaces a-Physicochemical and Engineering Aspects 209 (1), 71-81 (2002). Yang, S., and J. K. Guillory, 'Polymorphism in sulfonamides', Journal of Pharmaceutical Sciences 61 (1), 26-40 (1972). 李昭仁, '化學工程手冊', 高立出版 (1984) 洪士婷, 'Initial, cocktail solvent screening and polymorphism farming of sulfathiazole', 國立中央大學化學工程與材料工程研究所碩士論文 (2007) 趙承琛, '界面科學基礎', 復文書局 (1994) 陳復邦, '以定組成法探討碳酸鈣多晶型之形成', 台灣大學化學工程研究所碩士論文 (1995) 王鳳英, '界面活性劑的原理與應用', 高麗圖書 (1986) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48431 | - |
dc.description.abstract | 摘要
對於低水溶性或生物體利用率低的有機藥物而言,利用微乳液將有機藥物微粒化或將有機藥物的晶型轉變為水溶性較佳的晶型,以提高有機藥物在人體中的溶解速率,並達到提升生物體利用率的功效。因此本研究利用微乳液系統,這個既直接又安全的操作方式藉由改變溫度的製程來做有機藥物的改質。 本研究的目的為研究有機藥物經過微乳液系統操作後的晶型改變及溶解速率改變,並且研究各種有機藥物在離子型、非離子型的微乳液中,以及在純溶劑當中,再結晶顆粒的物理特性。我們使用了三種不同的微乳液系統以及三種純溶液系統。 經實驗發現,微乳液系統有使有機藥物轉變成水合物的趨勢。容易形成水合物的有機藥物在任何微乳液系統都可轉變成水合物(carbamazepine、piroxicam、sulfaguanidine、theophylline、nitrofurantoin、diclofenac sodium),而對於不易形成水合物的diflunisal則是在特定為乳液系統可將其轉變成水合物。 而對於具有多晶型性的有機藥物而言,微乳液系統可以將其轉變為不同於原藥的晶型。對於sulfathiazole,微乳液系統可將其從Form-IV轉變成Form-III。且sulfathiazole的溶解速率也因晶型的轉變而有所提升。 不具有多晶型性的有機藥物雖然法在微乳液系統中不會做晶型的轉變,但卻有被微粒化的趨勢。Mitotane、ibuprofen的溶解速率都因為粉體顆粒的減小而有顯著的提升。 有機藥物的物理性質隨著微乳液操作條件的不同而有所改變。利用此特性,吾人可以利用適當的微乳液系統操作有機藥物可使我們可以獲得特定的有機藥物晶型、晶貌、以及溶解速率。 | zh_TW |
dc.description.abstract | Abstract
For poor solubility in water or lower bioavailability organic drugs, using microemulsion systems to micronize or structurally change the drugs, is both a direct and safe method to enhance the dissolution rate and bioavailability of the drugs in the human body. In this research, the microemulsion systems were utilized with temperature changing processes to modify organic drugs. Microemulsion systems were used to change the structure and dissolution rate of organic drugs. Ionic and nonionic microemulsions and pure solvents environments were investigated. The study was aimed to correlate the structural change and dissolution rate change of organic drugs after recrystallizing from microemulsions. In the research, we found that microemulsion systems could lead organic drugs to a hydrated state. For carbamazepine, piroxicam, sulfaguanidine, theophylline, nitrofurantoin, and diclofenac sodium, every microemulsion system could be changed from anhydrate to hydrate. However for diflunisal, only specific microemulsion conditions could change to hydrated states. For drugs with polymorphism, microemulsion systems could change to different structures. Microemulsion systems could change sulfathiazole from Form-IV to Form-III and improve its dissolution rate. Microemulsion systems can also micronize organic compounds. Mitotane and ibuprofen were micronized by microemulsion system. Therefore, after microemulsion process they performed better dissolution rate. The results suggest that the microemulsion systems can cause the organic drugs to change structure or become hydrate crystals. The dissolution rates of modified crystals change depending on the conditions. Crystallization from microemulsion media enables one to obtain the drug with a predictable structure, morphology, and dissolution rate. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:56:33Z (GMT). No. of bitstreams: 1 ntu-100-R97524016-1.pdf: 22025376 bytes, checksum: eecf454fbd8a32acf373e75da9f3dda0 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄
口試委員審定書 I 致謝 II 摘要 III Abstract IV 目錄 VI 表目錄 IX 圖目錄 XII 第一章 緒論 1 第二章 文獻回顧 2 2-1 介穩相與穩定相 2 2-2 界面活性劑分類及性質 2 2-3 界面活性劑HLB計算方法 4 2-4 有機藥物微粒化與改質之目的與重要性 6 2-5 常見的微粒化與改質技術 6 2-6 微胞形成的原理與機制 7 2-7 微乳液系統之再結晶技術 8 2-8 利用微乳液系統合成奈米微粒的機制 11 2-9 結晶 11 2-10晶體的外貌與型態 13 2-11水/油/界面活性劑之相圖 14 2-12溶解速率測試 16 第三章 實驗設備及方法 28 3-1 實驗藥品 28 3-2. 實驗方法與操作步驟 33 3-2-1.藉由微乳液-改變溫度的製程使藥物在結晶 33 3-3-2.藉由純溶劑-改變溫度的製程使藥物在結晶 35 3-3-3.利用蒸氣擴散法進行藥物再結晶 35 3-3.實驗分析方法 36 3-3-1. X光繞射儀(XRD) 36 3-3-2.掃描式熱卡計(DSC) 36 3-3-3.熱重分析儀(TGA) 37 3-3-4.掃瞄式電子顯微鏡(SEM) 37 3-3-5.溶解速率測試 38 3-3-6.紫外光-可見光光譜儀(UV-Visible Spectrometer) 38 3-3-7.核磁共振儀(NMR) 39 3-3-8.元素分析(UV-Visible Spectrometer) 40 第四章 結果與討論 46 4-1 具有水合物之有機藥物 46 4-1-1. Carbamazepine 46 4-1-2. Piroxicam 50 4-1-3. Sulfaguanidine 53 4-1-4. Theophylline 56 4-1-5. Nitrofurantoin 59 4-1-6. Diclofenac sodium 61 4-1-7. Diflunisal 63 4-1-8. 綜合討論 67 4-2 具有多晶型性之有機藥物 115 4-2-1. Sulfathiazole 115 4-2-2. Aspirin 118 4-2-3. Acetaminophen 120 4-2-4. Sulfanilamide 121 4-2-5. Mebendazole 122 4-2-6. 綜合比較 123 4.3. 不具有多晶型性之有機藥物 136 4-3-1. Mitotane 136 4-3-2. Naproxen 138 4-3-3. Ibuprofen 140 4-3-4. Phenytoin 142 4-3-5. Sulfadimidine 143 4-3-6. 綜合比較 144 4.4.Diflunisal特論 160 4.5.綜合討論 174 第五章 結論 178 參考文獻 182 附錄 190 | |
dc.language.iso | zh-TW | |
dc.title | 利用微乳液系統研究有機藥物之微粒化並探討有機藥物晶型及溶解速率 | zh_TW |
dc.title | Micronization of Organic Drugs and Discussion of Structure/ Dissolution Rate Changes by Microemulsion Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳延平(Yan-Ping Chen),李度(Tu Lee) | |
dc.subject.keyword | 微乳液,結晶,多晶型,水合物,晶貌,溶解速率, | zh_TW |
dc.subject.keyword | Microemulsion,Crystallization,Polymorph,Hydrate,Morphology,Dissolution Rate, | en |
dc.relation.page | 217 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-02-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 21.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。