Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4841
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴文崧(Wen-Sung Lai)
dc.contributor.authorYa-Wen Liuen
dc.contributor.author劉雅文zh_TW
dc.date.accessioned2021-05-14T17:48:30Z-
dc.date.available2020-03-13
dc.date.available2021-05-14T17:48:30Z-
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-04
dc.identifier.citationAlbin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375. doi: 10.1016/0166-2236(89)90074-X
Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271. doi:10.1016/0166-2236(90)90107-L
Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381. doi:10.1146/annurev.ne.09.030186.002041
Ambroggi, F., Ghazizadeh, A., Nicola, S. M., & Fields, H. L. (2011). Roles of nucleus accumbens core and shell in incentive-cue responding and behavioral inhibition. The Journal of Neuroscience, 31(18), 6820–6830. doi: 10.1523/JNEUROSCI.6491-10.2011
Ambroggi, F., Ishikawa, A., Fields, H. L., & Nicola, S. M. (2008). Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron, 59(4), 648–661. doi:10.1016/j.neuron.2008.07.004
Annett, L. E., McGregor, A., & Robbins, T. W. (1989). The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. Behavioural Brain Research, 31(3), 231–242. doi: 10.1016/0166-4328(89)90005-3
Asaad, W. F., & Eskandar, E. N. (2011). Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. The Journal of Neuroscience, 31(49), 17772–17787. doi: 10.1523/JNEUROSCI.3793-11.2011
Balleine, B., & Killcross, S. (1994). Effects of ibotenic acid lesions of the Nucleus Accumbens on instrumental action. Behavioural Brain Research, 65(2), 181–193. doi:10.1016/0166-4328(94)90104-X
Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1), 48–69. doi:10.1038/npp.2009.131
Barraclough, D. J., Conroy, M. L., & Lee, D. (2004). Prefrontal cortex and decision making in a mixed-strategy game. Nature Neuroscience, 7(4), 404–410. doi:10.1038/nn1209
Baum, W. M. (1974). On two types of deviation from the matching law: bias and undermatching. Journal of the Experimental Analysis of Behavior, 22(1), 231–242. doi:10.1901/jeab.1974.22-231
Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47(1), 129–141. doi:10.1016/j.neuron.2005.05.020
Belin, D., Jonkman, S., Dickinson, A., Robbins, T. W., & Everitt, B. J. (2009). Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behavioural Brain Research, 199(1), 89–102. doi:10.1016/j.bbr.2008.09.027
Belova, M. A, Paton, J. J., & Salzman, C. D. (2008). Moment-to-moment tracking of state value in the amygdala. The Journal of Neuroscience, 28(40), 10023–10030. doi:10.1523/JNEUROSCI.1400-08.2008
Bentivoglio, M., & Morelli, M. (2005). Chapter I The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. In S. B. Dunnett, M. Bentivoglio, A. Bjorklund, & T. Hokfelt (Eds.), Dopamine (Vol. 21, pp. 1–107). Elsevier. doi: http://dx.doi.org/10.1016/S0924-8196(05)80005-3
Bjorklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: an update. Trends in Neurosciences, 30(5), 194–202. doi:10.1016/j.tins.2007.03.006
Blaiss, C. A, & Janak, P. H. (2009). The nucleus accumbens core and shell are critical for the expression, but not the consolidation, of Pavlovian conditioned approach. Behavioural Brain Research, 200(1), 22–32. doi:10.1016/j.bbr.2008.12.024
Braun, S., & Hauber, W. (2011). The dorsomedial striatum mediates flexible choice behavior in spatial tasks. Behavioural Brain Research, 220(2), 288–293. doi:10.1016/j.bbr.2011.02.008
Burk, J. A, & Mair, R. G. (2001). Effects of dorsal and ventral striatal lesions on delayed matching trained with retractable levers. Behavioural Brain Research, 122(1), 67–78. doi:10.1016/S0166-4328(01)00169-3
Bush, R. R., & Mosteller, F. (1955). Stochastic models for learning. John Wiley & Sons, Inc.
Cai, X., Kim, S., & Lee, D. (2011). Heterogeneous coding of temporally discounted values in the dorsal and ventral striatum during intertemporal choice. Neuron, 69(1), 170–182. doi:10.1016/j.neuron.2010.11.041
Chang, J.-Y., Chen, L., Luo, F., Shi, L.-H., & Woodward, D. J. (2002). Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task: ensemble recording in freely moving rats. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 142(1), 67–80. doi:10.1007/s00221-001-0918-3
Dalton, G. L., Phillips, A. G., & Floresco, S. B. (2014). Preferential involvement by nucleus accumbens shell in mediating probabilistic learning and reversal shifts. The Journal of Neuroscience, 34(13), 4618–4626. doi: 10.1523/JNEUROSCI.5058-13.2014
Day, J. J., & Carelli, R. M. (2007). The nucleus accumbens and Pavlovian reward learning. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 13(2), 148–159. doi:10.1177/1073858406295854
DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285. doi:10.1016/0166-2236(90)90110-V
Ding, L., & Gold, J. I. (2012). Neural correlates of perceptual decision making before, during, and after decision commitment in monkey frontal eye field. Cerebral Cortex, 22(5), 1052–1067. doi:10.1093/cercor/bhr178
Dorris, M. C., & Glimcher, P. W. (2004). Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron, 44(2), 365–378. doi:10.1016/j.neuron.2004.09.009
Doya, K. (2008). Modulators of decision making. Nature Neuroscience, 11(4), 410–416. doi:10.1038/nn2077
Fallon, J. H., & Moore, R. Y. (1978). Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. The Journal of Comparative Neurology, 180(3), 545–580. doi:10.1002/cne.901800310
Fellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain, 126(8), 1830–1837. doi:10.1093/brain/awg180
Floresco, S. B., Ghods-Sharifi, S., Vexelman, C., & Magyar, O. (2006). Dissociable roles for the nucleus accumbens core and shell in regulating set shifting. The Journal of Neuroscience, 26(9), 2449–2457. doi: 10.1523/JNEUROSCI.4431-05.2006
Floresco, S. B., McLaughlin, R. J., & Haluk, D. M. (2008). Opposing roles for the nucleus accumbens core and shell in cue-induced reinstatement of food-seeking behavior. Neuroscience, 154(3), 877–884. doi: 10.1016/j.neuroscience.2008.04.004
Fridberg, D. J., Queller, S., Ahn, W.-Y., Kim, W., Bishara, A. J., Busemeyer, J. R., … Stout, J. C. (2010). Cognitive Mechanisms Underlying Risky Decision-Making in Chronic Cannabis Users. Journal of Mathematical Psychology, 54(1), 28–38. doi:10.1016/j.jmp.2009.10.002
Gerfen, C. R. (1992). The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annual Review of Neuroscience, 15, 285–320. doi:10.1146/annurev.ne.15.030192.001441
Gerfen, C. R., & Scott Young, W. (1988). Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Research, 460(1), 161–167. doi:10.1016/0006-8993(88)91217-6
Gimenez-Amaya, J. M., & Graybiel, A. M. (1990). Compartmental origins of the striatopallidal projection in the primate. Neuroscience, 34(1), 111–126. doi:10.1016/0306-4522(90)90306-O
Gremel, C. M., & Costa, R. M. (2013). Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nature Communications, 4. doi:10.1038/ncomms3264
Groenewegen, H. J., Berendse, H. W., Wolters, J. G., & Lohman, A. H. M. (1991). The Prefrontal Its Structure, Function and Cortex Pathology. Progress in Brain Research (Vol. 85, pp. 95–118). Elsevier. doi:10.1016/S0079-6123(08)62677-1
Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Journal of Neuroscience, 20(6), 2369–2382.
Haluk, D. M., & Floresco, S. B. (2009). Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacology, 34(8), 2041–2052. doi:10.1038/npp.2009.21
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646–648. doi:10.1126/science.1168450
Haruno, M., & Kawato, M. (2006). Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning. Neural Networks, 19(8), 1242–1254. doi:10.1016/j.neunet.2006.06.007
Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., … Doya, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22(10), 464–471. doi:10.1016/S0166-2236(99)01439-3
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1(4), 304–309. doi:10.1038/1124
Hong, S., & Hikosaka, O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60(4), 720–729. doi:10.1016/j.neuron.2008.09.035
Horwitz, G. D., & Newsome, W. T. (2001). Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. Journal of Neurophysiology, 86(5), 2543–2558.
Ito, M., & Doya, K. (2011). Multiple representations and algorithms for reinforcement learning in the cortico-basal ganglia circuit. Current Opinion in Neurobiology, 21(3), 368–373. doi:10.1016/j.conb.2011.04.001
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning : A Survey. Journal of Artificial Intelligence Research, 4, 237-285.
Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795. doi: 10.1080/01621459.1995.10476572
Kawaguchi, Y., Wilson, C. J., Augood, S. J., & Emson, P. C. (1995). Striatal interneurones: chemical, physiological and morphological characterization. Trends in Neurosciences, 18(12), 527–535. doi:10.1016/0166-2236(95)98374-8
Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J., & Rushworth, M. F. S. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9(7), 940–947. doi:10.1038/nn1724
Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304. doi: 10.1146/annurev.psych.55.090902.142005
Kim, H., Sul, J. H., Huh, N., Lee, D., & Jung, M. W. (2009). Role of striatum in updating values of chosen actions. The Journal of Neuroscience, 29(47), 14701–14712. doi:10.1523/JNEUROSCI.2728-09.2009
Kim, S., Hwang, J., & Lee, D. (2008). Prefrontal coding of temporally discounted values during intertemporal choice. Neuron, 59(1), 161–172. doi: 10.1016/j.neuron.2008.05.010
Kirkby, R. J. (1969). Caudate nucleus lesions and perseverative behavior. Physiology & Behavior, 4(4), 451–454. doi:10.1016/0031-9384(69)90135-8
Kolb, B. (1977). Studies on the caudate-putamen and the dorsomedial thalamic nucleus of the rat: Implications for mammalian frontal-lobe functions. Physiology & Behavior, 18(2), 237–244. doi:10.1016/0031-9384(77)90128-7
Kreitzer, A. C. (2009). Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127–147. doi: 10.1146/annurev.neuro.051508.135422
Kreitzer, A. C., & Malenka, R. C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature, 445(7128), 643–647.
Kreitzer, A. C., & Malenka, R. C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron, 60(4), 543–554. doi:10.1016/j.neuron.2008.11.005
Lau, B., & Glimcher, P. W. (2008). Value representations in the primate striatum during matching behavior. Neuron, 58(3), 451–463. doi:10.1016/j.neuron.2008.02.021
Lauwereyns, J., Watanabe, K., & Coe, B. (2002). A neural correlate of response bias in monkey caudate nucleus, Nature, 418(6896), 413–7. doi: 10.1038/nature00844.1.
Lee, D., Rushworth, M. F. S., Walton, M. E., Watanabe, M., & Sakagami, M. (2007). Functional specialization of the primate frontal cortex during decision making. The Journal of Neuroscience, 27(31), 8170–8173. doi: 10.1523/JNEUROSCI.1561-07.2007
Lee, D., Seo, H., & Jung, M. W. (2012). Neural basis of reinforcement learning and decision making. Annual Review of Neuroscience, 35, 287–308. doi:10.1146/annurev-neuro-062111-150512
Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press.
Lindvall, O., & Bjorklund, A. (1974). The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiologica Scandinavica. Supplementum, 412, 1–48.
Lindvall, O., Bjorklund, A., & Divac, I. (1977). Organization of mesencephalic dopamine neurons projecting to neocortex and septum. Advances in Biochemical Psychopharmacology, 16, 39–46.
Lovinger, D. M. (2010). Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology, 58(7), 951–961. doi:10.1016/j.neuropharm.2010.01.008
Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS – A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325–337. doi:10.1023/A:1008929526011
Matsumoto, M., & Hikosaka, O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 1111–1115. doi:10.1038/nature05860
Mayer, M. L., & Westbrook, G. L. (1987). Cellular mechanisms underlying excitotoxicity. Trends in Neurosciences. doi:10.1016/0166-2236(87)90023-3
Montague, P. R., Hyman, S. E., & Cohen, J. D. (2004). Computational roles for dopamine in behavioural control. Nature, 431(7010), 760–767. doi: 10.1038/nature03015
Moussa, R., Poucet, B., Amalric, M., & Sargolini, F. (2011). Contributions of dorsal striatal subregions to spatial alternation behavior. Learning & Memory, 18(7), 444–451. doi:10.1101/lm.2123811
Murray, E. a, O’Doherty, J. P., & Schoenbaum, G. (2007). What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. The Journal of Neuroscience, 27(31), 8166–8169. doi:10.1523/JNEUROSCI.1556-07.2007
Nicola, S. M. (2010). The flexible approach hypothesis: unification of effort and cue-responding hypotheses for the role of nucleus accumbens dopamine in the activation of reward-seeking behavior. The Journal of Neuroscience, 30(49), 16585–16600. doi:10.1523/JNEUROSCI.3958-10.2010
Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3), 139–154. doi:10.1016/j.jmp.2008.12.005
Okano, K., & Tanji, J. (1987). Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement. Experimental Brain Research, 66(1), 155–166. doi:10.1007/BF00236211
Oyama, K., Hernadi, I., Iijima, T., & Tsutsui, K.-I. (2010). Reward prediction error coding in dorsal striatal neurons. The Journal of Neuroscience, 30(34), 11447–11457. doi:10.1523/JNEUROSCI.1719-10.2010
Padoa-Schioppa, C. (2011). Neurobiology of economic choice: a good-based model. Annual Review of Neuroscience, 34, 333–359. doi: 10.1146/annurev-neuro-061010-113648
Padoa-Schioppa, C., & Assad, J. a. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441(7090), 223–226. doi:10.1038/nature04676
Pastor-Bernier, A., & Cisek, P. (2011). Neural correlates of biased competition in premotor cortex. The Journal of Neuroscience, 31(19), 7083–7088. doi: 10.1523/JNEUROSCI.5681-10.2011
Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233–238. doi:10.1038/22268
Pothuizen, H. H. J., Jongen-Relo, A. L., Feldon, J., & Yee, B. K. (2005). Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. The European Journal of Neuroscience, 22(10), 2605–16. doi: 10.1111/j.1460-9568.2005.04388.x
Quilodran, R., Rothe, M., & Procyk, E. (2008). Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron, 57(2), 314–325. doi: 10.1016/j.neuron.2007.11.031
Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–164.
Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Annals of the New York Academy of Sciences, 1121, 355–375. doi: 10.1196/annals.1401.013
Ragozzino, M. E., Jih, J., & Tzavos, A. (2002). Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Research, 953(1-2), 205–214. doi:10.1016/S0006-8993(02)03287-0
Ragozzino, M. E., Ragozzino, K. E., Mizumori, S. J. Y., & Kesner, R. P. (2002). Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behavioral Neuroscience, 116(1), 105–115. doi: 10.1037//0735-7044.116.1.105
Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. The Journal of Neuroscience, 22(21), 9475–9489.
Rorie, A. E., Gao, J., McClelland, J. L., & Newsome, W. T. (2010). Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PloS One, 5(2), e9308. doi:10.1371/journal.pone.0009308
Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8(9), 410–417. doi:10.1016/j.tics.2004.07.009
Rutledge, R. B., Lazzaro, S. C., Lau, B., Myers, C. E., Gluck, M. A., & Glimcher, P. W. (2009). Dopaminergic drugs modulate learning rates and perseveration in Parkinson’s patients in a dynamic foraging task. The Journal of Neuroscience, 29(48), 15104–15114. doi:10.1523/JNEUROSCI.3524-09.2009
Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005). Representation of action-specific reward values in the striatum. Science, 310(5752), 1337–1340. doi:10.1126/science.1115270
Schoenbaum, G., Nugent, S. L., Saddoris, M. P., & Setlow, B. (2002). Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport, 13(6), 885–890. doi: 10.1097/00001756-200205070-00030
Schoenbaum, G., & Setlow, B. (2003). Lesions of nucleus accumbens disrupt learning about aversive outcomes. The Journal of Neuroscience, 23(30), 9833–9841.
Schultz, W. (1997). A Neural Substrate of Prediction and Reward. Science, 275(5306), 1593–1599. doi:10.1126/science.275.5306.1593
Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual Review of Psychology, 57, 87–115. doi: 10.1146/annurev.psych.56.091103.070229
Schultz, W. (2010). Dopamine signals for reward value and risk: basic and recent data. Behavioral and Brain Functions, 6, 24. doi:10.1186/1744-9081-6-24
Seo, H., Barraclough, D. J., & Lee, D. (2009). Lateral intraparietal cortex and reinforcement learning during a mixed-strategy game. The Journal of Neuroscience, 29(22), 7278–7289. doi:10.1523/JNEUROSCI.1479-09.2009
Seo, H., & Lee, D. (2007). Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game. The Journal of Neuroscience, 27(31), 8366–8377. doi:10.1523/JNEUROSCI.2369-07.2007
Seo, H., & Lee, D. (2009). Behavioral and neural changes after gains and losses of conditioned reinforcers. The Journal of Neuroscience, 29(11), 3627–3641. doi:10.1523/JNEUROSCI.4726-08.2009
Shen, W., Flajolet, M., Greengard, P., & Surmeier, D. J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321(5890), 848–851. doi:10.1126/science.1160575
Shidara, M., & Richmond, B. J. (2002). Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science, 296(5573), 1709–1711. doi:10.1126/science.1069504
Shiflett, M. W., & Balleine, B. W. (2011). Molecular substrates of action control in cortico-striatal circuits. Progress in Neurobiology, 95(1), 1–13. doi: 10.1016/j.pneurobio.2011.05.007
Smith, C. A. B. (1961). Consistency in Statistical Inference and Decision. Journal of the Royal Statistical Society. Series B (Methodological), 23(1), 1–37. doi: 10.2307/2983842
So, N.-Y., & Stuphorn, V. (2010). Supplementary eye field encodes option and action value for saccades with variable reward. Journal of Neurophysiology, 104(5), 2634–2653. doi:10.1152/jn.00430.2010
Sohn, J.-W., & Lee, D. (2007). Order-dependent modulation of directional signals in the supplementary and presupplementary motor areas. The Journal of Neuroscience, 27(50), 13655–13666. doi:10.1523/JNEUROSCI.2982-07.2007
Soon, C. S., Brass, M., Heinze, H.-J., & Haynes, J.-D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11(5), 543–545. doi:10.1038/nn.2112
Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and the representation of value in the parietal cortex. Science, 304(5678), 1782–1787. doi:10.1126/science.1094765
Sul, J. H., Jo, S., Lee, D., & Jung, M. W. (2011). Role of rodent secondary motor cortex in value-based action selection. Nature Neuroscience, 14(9), 1202–1208. doi:10.1038/nn.2881
Sul, J. H., Kim, H., Huh, N., Lee, D., & Jung, M. W. (2010). Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron, 66(3), 449–460. doi:10.1016/j.neuron.2010.03.033
Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30(5), 228–235. doi:10.1016/j.tins.2007.03.008
Sutton, R. S., & Barto, A. G. (1990). Time-derivative models of pavlovian reinforcement. In Gabriel, M & Moore, J (Eds.), Learning and Computational Neuroscience: Foundations of Adaptive Networks (pp. 497-537). Cambridge, MA: MIT Press.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.
Taghzouti, K., Louilot, A., Herman, J. P., Le Moal, M., & Simon, H. (1985). Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behavioral and Neural Biology, 44(3), 354–363. doi:10.1016/S0163-1047(85)90640-5
Tai, L.-H., Lee, a M., Benavidez, N., Bonci, A., & Wilbrecht, L. (2012). Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nature Neuroscience, 15(9), 1281–1289. doi:10.1038/nn.3188
Tanaka, S. C., Samejima, K., Okada, G., Ueda, K., Okamoto, Y., Yamawaki, S., & Doya, K. (2006). Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics. Neural Networks, 19(8), 1233–1241. doi:10.1016/j.neunet.2006.05.039
Thorn, C. a, Atallah, H., Howe, M., & Graybiel, A. M. (2010). Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron, 66(5), 781–795. doi:10.1016/j.neuron.2010.04.036
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: a tutorial on the Savage-Dickey method. Cognitive Psychology, 60(3), 158–189. doi:10.1016/j.cogpsych.2009.12.001
Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Application of a theory. In Boakes, R. A. & Halliday, M. S. (Eds.), Inhibition and Learning (pp. 301-336). London: Academic press.
Walton, M. E., Behrens, T. E. J., Buckley, M. J., Rudebeck, P. H., & Rushworth, M. F. S. (2010). Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron, 65(6), 927–939. doi:10.1016/j.neuron.2010.02.027
Watkins, C. J. C. H. (1989). Learning from delayed rewards. University of Cambridge.
Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 279–292. doi:10.1007/BF00992698
Weiner, I. (2003). The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology, 169(3-4), 257–297. doi:10.1007/s00213-002-1313-x
Wetzels, R., Lee, M. D., & Wagenmakers, E. J. (2010). Bayesian inference using WBDev: A tutorial for social scientists. Behavior Research Methods,42(3), 884-897.
Yang, T., & Shadlen, M. N. (2007). Probabilistic reasoning by neurons. Nature, 447(7148), 1075–1080. doi:10.1038/nature05852
Yin, H. H. (2010). The sensorimotor striatum is necessary for serial order learning. The Journal of Neuroscience, 30(44), 14719–14723. doi: 10.1523/JNEUROSCI.3989-10.2010
Yin, H. H., & Knowlton, B. J. (2004). Contributions of striatal subregions to place and response learning. Learning & Memory, 11(4), 459–463. doi: 10.1101/lm.81004
Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 7(6), 464–476. doi:10.1038/nrn1919
Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. The European Journal of Neuroscience, 19(1), 181–189.
Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2005). Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. The European Journal of Neuroscience, 22(2), 505–512. doi:10.1111/j.1460-9568.2005.04219.x
Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2006). Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behavioural Brain Research, 166(2), 189–196. doi:10.1016/j.bbr.2005.07.012
Yin, H. H., Mulcare, S. P., Hilario, M. R. F., Clouse, E., Holloway, T., Davis, M. I., … Costa, R. M. (2009). Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature Neuroscience, 12(3), 333–341. doi:10.1038/nn.2261
Yin, H. H., Ostlund, S. B., & Balleine, B. W. (2008). Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. The European Journal of Neuroscience, 28(8), 1437–1448. doi:10.1111/j.1460-9568.2008.06422.x
Yin, H. H., Ostlund, S. B., Knowlton, B. J., & Balleine, B. W. (2005). The role of the dorsomedial striatum in instrumental conditioning. The European Journal of Neuroscience, 22(2), 513–523. doi:10.1111/j.1460-9568.2005.04218.x
Zahm, D. S. (2000). An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neuroscience & Biobehavioral Reviews, 24(1), 85–105. doi:10.1016/S0149-7634(99)00065-2
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4841-
dc.description.abstract紋狀體分屬於基底核,是主要接收基底核訊息的腦區,更參與動作控制和酬賞相關的學習。近來的研究指出紋狀體與行動值以及酬賞預測誤訊號 (個體預期得到的酬賞和實際得到的酬賞之差異)的更新有關。紋狀體可進一步分成三個分區,各分區分別與不同種類的學習歷程有關。背內側紋狀體主要接收來自關聯皮層的訊息、與目標導向的行為學習有關;背外側紋狀體主接收來自感覺動作皮層的訊息、與習慣學習有關;伏隔核則被認為是表徵對未來酬賞預期的重要腦區,並可根據此預期進一步影響酬賞導向的行為選擇。然而,紋狀體內各分區在增強學習以及酬賞相關的學習中所扮演的角色、及其內在機制仍未有一定論。所以,本研究的目的為檢視不同的紋狀體分區在增強學習、酬賞預測誤訊號更新所扮演的角色,使用興奮性毀壞藥物注射紋狀體不同分區搭配二選項動態酬賞作業,觀察毀壞後小鼠的學習行為是否改變。本研究使用的二選項動態酬賞作業包含兩組不同的酬賞機率學習,小鼠的每次選擇都會被記錄。我們使用增強學習模型來分析資料,酬賞預測誤的相關參數估計使用貝氏估計法,另使用配對法則分析小鼠的選擇行為傾向。本研究結果顯示,背內側紋狀體毀壞小鼠在整個學習過程裡,相較於控制組小鼠,除了達到預設標準需要更多的選擇次數外,也在學習過程中累積更多錯誤。背外側紋狀體以及伏隔核毀壞小鼠則沒有展現整體學習行為上的差異。另使用增強學習模型分析,發現背內側紋狀體以及伏隔核毀壞小鼠皆有酬賞預測誤訊號更新速度下降、行為選擇一致性些微上升的情況。配對法則分析部分,沒有發現任何毀壞組及控制組的組間差異。整體而言,本研究證實了背內側紋狀體的功能損傷會影響酬賞相關學習和行為決策的表現。除此之外,亦證實背內側紋狀體以及伏隔核對於二選項動態酬賞作業的重要性,以及兩腦區皆在決策行為的價值評估、行為選擇兩部分扮演重要角色。zh_TW
dc.description.abstractThe striatum is the principal input structure of the basal ganglia that influences motor control and reward-based learning. Emerging studies indicate that it also contributes to update of action value and reward prediction error (RPE), a discrepancy between the predicted and actual rewards. Previous studies imply that three different subregions of the striatum participating in different kinds of learning processes. The dorsomedial striatum (DMS, also known as “associative striatum” in primates) which receives inputs from the association cortices is implicated in goal-directed behavior in rodents. The dorsolateral striatum (DLS, a part of the sensorimotor striatum in primates) is related to habit learning in rodents. The nucleus accumbens (NA) is implicated in representing predicted future reward, and the representation can be used to guide action selection for reward. However, the precise role or mechanism of each subregion in reinforcement learning and reward-based decision making is still under debate. The aim of this study is to examine the role of different striatal subregions (including DMS, DLS, and NA) in reinforcement learning process and reward prediction error using excitotoxic lesions and 2-choice dynamic foraging task in male C57/Bl6 mice. The 2-choice dynamic foraging task is a risky-choices task which consisted of two kinds of reward ratio learning. The behavioral performance of each of the three lesioned groups and their sham controls were recorded. Their trial-by-trial choice behavior were further analyzed and fit with a standard reinforcement learning model using the Bayesian estimation approach and matching law analysis to elaborate parameters for RPE and reward sensitivity. Compared to sham controls, overall behavioral results indicated that the DMS lesioned mice had more trials to reach the preset criteria and made more cumulated errors during the learning process of this dynamic foraging task. In contrast to the DMS group, both NA and DLS lesioned groups did not exhibited more accumulated trials or more cumulated errors. Reinforcement learning model analysis further revealed that both DMS and NA lesion mice had a lower learning rate in updating the RPE signaling and a slightly higher perseveration compared to their sham controls. But no significant difference was found in the reward sensitivity among the 3 groups. Collectively, the current study confirmed the importance of DMS and NA in the 2-choice dynamic foraging task and their roles in the value component and choice component of decision making. Excitotoxic lesion of DMS can significantly impair performance of probabilistic reward-based learning and decision making.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:48:30Z (GMT). No. of bitstreams: 1
ntu-104-R00227113-1.pdf: 1902118 bytes, checksum: caad1706d16a2092b442847881e49013 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsChapter 1: Introduction 1
1. An overview of decision making 1
2. A general introduction of reinforcement learning and related models 8
3. An overview of striatum: anatomy and neural circuits 14
4. The objective of this study 21
Chapter 2: Materials and Methods 23
1. Animals 23
2. Experimental apparatus 23
3. Experimental procedures 24
4. Data analysis 30
Chapter 3: Results 37
1. Histology 37
2. Behavioral data 37
3. Matching law analysis 41
4. Estimation of learning rate and choice perseveration using reinforcement learning model 42
Chapter 4: Discussion 45
1. Result summary 45
2. DMS lesion mice showed impaired learning of action-outcome association 45
3. NA lesion mice only learned slower in more difficult task 49
4. The constraint on Bayesian hierarchical model 53
5. Motivation control of 2-choice dynamic foraging task 54
6. Hierarchical reinforcement learning in the cortico-striatal circuits 54
7. Future directions 57
References 59
dc.language.isoen
dc.subject紋狀體zh_TW
dc.subject酬賞預測誤zh_TW
dc.subject增強學習zh_TW
dc.subject決策行為zh_TW
dc.subject小鼠zh_TW
dc.subject二選項動態酬賞作業zh_TW
dc.subject興奮性毀壞zh_TW
dc.subjectstriatumen
dc.subjectreinforcement learningen
dc.subjectdecision makingen
dc.subjectmiceen
dc.subject2-choice dynamic foraging tasken
dc.subjectreward prediction erroren
dc.subjectexcitotoxic lesionen
dc.title以小鼠探討紋狀體不同腦區在增強學習以及酬賞預測誤差中所扮演的角色zh_TW
dc.titleThe Role of Striatal Subregions in Reinforcement Learning Process and Reward Prediction Error using Excitotoxic Lesion in Male Miceen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee梁庚辰(Keng-Chen Liang),劉智民(Chih-Min Liu),李季湜(Jay-Shake Li),阮啟弘(Chi-Hung Juan)
dc.subject.keyword增強學習,酬賞預測誤,紋狀體,興奮性毀壞,二選項動態酬賞作業,小鼠,決策行為,zh_TW
dc.subject.keywordreinforcement learning,reward prediction error,striatum,excitotoxic lesion,2-choice dynamic foraging task,mice,decision making,en
dc.relation.page116
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-02-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf1.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved