Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48404
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秋坤(Tsiu-Kwen LEE)
dc.contributor.authorHung-Yuan Chenen
dc.contributor.author陳弘遠zh_TW
dc.date.accessioned2021-06-15T06:55:29Z-
dc.date.available2011-02-20
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-02-09
dc.identifier.citation[BMM] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, “Rings with Generalized
Identities”, Monographs and Textbooks in Pure and Applied Mathematics, 196.
Marcel Dekker, Inc., New York, 1996.
[BG00] J. Bergen and P. Grzeszczuk, Skew derivations whose invariants satisfy a polynomial
identity, J. Algebra 228(2) (2000), 710–737.
[Br91] M. Brešar, On the distance of the composition of two derivations to the generalized
derivations, Glasgow Math. J. 33(1) (1991), 89–93.
[Br93] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156(2)
(1993), 385–394.
[Br04] M. Brešar, Commuting maps: a survey, Taiwanese J. Math. 8(3) (2004), 361–397.
[Br05] M. Brešar, The range and kernel inclusion of algebraic derivations and commuting
maps, Quart. J. Math. 56(1) (2005), 31–41.
[Ch87] C.-L Chuang, The additive subgroup generated by a polynomial, Israel J. Math.
59(1) (1987), 98–106.
[Ch88] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math.
Soc. 103 (1988), 723–728.
[Ch90] C.-L. Chuang, On ranges of polynomials in finite matrix rings, Proc. Amer. Math.
Soc. 110(2) (1990), 293–302.
[CL04] C.-L. Chuang and T.-K. Lee, Algebraic q-skew derivation, J. Algebra 282(1) (2004),
1–22.
[CL05-1] C.-L. Chuang and T.-K. Lee, Identities with a single skew derivations., J. Algebra
288(1) (2005), 59–77.
[CL05-2] C.-L. Chuang and T.-K. Lee, q-Skew derivations and polynomial identities, Manuscripta
Math. 116(2) (2005), 229–243.
[CL10] C.-L. Chuang and T.-K. Lee, Density of polynomial maps, Canad. Math. Bull. 53
(2010), 223–229.
[CLW08] C.-L. Chuang, T.-K. Lee, and T.-L. Wong, The kernel and range inclusions of
integral derivations in semiprime rings, J. Algebra 320(7) (2008) 2643–2658.
[FU63] C. Faith and Y. Utumi, On a new proof of Litoff’s theorem, Acta Math. Acad. Sci.
Hungar. 14 (1963), 369–371.
[Fi09] V.D. Filippis, Generalied derivations with Engel condition on multilinear polynomials,
Israel J. Math. 171 (2009), 325–348.
[He79] I. N. Herstein, Center-like elements in prime rings, J. Algebra 60(2) (1979), 567–574
[Ja75] N. Jacobson, “PI-algebras: an introduction”, Lecture Notes in Mathematics 441.
Springer-Verlag, Berlin, 1975.
[Kh75] V.K. Kharchenko, Generalized identities with automorphisms, Algebra i Logi-ka 14
(1975), 132–148. (Engl. Transl., Algebra and Logic 14 (1975), 132–148.)
[Kh78] V.K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978),
220–238. (Engl. Transl., Algebra and Logic 17 (1978), 155–168.)
[Kh79] V.K. Kharchenko, Differential identities of semiprime rings, Algebra and Logic 18
(1979), 86–119.
[La93] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118
(1993), 731-734.
[La92] C. Lanski, Differential identities of prime rings, Kharchenko’s theorem, and applications,
Contemp. Math. 124 (1992), 111-128.
[LM72] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2,
Pacific J. Math. 42 (1972), 117–136.
[LL96] P.-H. Lee and T.-K. Lee, Derivations with Engel conditions on multilinear polynomials,
Proc. Amer. Math. Soc. 124(9) (1996), 2625–2629.
[LW95] P.-H. Lee and T.-L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math.
Acad. Sinica 23(1) (1995), 1–5
[Le92] T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad.
Sinica 20 (1992), 27–38.
[Le98] T.-K. Lee, Derivations with Engel conditions on polynomials, Algebra Colloq. 5
(1998), 13–24.
[Le99] T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27(8)
(1999), 4057–4073.
[LS98] T.-K. Lee and W.-K. Shiue, Derivations cocentralizing polynomials, Taiwanese J.
Math. 2(4) (1998), 457–467.
