請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48400完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許秉寧 | |
| dc.contributor.author | Wei-Cheng Lin | en |
| dc.contributor.author | 林威成 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:55:20Z | - |
| dc.date.available | 2016-03-03 | |
| dc.date.copyright | 2011-03-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-10 | |
| dc.identifier.citation | Akopyants, N.S., Clifton, S.W., Kersulyte, D., Crabtree, J.E., Youree, B.E., Reece, C.A., Bukanov, N.O., Drazek, E.S., Roe, B.A., and Berg, D.E. (1998). Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 28, 37-53.
Ashkenazi, A., Pai, R.C., Fong, S., Leung, S., Lawrence, D.A., Marsters, S.A., Blackie, C., Chang, L., McMurtrey, A.E., Hebert, A., et al. (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104, 155-162. Bamford, K.B., Fan, X., Crowe, S.E., Leary, J.F., Gourley, W.K., Luthra, G.K., Brooks, E.G., Graham, D.Y., Reyes, V.E., and Ernst, P.B. (1998). Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 114, 482-492. Blaser, M.J., Perez-Perez, G.I., Kleanthous, H., Cover, T.L., Peek, R.M., Chyou, P.H., Stemmermann, G.N., and Nomura, A. (1995). Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55, 2111-2115. Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R., and Covacci, A. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93, 14648-14653. Chang, K.C., Yeh, Y.C., Lin, T.L., and Wang, J.T. (2001). Identification of genes associated with natural competence in Helicobacter pylori by transposon shuttle random mutagenesis. Biochem Biophys Res Commun 288, 961-968. Chou, A.H., Tsai, H.F., Lin, L.L., Hsieh, S.L., Hsu, P.I., and Hsu, P.N. (2001). Enhanced proliferation and increased IFN-gamma production in T cells by signal transduced through TNF-related apoptosis-inducing ligand. J Immunol 167, 1347-1352. Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone, A., Papini, E., Xiang, Z., and Figura, N. (1993). Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A 90, 5791-5795. Covacci, A., and Rappuoli, R. (2000). Tyrosine-phosphorylated bacterial proteins: Trojan horses for the host cell. J Exp Med 191, 587-592. D'Elios, M.M., Manghetti, M., De Carli, M., Costa, F., Baldari, C.T., Burroni, D., Telford, J.L., Romagnani, S., and Del Prete, G. (1997). T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J Immunol 158, 962-967. Degli-Esposti, M.A., Dougall, W.C., Smolak, P.J., Waugh, J.Y., Smith, C.A., and Goodwin, R.G. (1997a). The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7, 813-820. Degli-Esposti, M.A., Smolak, P.J., Walczak, H., Waugh, J., Huang, C.P., DuBose, R.F., Goodwin, R.G., and Smith, C.A. (1997b). Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186, 1165-1170. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. Du, M.Q., and Isaccson, P.G. (2002). Gastric MALT lymphoma: from aetiology to treatment. Lancet Oncol 3, 97-104. Duckett, C.S., Nava, V.E., Gedrich, R.W., Clem, R.J., Van Dongen, J.L., Gilfillan, M.C., Shiels, H., Hardwick, J.M., and Thompson, C.B. (1996). A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. Embo J 15, 2685-2694. Eck, M., Schmausser, B., Haas, R., Greiner, A., Czub, S., and Muller-Hermelink, H.K. (1997). MALT-type lymphoma of the stomach is associated with Helicobacter pylori strains expressing the CagA protein. Gastroenterology 112, 1482-1486. Emery, J.G., McDonnell, P., Burke, M.B., Deen, K.C., Lyn, S., Silverman, C., Dul, E., Appelbaum, E.R., Eichman, C., DiPrinzio, R., et al. (1998). Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273, 14363-14367. Fulda, S., Meyer, E., and Debatin, K.M. (2002). Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21, 2283-2294. Greiner, A., Knorr, C., Qin, Y., Sebald, W., Schimpl, A., Banchereau, J., and Muller-Hermelink, H.K. (1997). Low-grade B cell lymphomas of mucosa-associated lymphoid tissue (MALT-type) require CD40-mediated signaling and Th2-type cytokines for in vitro growth and differentiation. Am J Pathol 150, 1583-1593. Heuermann, D., and Haas, R. (1998). A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol Gen Genet 257, 519-528. Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., Higuchi, M., Takahashi, A., Kurashima, Y., Teishikata, Y., et al. (2004). Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem 279, 17205-17216. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., and Hatakeyama, M. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683-686. Hinz, S., Trauzold, A., Boenicke, L., Sandberg, C., Beckmann, S., Bayer, E., Walczak, H., Kalthoff, H., and Ungefroren, H. (2000). Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 19, 5477-5486. Honda, S., Fujioka, T., Tokieda, M., Gotoh, T., Nishizono, A., and Nasu, M. (1998a). Gastric ulcer, atrophic gastritis, and intestinal metaplasia caused by Helicobacter pylori infection in Mongolian gerbils. Scand J Gastroenterol 33, 454-460. Honda, S., Fujioka, T., Tokieda, M., Satoh, R., Nishizono, A., and Nasu, M. (1998b). Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res 58, 4255-4259. Horstmann, M., Erttmann, R., and Winkler, K. (1994). Relapse of MALT lymphoma associated with Helicobacter pylori after antibiotic treatment. Lancet 343, 1098-1099. Huang, S.C., Tsai, H.F., Tzeng, H.T., Liao, H.J., and Hsu, P.N. Lipid raft assembly and Lck recruitment in TRAIL costimulation mediates NF-kappaB activation and T cell proliferation. (2011). J Immunol 186, 931-939. Hussell, T., Isaacson, P.G., Crabtree, J.E., and Spencer, J. (1993). The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet 342, 571-574. Hussell, T., Isaacson, P.G., Crabtree, J.E., and Spencer, J. (1996). Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol 178, 122-127. Jones, N.L., Day, A.S., Jennings, H.A., and Sherman, P.M. (1999). Helicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression. Infect Immun 67, 4237-4242. Kandasamy, K., Srinivasula, S.M., Alnemri, E.S., Thompson, C.B., Korsmeyer, S.J., Bryant, J.L., and Srivastava, R.K. (2003). Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: differential regulation of cytochrome c and Smac/DIABLO release. Cancer Res 63, 1712-1721. Karttunen, R., Karttunen, T., Ekre, H.P., and MacDonald, T.T. (1995). Interferon gamma and interleukin 4 secreting cells in the gastric antrum in Helicobacter pylori positive and negative gastritis. Gut 36, 341-345. Keates, S., Keates, A.C., Warny, M., Peek, R.M., Jr., Murray, P.G., and Kelly, C.P. (1999). Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag+ and cag- Helicobacter pylori. J Immunol 163, 5552-5559. Kischkel, F.C., Lawrence, D.A., Chuntharapai, A., Schow, P., Kim, K.J., and Ashkenazi, A. (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611-620. Krueger, A., Baumann, S., Krammer, P.H., and Kirchhoff, S. (2001). FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 21, 8247-8254. Kuipers, E.J. (1997). Helicobacter pylori and the risk and management of associated diseases: gastritis, ulcer disease, atrophic gastritis and gastric cancer. Aliment Pharmacol Ther 11 Suppl 1, 71-88. Kuipers, E.J., Thijs, J.C., and Festen, H.P. (1995). The prevalence of Helicobacter pylori in peptic ulcer disease. Aliment Pharmacol Ther 9 Suppl 2, 59-69. LeBlanc, H., Lawrence, D., Varfolomeev, E., Totpal, K., Morlan, J., Schow, P., Fong, S., Schwall, R., Sinicropi, D., and Ashkenazi, A. (2002). Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8, 274-281. Lin, T.L., Shun, C.T., Chang, K.C., and Wang, J.T. (2004). Isolation and characterization of a HpyC1I restriction-modification system in Helicobacter pylori. J Biol Chem 279, 11156-11162. Marshall, B.J., and Warren, J.R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315. McEleny, K.R., Watson, R.W., and Fitzpatrick, J.M. (2001). Defining a role for the inhibitors of apoptosis proteins in prostate cancer. Prostate Cancer Prostatic Dis 4, 28-32. Naumann, M., Wessler, S., Bartsch, C., Wieland, B., Covacci, A., Haas, R., and Meyer, T.F. (1999). Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island. J Biol Chem 274, 31655-31662. Ng, C.P., and Bonavida, B. (2002). X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). Mol Cancer Ther 1, 1051-1058. Ohnishi, N., Yuasa, H., Tanaka, S., Sawa, H., Miura, M., Matsui, A., Higashi, H., Musashi, M., Iwabuchi, K., Suzuki, M., et al. (2008). Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci U S A 105, 1003-1008. Ozoren, N., and El-Deiry, W.S. (2002). Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 4, 551-557. Pan, G., Ni, J., Wei, Y.F., Yu, G., Gentz, R., and Dixit, V.M. (1997a). An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277, 815-818. Pan, G., Ni, J., Yu, G., Wei, Y.F., and Dixit, V.M. (1998). TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 424, 41-45. Pan, G., O'Rourke, K., Chinnaiyan, A.M., Gentz, R., Ebner, R., Ni, J., and Dixit, V.M. (1997b). The receptor for the cytotoxic ligand TRAIL. Science 276, 111-113. Parsonnet, J., Friedman, G.D., Orentreich, N., and Vogelman, H. (1997). Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40, 297-301. Parsonnet, J., Hansen, S., Rodriguez, L., Gelb, A.B., Warnke, R.A., Jellum, E., Orentreich, N., Vogelman, J.H., and Friedman, G.D. (1994). Helicobacter pylori infection and gastric lymphoma. N Engl J Med 330, 1267-1271. Peek, R.M., Jr., and Blaser, M.J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2, 28-37. Peek, R.M., Jr., and Crabtree, J.E. (2006). Helicobacter infection and gastric neoplasia. J Pathol 208, 233-248. Peng, H., Ranaldi, R., Diss, T.C., Isaacson, P.G., Bearzi, I., and Pan, L. (1998). High frequency of CagA+ Helicobacter pylori infection in high-grade gastric MALT B-cell lymphomas. J Pathol 185, 409-412. Poppe, M., Feller, S.M., Romer, G., and Wessler, S. (2007). Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 26, 3462-3472. Rudi, J., Kuck, D., Strand, S., von Herbay, A., Mariani, S.M., Krammer, P.H., Galle, P.R., and Stremmel, W. (1998). Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J Clin Invest 102, 1506-1514. Selbach, M., Moese, S., Hauck, C.R., Meyer, T.F., and Backert, S. (2002). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277, 6775-6778. Sheridan, J.P., Marsters, S.A., Pitti, R.M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C.L., Baker, K., Wood, W.I., et al. (1997). Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818-821. Sprick, M.R., Weigand, M.A., Rieser, E., Rauch, C.T., Juo, P., Blenis, J., Krammer, P.H., and Walczak, H. (2000). FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599-609. Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W.J., and Covacci, A. (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 43, 971-980. Suerbaum, S., and Michetti, P. (2002). Helicobacter pylori infection. N Engl J Med 347, 1175-1186. Suzuki, I., and Fink, P.J. (1998). Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J Exp Med 187, 123-128. Tammer, I., Brandt, S., Hartig, R., Konig, W., and Backert, S. (2007). Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 132, 1309-1319. Tummuru, M.K., Cover, T.L., and Blaser, M.J. (1993). Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxin production. Infect Immun 61, 1799-1809. Umehara, S., Higashi, H., Ohnishi, N., Asaka, M., and Hatakeyama, M. (2003). Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 22, 8337-8342. Verhagen, A.M., Ekert, P.G., Pakusch, M., Silke, J., Connolly, L.M., Reid, G.E., Moritz, R.L., Simpson, R.J., and Vaux, D.L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53. Viala, J., Chaput, C., Boneca, I.G., Cardona, A., Girardin, S.E., Moran, A.P., Athman, R., Memet, S., Huerre, M.R., Coyle, A.J., et al. (2004). Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5, 1166-1174. Wagner, S., Beil, W., Westermann, J., Logan, R.P., Bock, C.T., Trautwein, C., Bleck, J.S., and Manns, M.P. (1997). Regulation of gastric epithelial cell growth by Helicobacter pylori: offdence for a major role of apoptosis. Gastroenterology 113, 1836-1847. Walczak, H., Miller, R.E., Ariail, K., Gliniak, B., Griffith, T.S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5, 157-163. Wang, G.Q., Gastman, B.R., Wieckowski, E., Goldstein, L.A., Gambotto, A., Kim, T.H., Fang, B., Rabinovitz, A., Yin, X.M., and Rabinowich, H. (2001). A role for mitochondrial Bak in apoptotic response to anticancer drugs. J Biol Chem 276, 34307-34317. Wang, Y., Roos, K.P., and Taylor, D.E. (1993). Transformation of Helicobacter pylori by chromosomal metronidazole resistance and by a plasmid with a selectable chloramphenicol resistance marker. J Gen Microbiol 139, 2485-2493. Weeks, D.L., Eskandari, S., Scott, D.R., and Sachs, G. (2000). A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287, 482-485. Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., Smith, C.A., and et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673-682. Wotherspoon, A.C., Doglioni, C., Diss, T.C., Pan, L., Moschini, A., de Boni, M., and Isaacson, P.G. (1993). Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 342, 575-577. Wu, Y.Y., Tsai, H.F., Lin, W.C., Chou, A.H., Chen, H.T., Yang, J.C., Hsu, P.I., and Hsu, P.N. (2004). Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells. World J Gastroenterol 10, 2334-2339. Zhu, Y., Wang, C., Huang, J., Ge, Z., Dong, Q., Zhong, X., Su, Y., and Zheng, S. (2007). The Helicobacter pylori virulence factor CagA promotes Erk1/2-mediated Bad phosphorylation in lymphocytes: a mechanism of CagA-inhibited lymphocyte apoptosis. Cell Microbiol 9, 952-961. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48400 | - |
| dc.description.abstract | 胃幽門螺旋桿菌的感染與慢性胃炎和消化性潰瘍甚至是胃癌和胃粘膜相關淋巴組織淋巴瘤的疾病發生有關。胃幽門螺旋桿菌引發胃部疾病的致病性機轉主要可分成兩個部份來探討:一部分是胃幽門螺旋桿菌本身所具有的毒性因子所造成的毒殺作用,另一部份則是引發宿主產生的發炎反應所造成的影響。胃幽門螺旋桿菌造成疾病發生的角色已被證實,但引發致病性的相關機轉仍不清楚。
首先,為了探討胃幽門螺旋桿菌對於腫瘤發生的相關機轉,我們探討胃幽門螺旋桿菌CagA蛋白對於粘膜相關淋巴組織淋巴瘤發生機轉所扮演的角色。先前的研究報告指出胃幽門螺旋桿菌可以藉由依附胃上皮細胞將CagA蛋白送入細胞中,被送入細胞內的CagA蛋白可以調節細胞內的訊息傳導路徑並且引發致病性,因此我們認為在胃幽門螺旋桿菌感染的過程中,可能藉由與B細胞的直接作用來造成粘膜相關淋巴組織淋巴瘤。我們證實胃幽門螺旋桿菌可以將CagA蛋白送入人類B細胞中,並且在細胞內進行酪氨酸的磷酸化作用後,與細胞內的SHP-2進行結合,另外,CagA蛋白還會活化細胞內的ERK與p38 MAP kinase,並且造成細胞內存活相關因子Bcl-2和Bcl-XL的表現量增加,進一步防止細胞死亡。本研究顯示胃幽門螺旋桿菌可以直接將CagA致癌蛋白送入人類的B細胞中,造成粘膜相關淋巴組織淋巴瘤及病的發生。 第二,為了探討宿主因子在胃幽門螺旋桿菌引發疾病的過程中所扮演的角色,於是我們研究胃幽門螺旋桿菌所引起細胞凋亡的現象之中TRAIL分子扮演的角色。在我們先前的研究指出,胃幽門螺旋桿菌可以改變胃上皮細胞對於TRAIL的感受性改變,使細胞進行細胞凋亡,我們進一步研究指出胃幽門螺旋桿菌可引發TRAIL所造成細胞內caspase-8、casapse-3以及mitochondria的活化,因而誘發胃上皮細胞的細胞凋亡作用,同時也發現,胃幽門螺旋桿菌可加強TRAIL所引發death inducing signaling complex (DISC) 的聚集,因此引發足夠多的caspase-8活化,因而打破原本的抗性,造成細胞的敏感性增加,此過程是經由胃幽門螺旋桿菌誘發c-FLIPS的表現量降低所造成,此外,在細胞內過度表現c-FLIPS可以阻斷TRAIL所引起的細胞凋亡,進一步單獨利用c-FLIPS siRNA就可以改變細胞對於TRAIL的感受性,證實其重要性。因此,胃幽門螺旋桿菌可以經由降低細胞內c-FLIPS的表現,因而加強細胞內DISC的聚集,藉此活化較多caspase-8,因而調控胃上皮細胞對於TRAIL的感受性。 總結,致病菌因子與宿主因子在胃幽門螺旋桿菌所導致的疾病發展過程中扮演重要的角色,對於胃幽門螺旋桿菌引發疾病的過程中是很重要的致病機轉。 | zh_TW |
| dc.description.abstract | Infection with the gastric pathogen H. pylori infection has been associated with the development of chronic gastritis and peptic ulcer diseases, moreover, gastric cancer and gastric mucosa-associated lymphoid tissue (MALT) lymphoma. H. pylori infection leads to pathogenesis of gastric diseases mainly by two different mechanisms : direct toxicity of H. pylori virulent factors and induction of inflammatory responses. The role of H. pylori in association with disease development has been demonstrated, however, the mechanisms underlying pathogenesis are still unclear.
First, in order to investigate the mechanisms underlying H. pylori induces the tumourgenesis, we examine the role of H. pylori CagA in the development of MALT lymphoma. Previous studies reveal that H. pylori attaches to the epithelial cells, and translocates CagA proteins into cells. Intracellular CagA deregulates intracellular sighaling pathway and causes the pathogenic effects. This in turn raised the possibility that H. pylori is associated with the development of MALT lymphomas during persistent infection by direct interaction with B lymphocytes. We demonstrated that H. pylori directly translocates CagA into human B cell line and primary B cells. Furthermore, injected CagA undergoes tyrosine phosphorylation and interacts with SHP-2. Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase were activated upon CagA translocation. The cell survival factors, such as Bcl-2 and Bcl-XL were upregulated through the translocated CagA, moreover, prevents apoptosis. These results provide evidence that CagA is directly delivered into B cells by H. pylori and acts as a bacterium-derived oncoprotein in human B cells to cause the development of MALT lymphoma. Second, to study the role of host factors in regulating H. pylori-induced gastric diseases, we investigated the role of TNF related-apoptosis inducing ligand (TRAIL) in the induction of apoptosis during H. pylori infection. In our previous study, we provided the evidences that H. pylori can sensitize human gastric epithelial cells to TRAIL-mediated apoptosis. Further, we demonstrated that H. pylori could sensitize gastric epithelial cells to TRAIL, resulting in caspase-8, caspase-3 and mitochondrial pathway activation and induce apoptosis. H. pylori could enhance the death inducing signaling complex (DISC) assembly and induce sufficient amount of caspase-8 activation to break apoptosis resistance, inducing the TRAIL sensitivity via downregulation of the c-FLIPS in gastric epithelial cells. Overexpression of c-FLIPS could block apoptosis induced by TRAIL in the presence of H. pylori. Moreover, silencing c-FLIPS expression by siRNA increased TRAIL-induced apoptosis in human gastric epithelial cells. In summary, our data suggest that H. pylori could downregulate the expression level of c-FLIPS, resulting in enhanced DISC assembly and caspase-8 activation to modulate TRAIL-mediated apoptosis in gastric epithelial cells. Taken together, pathogen and host factors are critical in the development of H. pylori-associated diseases, the interplay between H. pylori and immune cells as well as gastric epithelial cells play important roles in the pathogenesis of H. pylori-mediated gastric disease. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:55:20Z (GMT). No. of bitstreams: 1 ntu-100-D92449003-1.pdf: 3124331 bytes, checksum: fe5fe6856cbd729eb88d55d6ab18aa9e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | CHAPTERⅠ Introduction 1
Background 2 1. Helicobacter pylori 2 2. H. pylori pathogenesis 2 3. H. pylori CagA and Cancer 4 4. H. pylori and gastric MALT lymphoma 5 5. H. pylori and apoptosis 5 6. TRAIL and TRAIL receptors 6 7. TRAIL-induced signaling 7 8. Regulation of TRAIL induced apoptosis 8 9. c-FLIP 11 Aims of this study 11 The role CagA in the development of gastric MALT lymphoma 11 The molecular mechanisms of TRAIL-induced apoptosis during H. pylori infection 12 CHAPTERⅡ Materials and methods 14 Materials 15 1. Cells 15 2. Bacteria 15 3. Antibodies 16 4. Chemicals and reagents 18 5. Medium and Buffer 20 6. General materials 22 Methods 23 1. Expression and purification of recombinant TRAIL protein 24 Purification of His-TRAIL protein 24 Examine the function of His-TRAIL by PI staining 25 2. Cell apoptosis assay 25 Cell death detection ELISA 25 3. Cell viability assay 26 MTT assay 26 4. DISC analysis 26 5. Western blot 26 6. Preparation of the cytosolic fraction for the analysis of cytochrome c release 27 7. Isolation of human B lymphocytes 27 Purification of PBMC by Ficoll-Paque PLUS density preparation 27 Isolation of human B cells by PE-labeled cell selection cocktail 28 8. Cell surface staining 28 9. Establishment of H. pylori mutants 29 Constructions of cagA and cagE mutants 29 Construction of CagA-EGFP H. pylori 29 10. Cellular fractionation 31 11. Laser scanning confocal immunofluorescence microscopy 31 12. H. pylori culture 31 13. Immunoprecipitation and co-immunoprecipitation 32 14. RNAi knockdown assay 32 CHAPTERⅣ Results 33 PartⅠ The role of CagA in the development of gastric MALT lymphoma 34 1. H. pylori could directly translocate CagA into the human B cell line BJAB. 34 2. H. pylori could translocate CagA into B cells through type IV secretion system 35 3. CagA translocation induces activation of mitigen-activated protein kinase and upregulation of the anti-apoptotic proteins, Bcl-2 and Bcl-XL, in human B lymphocytes 36 4. Direct translocation of the CagA protein into primary human B lymphocytes after infection with H. pylori 37 PartⅡ The molecular mechanisms of TRAIL-induced apoptosis during H. pylori infection 37 1. H. pylori sensitizes gastric epithelial cells to TRAIL-induced apoptosis 37 2. H. pylori induces TRAIL sensitivity is dependent on caspase activation 38 3. H. pylori regulates TRAIL apoptotic signal via the mitochondrial type Ⅱ pathway 39 4. H. pylori enhances TRAIL-induced death inducing signaling complex 39 5. H. pylori regulates TRAIL-induced apoptosis by downregulating FLIPS expression 40 CHAPTERⅤ Discussions 42 1. H. pylori directly translocates CagA oncoprotein into human B cells 43 2. CagA provides oncogenic potential for the development of MALT lymphoma 43 3. Synergistic effect of CagA in the regulation of B cells activation 45 4. H. pylori regulates TRAIL sensitivity by affecting intracellular caspase signaling pathway, rather than upregulating the surface expression of death receptors 45 5. H. pylori modulates TRAIL-induced apoptosis through mitochondrial signaling pathway 47 6. H. pylori enhances TRAIL-induced DISC assembly 48 7. Downregulation of c-FLIPS is critical for H. pylori-induced TRAIL sensitivity 48 8. Conclusions 49 References 50 Figures 64 Appendix 93 | |
| dc.language.iso | en | |
| dc.subject | 胃上皮細胞 | zh_TW |
| dc.subject | 胃幽門螺旋桿菌 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 胃粘膜相關淋巴組織淋巴瘤 | zh_TW |
| dc.subject | B cells | en |
| dc.subject | H. pylori | en |
| dc.subject | apoptosis | en |
| dc.subject | gastric mucosa-associated lymphoid tissue (MALT) lymphoma | en |
| dc.subject | TRAIL | en |
| dc.subject | gastric epithelial cells | en |
| dc.title | 胃幽門螺旋桿菌在調控細胞活化與凋亡之研究 | zh_TW |
| dc.title | Regulation of host cells activation and apoptosis by H. pylori | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王錦堂,謝世良,司徒惠康,嚴仲陽 | |
| dc.subject.keyword | 胃幽門螺旋桿菌,細胞凋亡,胃粘膜相關淋巴組織淋巴瘤,胃上皮細胞, | zh_TW |
| dc.subject.keyword | H. pylori,apoptosis,gastric mucosa-associated lymphoid tissue (MALT) lymphoma,TRAIL,gastric epithelial cells,B cells, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
