請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48426完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊曜宇(Eric. Y. Chuang) | |
| dc.contributor.author | Jung-Chih Chang | en |
| dc.contributor.author | 張榕芝 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:56:21Z | - |
| dc.date.available | 2012-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-09 | |
| dc.identifier.citation | 1. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304-51.
2. Su WH, Chao CC, Yeh SH, Chen DS, Chen PJ, Jou YS. OncoDB.HCC: an integrated oncogenomic database of hepatocellular carcinoma revealed aberrant cancer target genes and loci. Nucleic Acids Res. 2007 Jan;35(Database issue):D727-31. 3. Yeh SH, Wu DC, Tsai CY, Kuo TJ, Yu WC, Chang YS, et al. Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clin Cancer Res. 2006 Feb 15;12(4):1097-108. 4. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177-82. 5. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001 Mar 15;344(11):783-92. 6. Madigan MT, Martinko JM, Parker J, editors. BROCK BIOLOGY OF MICROORGANISMS. 10th ed: Prentice Hall; 2003. 7. Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991 Mar 25;19(6):1349. 8. Wang K, Bucan M. Copy Number Variation Detection via High-Density SNP Genotyping. Cold Spring Harb Protoc. 2008. 9. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006 Nov 23;444(7118):444-54. 10. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737-8. 11. Crick F. Central dogma of molecular biology. Nature. 1970 Aug 8;227(5258):561-3. 12. DM M, editor. Bioinformatics: Sequence and Genome Analysis2004. 13. Magrath I, Litvak J. Cancer in developing countries: opportunity and challenge. J Natl Cancer Inst. 1993 Jun 2;85(11):862-74. 14. Biro FM. New developments in diagnosis and management of adolescents with sexually transmitted disease. Curr Opin Obstet Gynecol. 1999 Oct;11(5):451-5. 15. Wingo PA, Ries LA, Giovino GA, Miller DS, Rosenberg HM, Shopland DR, et al. Annual report to the nation on the status of cancer, 1973-1996, with a special section on lung cancer and tobacco smoking. J Natl Cancer Inst. 1999 Apr 21;91(8):675-90. 16. Yang SP, Luh KT, Kuo SH, Lin CC. Chronological observation of epidemiological characteristics of lung cancer in Taiwan with etiological consideration--a 30-year consecutive study. Jpn J Clin Oncol. 1984 Mar;14(1):7-19. 17. Chen CJ, Wu HY, Chuang YC, Chang AS, Luh KT, Chao HH, et al. Epidemiologic characteristics and multiple risk factors of lung cancer in Taiwan. Anticancer Res. 1990 Jul-Aug;10(4):971-6. 18. Nugent WC, Edney MT, Hammerness PG, Dain BJ, Maurer LH, Rigas JR. Non-small cell lung cancer at the extremes of age: impact on diagnosis and treatment. Ann Thorac Surg. 1997 Jan;63(1):193-7. 19. Chen KY, Chang CH, Yu CJ, Kuo SH, Yang PC. Distribution according to histologic type and outcome by gender and age group in Taiwanese patients with lung carcinoma. Cancer. 2005 Jun 15;103(12):2566-74. 20. Wood ME, Kelly K, Mullineaux LG, Bunn PA, Jr. The inherited nature of lung cancer: a pilot study. Lung Cancer. 2000 Nov;30(2):135-44. 21. Ger LP, Liou SH, Shen CY, Kao SJ, Chen KT. [Risk factors of lung cancer]. J Formos Med Assoc. 1992 Sep;91 Suppl 3:S222-31. 22. Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G, et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5367-72. 23. Zhong L, Goldberg MS, Parent ME, Hanley JA. Risk of developing lung cancer in relation to exposure to fumes from Chinese-style cooking. Scand J Work Environ Health. 1999 Aug;25(4):309-16. 24. Chin KV, Kong AN. Application of DNA microarrays in pharmacogenomics and toxicogenomics. Pharm Res. 2002 Dec;19(12):1773-8. 25. Wen Cheng Y, Lee H. Environmental exposure and lung cancer among nonsmokers: an example of Taiwanese female lung cancer. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2003 May;21(1):1-28. 26. David Freedman,Robert Pisani RP, editor. Statistics: Norton & Company. 27. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. 28. CS Yang LC, YJ Chen, CH Yang. Feature Selection Using Memetic Algorithms. Convergence and Hybrid Information 2008. 29. Frank IHWaE, editor. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations2005. 30. Chang J-S, Luo Y-F, Su K-Y. GPSM: a Generalized Probabilistic Semantic Model for ambiguity resolution. ACL1992. 31. Gonzalez-Mariscal L, Tapia R, Huerta M, Lopez-Bayghen E. The tight junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 expression. Ann N Y Acad Sci. 2009 May;1165:121-5. 32. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4. 33. Park SG, Schimmel P, Kim S. Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11043-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48426 | - |
| dc.description.abstract | 本研究將拷貝數(copy number, CN)與基因表現(gene expression, GE)圖譜結合進行DNA與RNA層級整合之分析(concurrent analysis),以尋找並探討在兩者之間發生改變的致病基因與其機轉。此研究包含三個主要的部分:測量拷貝數與基因表現間的相關程度、使用Gene Set Enrichment Analysis(GSEA)進行傳導路徑分析、並藉由一評分模式以整合拷貝數、基因表現、與其兩者間的相關程度所篩選出來之傳導途徑。其中,為了評估本研究方法的表現而使用兩組樣本,其中一組為來自四十四位非抽菸女性肺癌患者的成對樣本,亦即包含了正常組織與癌症組織。另一組則是Gene Expression Omnibus資料庫中編號為GSE19539的卵巢癌樣本,分屬兩種主要的次分型(subtype): endometrioid與serous。上述兩種樣本同時具備了來自同一個體的拷貝數與基因表現之微陣列晶片數據。兩種樣本皆利用Affymetrix SNP 6.0晶片進行拷貝數分析,肺癌樣本的基因表現分析使用Affymetrix U133plus 2.0晶片,而GSE19539卵巢癌樣本的基因表現分析則使用Affymetrix 1.0 ST 晶片。為了深入探討篩選出的傳導途徑,以Support Vector Machine(SVM)方法進行分類預測,並根據預測結果顯示,相較於傳統的分析方法,本研究方法具有較高的預測靈敏度與特異性。此外,藉由整合DNA與RNA層次能對於疾病的生物調控機制與致病相關的基因有更深層的了解,也使得實驗篩選出的生物標靶具備更多生物意義與統計信心,更能降低偽陽性(false positive rate)以提高篩選正確率,有助於臨床醫學診斷與基礎研究。 | zh_TW |
| dc.description.abstract | To identify genes with genomic alterations and/or transcriptional dysregulation, a concurrent analyzing method was developed to integrate data form copy number (CN) and gene expression (GE). This study contains three major parts: determine the correlation between CN and GE, perform pathway analysis by Gene Set Enrichment Analysis (GSEA), and to summarize all the pathways enriched by CN, GE, and correlation between CN and GE using a scoring method. Two datasets were analyzed to evaluate the performance of the method. The first dataset was from 44 female non-smoking lung cancer patients, which contain both paired normal and tumor tissues. The other dataset was retrieved from the Gene Expression Omnibus: GSE19539 ovarian cancer samples with two subtypes, endometrioid and serous. Both the datasets have CN and GE microarray data from the same individual. Copy number was analyzed by Affymetrix SNP 6.0 array in the both datasets. Gene expression profiles were analyzed by Affymetrix U133plus 2.0 array in the first dataset and Affymetrix 1.0 ST array in the second one. To further explore those identified pathways, Support Vector Machine (SVM) was used for classification. The classification results had higher prediction sensitivity and specificity compared with traditional analysis methods. In addition, using integration of data from both DNA and RNA levels is much biological meaningful, and may reveal much information about disease-causing genes and their regulation mechanisms. In summary, the results indicated that concurrent analyses may help to identify potential biomarkers with lower false positive rates. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:56:21Z (GMT). No. of bitstreams: 1 ntu-100-R97945010-1.pdf: 2499065 bytes, checksum: e306376974b95faaa508a1cd8ab2ae72 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目 錄
謝 誌 I ABSTRACT III 摘 要 V 第一章 序言 1 第二章 研究方法模型架構與實驗數據說明 7 2.1 應用樣本與分析之晶片種類 7 2.1.1 非抽菸女性肺腺癌與其成對之正常肺組織樣本 8 2.1.2 GEO資料庫之GSE19539卵巢癌公開樣本 9 2.2 拷貝數與基因表現的整合性分析 10 2.2.1 探針配對 12 2.2.2 決定視窗尺寸的模擬試驗 14 2.2.3 拷貝數與基因表現的相關性分析 16 2.2.4 傳導途徑分析- 採用Gene Set Enrichment Analysis 17 2.2.5 評分模式 18 2.2.6 以SVM方法進行留一驗證與Holdout驗證 19 第三章 結果 21 3.1 以模擬試驗決定視窗大小與探針配對情形 21 3.2 拷貝數與基因表現之相關性分析 28 3.3 傳導途徑分析 30 3.4 評分模式 34 3.5 驗證 36 第四章 討論 42 第五章 總結 48 參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基因組分析 | zh_TW |
| dc.subject | 拷貝數 | zh_TW |
| dc.subject | 基因表現 | zh_TW |
| dc.subject | 整合性分析 | zh_TW |
| dc.subject | gene set analysis | en |
| dc.subject | copy number | en |
| dc.subject | gene expression | en |
| dc.subject | concurrent analysis | en |
| dc.title | 建構拷貝數變異與基因表現之整合性分析方法
--以台灣非抽菸女性肺癌為例 | zh_TW |
| dc.title | Concurrent Analysis between Copy Number Variation and Gene Expression of Female Non-Smoking Lung Cancer in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭朱杏(Chuhsing K. Hsiao),賴亮全(Liang-Chuan Lai),蔡孟勳(Mong-Hsun Tsai),陳倩瑜(chien-yu chen) | |
| dc.subject.keyword | 拷貝數,基因表現,整合性分析,基因組分析, | zh_TW |
| dc.subject.keyword | copy number,gene expression,concurrent analysis,gene set analysis, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