[LW04] T.-K. Lee and T.-L.Wong, Linear generalized polynomials with finiteness conditions,
Comm. Algebra 32(12) (2004), 4535–4542.
[Le86] A. Leroy, Algebraic S-derivation over prime rings, Ring theory (Antwerp, 1985)
Lecture Notes in Math. 1197 (1986), 114-120.
[Ma69] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J.
Algebra 12 (1969), 576–584.
[MM83] W.S. Martindale III and C.R. Miers, On the iterates of derivations of prime rings,
Pacific J. Math. 104(1) (1983), 179–190.
[Po57] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957),
1093–1100.
[Ro80] L.H. Rowen, “Polynomial identities in ring theory”, Pure and Applied Mathematics,
84. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-
London, 1980.
[Vu90] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer.
Math. Soc. 109 (1990), 47–52.
[Wo97] T.-L. Wong, Derivations cocentralizing multilinear polynomials, Taiwanese J. Math.
1(1) (1997), 31–37.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48404-
dc.description.abstractThis thesis focuses on kernel inclusions of algebraic automorphisms, generalized derivations with Engel conditions and generalized derivations cocentralizing polynomials. In Chapter 1 we consider algebraic automorphisms with kernel inclusions. Let R be a prime ring. For an automorphism σ of R we let R(σ) def. = {x ∈ R | σ(x) = x}. Assume that σ is algebraic. We characterize the automorphism τ of R such that R(σ) ⊆ R(τ).
In Chapters 2,3 and 4 we consider certain identities with generalized derivations. Firstly, we concern generalized derivations cocentralizing polynomials. Let R be a prime ring with extended centroid C and let f(X1, . . . ,Xt) be a polynomial over C with zero constant term. Let D and G be generalized derivations of R. We characterize D,G and f(X1, . . . ,Xt) satisfying
D(f(x1, . . . , xt))f(x1, . . . , xt) − f(x1, . . . , xt)G(f(x1, . . . , xt))∈ C for all x1, . . . , xt in R.
Secondly, we consider certain Engel conditions on polynomials with generalized derivations. Precisely, we characterize D and f(X1, . . . ,Xt) such that the following Engel identity is satisfied:
[D(f(x1, . . . , xt)), f(x1, . . . , xt)]k= 0
for all x1, . . . , xt in R.
At the end, we concern a generalization of the previous two situations. Precisely, we characterize D,G and f(X1, . . . ,Xt) satisfying
[D(f(x1, . . . , xt))f(x1, . . . , xt)−f(x1, . . . , xt)G(f(x1, . . . , xt)), f(x1, . . . , xt)]k= 0
for all x1, . . . , xt in R.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:55:29Z (GMT). No. of bitstreams: 1
ntu-100-D95221003-1.pdf: 421758 bytes, checksum: 07ba77500807f41b3448afa589aaeff3 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsIntroduction 1
Chapter 0. Preliminaries 6
Chapter 1. Kernel Inclusions of Algebraic Automorphisms 10
Chapter 2. Generalized Derivations Cocentralizing Polynomials 19
Chapter 3. Generalized Derivations with Engel Conditions 43
Chapter 4. Generalized Derivations with Engel Conditions II 59
References 88
dc.language.isoen
dc.subject推廣微分算子zh_TW
dc.subject質環zh_TW
dc.subject推廣恆等式zh_TW
dc.subject微分等式zh_TW
dc.subjectEngel條件zh_TW
dc.subject恆心包含關係zh_TW
dc.subject自同構zh_TW
dc.subject協同中心化zh_TW
dc.subjectEngel Conditionen
dc.subjectautomorphismen
dc.subjectPrime ringen
dc.subjectGPIen
dc.subjectDifferential identityen
dc.subjectkernel inclusionen
dc.subjectgeneralized derivationen
dc.subjectcocentralizingen
dc.title具Engel條件之導算恆等式zh_TW
dc.titleDifferential Identities with Engel Conditionsen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee李白飛(Pjek-Hwee Lee),莊正良(Chen-Lian Chuang),王彩蓮(Tsai-Lien Wong),劉承楷(Cheng-Kai Liu)
dc.subject.keyword質環,推廣恆等式,微分等式,Engel條件,恆心包含關係,自同構,協同中心化,推廣微分算子,zh_TW
dc.subject.keywordPrime ring,GPI,Differential identity,Engel Condition,kernel inclusion,automorphism,cocentralizing,generalized derivation,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2011-02-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
411.87 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved