請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48414完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫(Kai-Wun Yeh) | |
| dc.contributor.author | Hsin-An Pan | en |
| dc.contributor.author | 潘信銨 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:55:53Z | - |
| dc.date.available | 2012-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-09 | |
| dc.identifier.citation | 游智偉、劉興旺、楊正釧、郭幸榮。2009年。生長在不同光度及施肥量下闊葉樹苗木之光合作用及葉綠素螢光表現。中華林學季刊。42(2):267-282.
楊玉婷。2010年。全球蘭花發展現況與未來展望-兼論我國蝴蝶蘭與文心蘭發展策略。台灣經濟研究月刊。33(3):36-41. Andrea, I., Qiuju, Y., Patrick, S., Peter, B., and Salim, Al-B. (2010) Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta. 232:691–699. Auldridge, M.E., Block, A., Vogel, J.T., Dabney-Smith, C., Mila, I., Bouzayen, M., Magallanes-Lundback, M., DellaPenna, D., McCarty, D.R., and Klee, H.J. (2006a). Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J. 45: 982-993. Auldridge, M.E., McCarty, D.R., and Klee, H.J. (2006b). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 9: 315-321. Belarmino, M, M., and Mii, M. (2000). Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep. 19: 435–442. Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H., and Leyser, O. (2004). MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14: 1232-1238. Cao, X., and Jacobsen, S.E. (2002). Locus-specific control of asymmetric and CpNpGmethylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad SciUSA. 99:16491–16498. Carmen, G.L., Kerstin, S.B., Rosario, B. P., M. L., Jose, L. C., Wilfried, S., and Andjuan M. OZ B. (2008)Functional Characterization of FaCCD1: A Carotenoid Cleavage Dioxygenase from Strawberry Involved in Lutein Degradation during Fruit Ripening. J. Agric. Food Chem. 56, 9277–9285. Chan, S.W., Henderson, I.R., Zhang, X., Shah, G., Chien, J.S., and Jacobsen, S.E. (2006)RNAi, DRD1, and histone methylation actively target developmentally importantnon-CGDNA methylation in Arabidopsis. PLoS Genet 2:e83. Chiou, C.Y., Pan, H.A., Chuang, Y.N., and Yeh, K.W.(2010)Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta. 232:937–948. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. (1997). Prediction of transmembrane alpha-helices in procariotic membrane proteins: the Dense Alignment Surface method. Prot. Eng. 10: 673-676. Daniela, S., Floss., and Michael, H. W. Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. (2009)Plant Signaling & Behavior. 4:3, 172-175. Dahiya, R., and Li, L.C. (2002). Methprimer: designing primers for methylation PCRs. Bioinformatics. 18: 1427-1431. Demmig-Adams, B., W. W. Adams III., D. H.Barker, B. A., Logan, D. R. Bowlong., and A. S. V. (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum. 98: 253-264. Derks, S., Lentjes, M.H.F.M., Hellebrekers, D.M.E.I., Bruine, A.P.D., Herman, J.G., and Engeland, M.V. (2004). Methylation-specific PCR unraveled. Cellular Oncology. 26:291-299. Diretto, G., Tavazza, R., Welsch, R., Pizzichini, D., Mourgues, F., Papacchioli, V., Beyer, P., and Giuliano, G. (2006). Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biology. 6:13. Galpaz, N., Ronen, G., Khalfa, Z., Zamir, D., and Hirschberg, J. (2006). A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell. 18:1947–1960. Grlesbach, R.J. (1984). Effects of carotenoid-anthocyanin combinations on flower color. J. Heredity. 75:145-147. Hew, C.S. (1978). Crassulacean acid metabolism in young orchid seedlings. Proc. of the Symposium on Orchidology, Singapore. 13-17. Hew, C.S., and Khoo, S.I. (1980). Photosynthesis of young orchid seedlings. New Phytologist. 86: 349-357. Hieber, A.D., Mudalige-Jayawickrama, R.G., and Kuehnle, A.R. (2006). Color genes in the orchid Oncidium Gower Ramsey: identification, expression, and potential genetic instability in an interspecific cross. Planta. 223: 521-531. Jonathan, T. V., Bao-C, T., Donald R, M., and Harry, J. K. (2008) The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions. The Journal of Biological Chemistry. 283, 17: 11364–11373. Kato, M., Matsumoto, H., Ikoma, Y., Okuda, H., and Yano, M. (2006). The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. J. Exp. Bot. 57: 2153-2164. Kishimoto, S., Sumitomo, K., Yagi, M., Nakayama, M., and Ohmiya, A. (2007). Three Routes to Orange Petal Color via Carotenoid Components in 9 Compositae Species. J. Japan Soc. Hort. Sci. 76: 250–257. Law, R.D., and Suttle, J.C. (2005). Chromatin remodelling in plant cell culture: patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. Plant Physiol. Biochem. 43:527-534. Law, J.A., and Jacobsen, S.E. (2009). Dynamic DNA Methylation. Science. 323: 1568-1569. Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum,C.M., Henikoff, S., and Jacobsen, S.E. (2001). Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science. 292:2077–2080. Ling, B., Eun-Ha, K., Dean D.P., and Thomas, P. B.(2009)Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. The Plant J. 59:588–599. Liu, Q., Xu, J., Liu, Y., Zhao, X., Deng, X., Guo, L., and Gu, J. (2007). A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck ). J. Exp. Bot. 58: 4161-4171. Lu, S., and Li, L. (2008). Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50: 778-785. Masaya K., Hikaru M., Yoshinori I., Hitoshi O. and Masamichi Y. (2006) The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation incitrus fruit. Journal of Experimental Botany. 57, 10:2153–2164. Mathieu, S., Terrier, N., Procureur, J., Bigey, F., and Gunata, Z. (2005). A Carotenoid Cleavage Dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J. Exp. Bot. 56: 2721-2731. Maxwell, K. and G. M. J. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany. 51: 659-668. Mei Z., Ping L., Guanglian Z., Xiangxin L. (2009) Cloning andfunctionalanalysisof 9-cis-epoxycarotenoid dioxygenase(NCED) genes encoding a key enzyme durin gabscisic acid biosynthesis from peach and grapefruits. Journal of Plant Physiology. 166:1241-1252. Naik, P.S., Chanemougasoundharam, A., Paul Khurana, S.M., and Kalloo, G. (2003). Genetic manipulation of carotenoid pathway in higher plants. Curr. Science. 85: 1423-1430. Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., and Sumitomo, K. (2006). Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 142: 1193-1201. Rai, M., Datta, K., Parkhi, V., Tan, J., Oliva, N., Chawla, H.S., Datta, S.K. (2007). Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice. Plant Cell Reports. 26:1221-1231. Schubert, N., Garcia, M. E., and Pacheco, R. I. (2006). Carotenoid composition of marine red algae. J. Phycology. 42: 1208-1216. Schwartz, S.H., Qin, X., and Zeevaart, J.A. (2001). Characterization of a novel carotenoid cleavage dioxygenase from plants. J. Biol. Chem. 276: 25208-25211. Shen, C.H., Krishnamurthy, R., and Yeh, K.W. (2009). Decreased L-Ascorbate Content Mediating Bolting is Mainly Regulated by the Galacturonate Pathway in Oncidium. Plant and Cell Physiology. 5:935-946. Shen, C.H., and Yeh, K.W. (2010). Hydrogen peroxide mediates the expression of ascorbate-relatedgenes in response to methanol stimulation in Oncidium. Journal of plant physiology. 167:400-407. Shibukawa, T., Yazawa, K., Kikuchi, A., and Kamada, H. (2009). Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5’-upstream region. Gene. 437: 22-31. Simkin, A.J., Schwartz, S.H., Auldridge, M., Taylor, M.G., and Klee, H.J. (2004a). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles b-ionone, pseudoionone, and geranylacetone. Plant J. 40: 882-892. Simkin, A.J., Underwood, B.A., Auldridge, M., Loucas, H.M., Shibuya, K., Schmelz, E., Clark, D.G., and Klee, H.J. (2004b). Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of b-ionone, a fragrance volatile of petunia flowers. Plant Physiol. 136: 3504-3514. Tan, J., Wang, H.L., and Yeh, K.W. (2005). Analysis of organ-specific, expressed genes in Oncidium orchid by subtractive expressed sequence tags library. Biotechnol. Lett. 27: 1517-1528. Vishnevetsky, M., Ovadis, M., Zuker, A., and Vainstein, A. (1999a). Molecular mechanisms underlying carotenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes. Plant J. 20: 423-431. Vishnevetsky, M., Ovadis, M., and Vainstein, A. (1999b). Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci. 4: 232-235. Yamamizo, C., Kishimoto, S., and Ohmiya, A. (2010). Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. J Exp Bot. 61:709-719. Yamagishi, M., Kishimoto, S., and Nakayama, M. (2009). Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily. Plant Breeding. 128:172–177. Yang, J., Lee, H.J., Shin, D.H., Oh, S.K., Seon, J.H., Paek, K.Y., and Han, K.H. (1999). Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep. 18: 978-984. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48414 | - |
| dc.description.abstract | 香吉士(Oncidium Gower Ramsey ‘Sunkist’)與白玉(Oncidium Gower Ramsey ‘White Jade’ ) 為萳西文心蘭(Oncidium Gower Ramsey)的突變種,本研究目的在分析及研究這三者文心蘭中花色差異與類胡蘿蔔素形成機制之相關性及carotenoid cleavage dioxygenase 1 (OgCCD1s)、9-cis-epoxycarotenoid dioxygenase (OgNCED)生理生化功能。
首先利用高效液相層析儀鑑定香吉士文心蘭花朵中類胡蘿蔔素組成的種類與萳西文心蘭幾乎相同(lutein、violaxathin、9-cis-violaxathin和neoxanthin),但額外多出β-carotene;而在白玉文心蘭的花朵中偵測不到類胡蘿蔔素的累積。檢測ABA含量發現白玉文心蘭含量較高且經觀察有提早老化現象。分析九個參與類胡蘿蔔素生合成與代謝基因在花苞成熟時期的表達量,發現香吉士文心蘭中β-hydroxylase (OgHyb)與zeaxathin epoxidase (OgZep)的表現量比萳西文心蘭低,此結果可能是造成香吉士文心蘭花苞中累積β-carotene的原因;而白玉文心蘭中與類胡蘿蔔素生合成相關基因的表達與萳西文心蘭並無差異,但參與類胡蘿蔔素代謝的基因OgCCD1在白玉文心蘭中卻大量表現,此結果可能是造成白玉文心蘭花苞中類胡蘿蔔素無法累積的原因。利用基因槍將花苞專一表達啟動子(Pchrc)驅動OgCCD1基因的載體送入萳西唇辦組織中進行短暫性表現分析,發現類胡蘿蔔素會因OgCCD1的活化表現而被分解。進一步釣取OgCCD1啟動子進行甲基化特異PCR方法分析(Methylated-specific primer,MSP),發現OgCCD1啟動子在萳西文心蘭中有被甲基化的現象,而白玉文心蘭卻無此現象發生。由此證明OgCCD1的表達是白玉文心蘭花朵呈現白色的主因。 從萳西、白玉文心蘭花朵Lambda phage cDNA library中釣取五條OgCCD1家族成員。OgCCD1及OgNCED胞內定位結果顯示, OgCCD1表現於葉綠體細胞膜上及細胞質中,而OgNCED則表現於葉綠體內。比較對照組與大量表達OgCCD1s及OgNCED的 阿拉伯芥轉殖株,發現根系變短、ABA含量較高及提早老化、光化學消散(photochemical quenching, qP)及非光化學消散(non-photochemical quenching,NPQ)能力較差、整體carotenoid含量下降、累積較多的apocarotenoid及非生物逆境之耐受性較差。由此證明阿拉伯芥轉植株之carotenoid被大量分解,導致自我保護能力下降,而迫使植株提早進入生殖世代。 | zh_TW |
| dc.description.abstract | Oncidium Gower Ramsey ‘Sunkist’ (Sun) and Oncidium Gower Ramsey ‘White Jade’ (WJ), occurred naturally from an original variety of Oncidium Gower Ramsey (GR) in an orchid farm. This study was to analyze and examine the relationship of carotenoid biosynthesis and accumulation mechanisms and coloration diversities among these three cultivars, and physiological and biochemical functions of OgCCD1s and OgNCED. The HPLC analysis revealed that yellow Gower Ramsey accumulated lutein, violaxathin, 9-cis-violaxathin and neoxanthin; orange ‘Sunkist’ accumulated an additional β-carotene, and ‘White Jade’ is devoid of carotenoid compounds. ‘White Jade’ contained higher ABA and its flower senescence was accelerated. Nine expressed genes involved in carotenoid biosynthesis in mature bud period were analyzed and found that expression level of β-hydroxylase (OgHYB) and zeaxathin epoxidase (OgZEP) was displayed in yellow Gower Ramsey, relative to the down-regulation of OgHYB and OgZEP exhibited in orange Sunkist, which resulted in the accumulation of β-carotene and orange coloration in ‘Sunkist’ floral tissues. However, White Jade is caused by the up-regulation of OgCCD1 (Carotenoid Cleavage Dioxygenase 1), which catabolizes carotenoid metabolites. Transient expression of bud-specific promoter (Pchrc) driven OgCCD1 in yellow lip tissues of Gower Ramsey by bombardment confirmed its function on disintegrating carotenoid compounds. Methylation assay of OgCCD1 promoter in White Jade and Gower Ramsey revealed that hyper DNA methylation presented in OgCCD1 promoter region of Gower Ramsey, but not in that of White Jade. It suggests that OgCCD1 involved in pigmentation loss of ‘White Jade’.
Five members of OgCCD1 family were cloned form flower tissue of White Jade and Gower Ramsey with Lambda phage cDNA library. Localization of OgCCD1 and OgNCED in protoplast of Arabidopsis by Confocal microscopy revealed that OgCCD1 was expressed in the chloroplast membrane and cytosol and OgNCED was expressed in the chloroplast. In addition, OgCCD1s and OgNCED T3 transgenic Arabidopsis showed shorter root length, higher ABA content, more apocarotenoid accumulation and early senescence, and poor tolerance with abiotic stress than control group. This study suggested that OgCCD1 is involved in the formation of white floral coloration flower in Oncidium Gower Ramsey ‘White Jade’ by disintegrating carotenoid compounds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:55:53Z (GMT). No. of bitstreams: 1 ntu-100-R97b42032-1.pdf: 23366832 bytes, checksum: 8baa13c0941b35cef2360dbfcc8abc7e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書.............................i
致謝.................................ii 目錄.................................iii 圖目錄.................................v 中文摘要...............................vii 英文摘要...............................ix 第一章 前言..............................1 第一節 文心蘭(Oncidium)簡介及研究狀況...............1 第二節 花色的介紹.........................2 第三節 植物類胡蘿蔔素的生合成...................3 第四節 植物carotenoid的新陳代謝..................4 第五節 植物基因體中DNA甲基化的後成(表觀遺傳)調節.........5 第六節 本論文研究方向.......................6 第二章 材料與方法...........................8 第一節 文心蘭類胡蘿蔔素含量分析..................8 第二節 觀察萳西、白玉文心蘭老化情形及ABA含量分析.........9 第三節 文心蘭類胡蘿蔔素調控基因之選殖及表現量分析.........10 第四節 利用基因槍法(particle bombardment)轉殖文心蘭花辦組織....23 第五節 OgCCD1啟動子選殖與分析..................25 第六節 萳西、白玉文心蘭花朵Lambda phage cDNA library構築.....33 第七節 以阿拉伯芥研究 OgCCDs及OgNCED基因之功能性分析......45 第八節 文心蘭基因轉殖.......................52 第三章 結果..............................54 第四章 討論..............................68 參考文獻...............................74 圖表.................................82 附圖.................................109 附表.................................114 | |
| dc.language.iso | zh-TW | |
| dc.subject | CCD基因 | zh_TW |
| dc.subject | 萳西文心蘭(Oncidium Gower Ramsey) | zh_TW |
| dc.subject | 香吉士文心蘭(Oncidium Gower Ramsey ‘Sunkist’) | zh_TW |
| dc.subject | 白玉文心蘭(Oncidium Gower Ramsey ‘White Jade’ ) | zh_TW |
| dc.subject | 類胡蘿蔔素 | zh_TW |
| dc.subject | carotenoid | en |
| dc.subject | carotenoid cleavage dioxygenase | en |
| dc.subject | Oncidium Gower Ramsey | en |
| dc.subject | Oncidium Gower Ramsey ‘Sunkist’ | en |
| dc.subject | Oncidium Gower Ramsey ‘White Jade’ | en |
| dc.title | 文心蘭花朵中類胡蘿蔔色素合成基因之表達圖譜及其 Carotenoid Cleavage Dioxygenase (CCD)基因之功能性探討 | zh_TW |
| dc.title | The gene expression profile of carotenoid biosynthetic pathway and the functional role of Carotenoid Cleavage Dioxygenase (CCD) in Oncidium floral tissues | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林秋榮,陳文輝,周宏農,陳仁治 | |
| dc.subject.keyword | 萳西文心蘭(Oncidium Gower Ramsey),香吉士文心蘭(Oncidium Gower Ramsey ‘Sunkist’),白玉文心蘭(Oncidium Gower Ramsey ‘White Jade’ ),類胡蘿蔔素,CCD基因, | zh_TW |
| dc.subject.keyword | Oncidium Gower Ramsey,Oncidium Gower Ramsey ‘Sunkist’,Oncidium Gower Ramsey ‘White Jade’,carotenoid,carotenoid cleavage dioxygenase, | en |
| dc.relation.page | 114 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-09 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 22.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
