Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48374
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈麗娟
dc.contributor.authorShu-Yuan Huangen
dc.contributor.author黃淑媛zh_TW
dc.date.accessioned2021-06-15T06:54:22Z-
dc.date.available2016-03-03
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-02-11
dc.identifier.citation1. Nicholson, J.K. & Lindon, J.C. Systems biology: Metabonomics. Nature 455, 1054-1056 (2008).
2. Wishart, D.S., et al. HMDB: the Human Metabolome Database. Nucleic Acids Res 35, D521-526 (2007).
3. Wishart, D.S. Proteomics and the human metabolome project. Expert Rev Proteomics 4, 333-335 (2007).
4. Noguchi, Y., Sakai, R. & Kimura, T. Metabolomics and its potential for assessment of adequacy and safety of amino acid intake. J Nutr 133, 2097S-2100S (2003).
5. Jepson, R.E., Syme, H.M., Vallance, C. & Elliott, J. Plasma asymmetric dimethylarginine, symmetric dimethylarginine, l-arginine, and nitrite/nitrate concentrations in cats with chronic kidney disease and hypertension. J Vet Intern Med 22, 317-324 (2008).
6. Gimbrone, M.A., Jr. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol 75, 67B-70B (1995).
7. Blum, M., et al. Low nitric oxide production in patients with chronic renal failure. Nephron 79, 265-268 (1998).
8. Aiello, S., et al. Renal and systemic nitric oxide synthesis in rats with renal mass reduction. Kidney International 52, 171-181 (1997).
9. Erdely, A., Wagner, L., Muller, V., Szabo, A. & Baylis, C. Protection of wistar furth rats from chronic renal disease is associated with maintained renal nitric oxide synthase. J Am Soc Nephrol 14, 2526-2533 (2003).
10. Schmidt, R.J. & Baylis, C. Total nitric oxide production is low in patients with chronic renal disease. Kidney International 58, 1261-1266 (2000).
11. Schmidt, R.J., Yokota, S., Tracy, T.S., Sorkin, M.I. & Baylis, C. Nitric oxide production is low in end-stage renal disease patients on peritoneal dialysis. American Journal of Physiology 276, F794-797 (1999).
12. Wever, R., et al. Nitric oxide production is reduced in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 19, 1168-1172 (1999).
13. Baylis, C., Mitruka, B. & Deng, A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90, 278-281 (1992).
14. Wagner, L., Riggleman, A., Erdely, A., Couser, W. & Baylis, C. Reduced nitric oxide synthase activity in rats with chronic renal disease due to glomerulonephritis. Kidney International 62, 532-536 (2002).
15. Dhanakoti, S.N., Brosnan, J.T., Herzberg, G.R. & Brosnan, M.E. Renal arginine synthesis: studies in vitro and in vivo. American Journal of Physiology 259, E437-442 (1990).
16. Wu, G. & Morris, S.M., Jr. Arginine metabolism: nitric oxide and beyond. Biochemical Journal 336 ( Pt 1), 1-17 (1998).
17. Baylis, C. Nitric oxide deficiency in chronic renal disease. European Journal of Clinical Pharmacology 62, 123-130 (2006).
18. Chan, W., Wang, M., Kopple, J.D. & Swendseid, M.E. Citrulline levels and urea cycle enzymes in uremic rats. J Nutr 104, 678-683 (1974).
19. Tizianello, A., De Ferrari, G., Garibotto, G., Gurreri, G. & Robaudo, C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65, 1162-1173 (1980).
20. Lau, T., et al. Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients. J Clin Invest 105, 1217-1225 (2000).
21. Chen, G.F. & Baylis, C. In vivo renal arginine release is impaired throughout development of chronic kidney disease. Am J Physiol Renal Physiol 298, F95-102 (2010).
22. Bouby, N., Hassler, C., Parvy, P. & Bankir, L. Renal synthesis of arginine in chronic renal failure: in vivo and in vitro studies in rats with 5/6 nephrectomy. Kidney International 44, 676-683 (1993).
23. Ceballos, I., et al. Early alterations of plasma free amino acids in chronic renal failure. Clin Chim Acta 188, 101-108 (1990).
24. Reyes, A.A., Karl, I.E. & Klahr, S. Role of Arginine in Health and in Renal-Disease. American Journal of Physiology 267, F331-F346 (1994).
25. Morris, S.M., Jr. Arginine: beyond protein. Am J Clin Nutr 83, 508S-512S (2006).
26. Rose, W.C., Haines, W.J. & Warner, D.T. The amino acid requirements of man. V. The role of lysine, arginine, and tryptophan. J Biol Chem 206, 421-430 (1954).
27. Flynn, N.E., Meininger, C.J., Haynes, T.E. & Wu, G. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56, 427-438 (2002).
28. Barbul, A. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr 10, 227-238 (1986).
29. Nieves, C., Jr. & Langkamp-Henken, B. Arginine and immunity: a unique perspective. Biomed Pharmacother 56, 471-482 (2002).
30. Mori, M. & Gotoh, T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun 275, 715-719 (2000).
31. Delage, B., et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer 126, 2762-2772 (2010).
32. Morel, F., HusCitharel, A. & Levillain, O. Biochemical heterogeneity of arginine metabolism along kidney proximal tubules. Kidney International 49, 1608-1610 (1996).
33. Husson, A., Brasse-Lagnel, C., Fairand, A., Renouf, S. & Lavoinne, A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem 270, 1887-1899 (2003).
34. Windmueller, H.G. & Spaeth, A.E. Source and fate of circulating citrulline. American Journal of Physiology 241, E473-480 (1981).
35. Xie, L., Hattori, Y., Tume, N. & Gross, S.S. The preferred source of arginine for high-output nitric oxide synthesis in blood vessels. Semin Perinatol 24, 42-45 (2000).
36. Xie, L. & Gross, S.S. Argininosuccinate synthetase overexpression in vascular smooth muscle cells potentiates immunostimulant-induced NO production. J Biol Chem 272, 16624-16630 (1997).
37. Guerreiro, J.R., et al. Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: role in arginine and nitric oxide production. J Biol Chem 284, 20022-20033 (2009).
38. Hattori, Y., Campbell, E.B. & Gross, S.S. Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J Biol Chem 269, 9405-9408 (1994).
39. Komada, Y., Zhang, X.L., Zhou, Y.W., Ido, M. & Azuma, E. Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. Int J Hematol 65, 129-141 (1997).
40. Goodwin, B.L., Solomonson, L.P. & Eichler, D.C. Argininosuccinate synthase expression is required to maintain nitric oxide production and cell viability in aortic endothelial cells. J Biol Chem 279, 18353-18360 (2004).
41. Hao, G., Xie, L. & Gross, S.S. Argininosuccinate synthetase is reversibly inactivated by S-nitrosylation in vitro and in vivo. J Biol Chem 279, 36192-36200 (2004).
42. Flam, B.R., Hartmann, P.J., Harrell-Booth, M., Solomonson, L.P. & Eichler, D.C. Caveolar localization of arginine regeneration enzymes, argininosuccinate synthase, and lyase, with endothelial nitric oxide synthase. Nitric Oxide 5, 187-197 (2001).
43. Galbiati, F., Razani, B. & Lisanti, M.P. Emerging themes in lipid rafts and caveolae. Cell 106, 403-411 (2001).
44. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31-39 (2000).
45. Hardy, T.A. & May, J.M. Coordinate regulation of L-arginine uptake and nitric oxide synthase activity in cultured endothelial cells. Free Radic Biol Med 32, 122-131 (2002).
46. Hecker, M., Sessa, W.C., Harris, H.J., Anggard, E.E. & Vane, J.R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A 87, 8612-8616 (1990).
47. Kurz, S. & Harrison, D.G. Insulin and the arginine paradox. J Clin Invest 99, 369-370 (1997).
48. Shen, L.J., Beloussow, K. & Shen, W.C. Accessibility of endothelial and inducible nitric oxide synthase to the intracellular citrulline-arginine regeneration pathway. Biochem Pharmacol 69, 97-104 (2005).
49. Pollock, J.S., et al. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A 88, 10480-10484 (1991).
50. Nagasaka, H., et al. Evaluation of endogenous nitric oxide synthesis in congenital urea cycle enzyme defects. Metabolism 58, 278-282 (2009).
51. Flam, B.R., Eichler, D.C. & Solomonson, L.P. Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide-Biol Ch 17, 115-121 (2007).
52. Knowles, R.G. & Moncada, S. Nitric-Oxide Synthases in Mammals. Biochemical Journal 298, 249-258 (1994).
53. Schmidt, H.H.H.W. & Walter, U. No at Work. Cell 78, 919-925 (1994).
54. Kone, B.C. & Baylis, C. Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. Am J Physiol-Renal 41, F561-F578 (1997).
55. Yaqoob, M., Edelstein, C.L. & Schrier, R.W. Role of nitric oxide and superoxide balance in hypoxia-reoxygenation proximal tubular injury. Nephrol Dial Transplant 11, 1738-1742 (1996).
56. Tome, L.A., Yu, L., de Castro, I., Campos, S.B. & Seguro, A.C. Beneficial and harmful effects of L-arginine on renal ischaemia. Nephrol Dial Transplant 14, 1139-1145 (1999).
57. Forstermann, U., Gath, I., Schwarz, P., Closs, E.I. & Kleinert, H. Isoforms of Nitric-Oxide Synthase - Properties, Cellular-Distribution and Expressional Control. Biochemical Pharmacology 50, 1321-1332 (1995).
58. Shafer, O.T., Chen, A., Kumar, S.M., Muller, K.J. & Sahley, C.L. Injury-induced expression of endothelial nitric oxide synthase by glial and microglial cells in the leech central nervous system within minutes after injury. P Roy Soc Lond B Bio 265, 2171-2175 (1998).
59. Boo, Y.C., et al. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am J Physiol-Heart C 283, H1819-H1828 (2002).
60. Shen, L.J., et al. Recombinant arginine deiminase as a differential modulator of inducible (iNOS) and endothelial (eNOS) nitric oxide synthetase activity in cultured endothelial cells. Biochem Pharmacol 66, 1945-1952 (2003).
61. Morris, S.M., Jr. & Billiar, T.R. New insights into the regulation of inducible nitric oxide synthesis. American Journal of Physiology 266, E829-839 (1994).
62. Toda, N. Nitric Oxide and Dietary Factors: Part I Nitric Oxide Synthesis and Action. Vascular Disease Prevention 4, 39 (2007).
63. Laursen, J.B., et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103, 1282-1288 (2001).
64. Cai, H. & Harrison, D.G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87, 840-844 (2000).
65. Albrecht, E.W., Stegeman, C.A., Heeringa, P., Henning, R.H. & van Goor, H. Protective role of endothelial nitric oxide synthase. J Pathol 199, 8-17 (2003).
66. Klahr, S. Can L-arginine manipulation reduce renal disease? Semin Nephrol 19, 304-309 (1999).
67. Vallance, P. & Chan, N. Endothelial function and nitric oxide: clinical relevance. Heart 85, 342-350 (2001).
68. Hasegawa, T., Takagi, S., Nishimaki, K., Morita, K. & Nakajima, S. Impairment of L-arginine metabolism in spontaneously hypertensive rats. Biochem Int 26, 653-658 (1992).
69. Fakler, C.R., Kaftan, H.A. & Nelin, L.D. Two cases suggesting a role for the L-arginine nitric oxide pathway in neonatal blood pressure regulation. Acta Paediatr 84, 460-462 (1995).
70. Terasaki, T., et al. New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov Today 8, 944-954 (2003).
71. Hosoya, K.I., et al. mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines; a new in vitro BBB model for drug targeting. J Drug Target 8, 357-370 (2000).
72. Misawa, S., Aoshima, M., Takaku, H., Matsumoto, M. & Hayashi, H. High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. J Biotechnol 36, 145-155 (1994).
73. Mackenzie, I.M., Ekangaki, A., Young, J.D. & Garrard, C.S. Effect of renal function on serum nitrogen oxide concentrations. Clin Chem 42, 440-444 (1996).
74. Miranda, K.M., Espey, M.G. & Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5, 62-71 (2001).
75. Moshage, H., Kok, B., Huizenga, J.R. & Jansen, P.L. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 41, 892-896 (1995).
76. Romitelli, F., et al. Comparison of nitrite/nitrate concentration in human plasma and serum samples measured by the enzymatic batch Griess assay, ion-pairing HPLC and ion-trap GC-MS: the importance of a correct removal of proteins in the Griess assay. J Chromatogr B Analyt Technol Biomed Life Sci 851, 257-267 (2007).
77. Green, L.C., et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126, 131-138 (1982).
78. Misko, T.P., Schilling, R.J., Salvemini, D., Moore, W.M. & Currie, M.G. A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214, 11-16 (1993).
79. Kleinhenz, D.J., Fan, X., Rubin, J. & Hart, C.M. Detection of endothelial nitric oxide release with the 2,3-diaminonapthalene assay. Free Radic Biol Med 34, 856-861 (2003).
80. Kopple, J.D., Jones, M., Fukuda, S. & Swendseid, M.E. Amino acid and protein metabolism in renal failure. Am J Clin Nutr 31, 1532-1540 (1978).
81. Laidlaw, S.A., et al. Patterns of fasting plasma amino acid levels in chronic renal insufficiency: results from the feasibility phase of the Modification of Diet in Renal Disease Study. Am J Kidney Dis 23, 504-513 (1994).
82. Kopple, J.D., Blumenkrantz, M.J., Jones, M.R., Moran, J.K. & Coburn, J.W. Plasma amino acid levels and amino acid losses during continuous ambulatory peritoneal dialysis. Am J Clin Nutr 36, 395-402 (1982).
83. Bergstrom, J., Alvestrand, A. & Furst, P. Plasma and Muscle Free Amino-Acids in Maintenance Hemodialysis-Patients without Protein-Malnutrition. Kidney International 38, 108-114 (1990).
84. Lindholm, B., Alvestrand, A., Furst, P. & Bergstrom, J. Plasma and muscle free amino acids during continuous ambulatory peritoneal dialysis. Kidney International 35, 1219-1226 (1989).
85. Brunini, T.M., et al. Activation of L-arginine transport in undialysed chronic renal failure and continuous ambulatory peritoneal dialysis patients. Clin Exp Pharmacol Physiol 33, 114-118 (2006).
86. Reis, P.F., et al. Plasma amino acid profile and L-arginine uptake in red blood cells from malnourished uremic patients. J Ren Nutr 16, 325-331 (2006).
87. Baylis, C. Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Clin Pract Nephrol 2, 209-220 (2006).
88. Lemke, C.T. & Howell, P.L. Substrate induced conformational changes in argininosuccinate synthetase. J Biol Chem 277, 13074-13081 (2002).
89. Moradi, H., Kwok, V. & Vaziri, N.D. Effect of chronic renal failure on arginase and argininosuccinate synthetase expression. American Journal Of Nephrology 26, 310-318 (2006).
90. Malgorzewicz, S., Debska-Slizien, A., Rutkowski, B. & Lysiak-Szydlowska, W. Serum concentration of amino acids versus nutritional status in hemodialysis patients. J Ren Nutr 18, 239-247 (2008).
91. Brosnan, M.E. & Brosnan, J.T. Renal arginine metabolism. J Nutr 134, 2791S-2795S; discussion 2796S-2797S (2004).
92. Silbernagl, S. The renal handling of amino acids and oligopeptides. Physiol Rev 68, 911-1007 (1988).
93. Wagner, C.A., Lang, F. & Broer, S. Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281, C1077-1093 (2001).
94. Palacin, M., Borsani, G. & Sebastio, G. The molecular bases of cystinuria and lysinuric protein intolerance. Curr Opin Genet Dev 11, 328-335 (2001).
95. Hand, M.F., Haynes, W.G. & Webb, D.J. Hemodialysis and L-arginine, but not D-arginine, correct renal failure-associated endothelial dysfunction. Kidney International 53, 1068-1077 (1998).
96. Kari, J.A., et al. Physiology and biochemistry of endothelial function in children with chronic renal failure. Kidney International 52, 468-472 (1997).
97. Kang, E.S., et al. Hemodialysis hypotension: interaction of inhibitors, iNOS, and the interdialytic period. Am J Med Sci 317, 9-21 (1999).
98. Schmidt, R.J., et al. Indices of activity of the nitric oxide system in hemodialysis patients. Am J Kidney Dis 34, 228-234 (1999).
99. Thuraisingham, R.C. & Yaqoob, M.M. Oxidative consumption of nitric oxide: a potential mediator of uremic vascular disease. Kidney Int Suppl, S29-32 (2003).
100. Mac Allister R & Benjamin N. L-arginine and nitric oxide system. in L-arginine: biological aspects and clinical application (ed. Eremin O) 79-113 (R G Landes Company, Austin, Texas (1997).
101. Leaf, C.D., Wishnok, J.S. & Tannenbaum, S.R. L-arginine is a precursor for nitrate biosynthesis in humans. Biochem Biophys Res Commun 163, 1032-1037 (1989).
102. Roccatello, D., et al. Serum and intracellular detection of cytokines in patients undergoing chronic hemodialysis. Artif Organs 16, 131-140 (1992).
103. Tetta, C., et al. Production of cytokines in hemodialysis. Blood Purif 8, 337-346 (1990).
104. Tripepi, G., Mallamaci, F. & Zoccali, C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J Am Soc Nephrol 16 Suppl 1, S83-88 (2005).
105. Himmelfarb, J. Linking oxidative stress and inflammation in kidney disease: which is the chicken and which is the egg? Semin Dial 17, 449-454 (2004).
106. Qureshi, A.R., et al. Inflammation, malnutrition, and cardiac disease as predictors of mortality in hemodialysis patients. Journal of the American Society of Nephrology 13, S28-S36 (2002).
107. Stenvinkel, P. Malnutrition and chronic inflammation as risk factors for cardiovascular disease in chronic renal failure. Blood Purificat 19, 143-151 (2001).
108. Arnal, J.F., et al. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest 95, 2565-2572 (1995).
109. Closs, E.I., Scheld, J.S., Sharafi, M. & Forstermann, U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol 57, 68-74 (2000).
110. Su, Y. & Block, E.R. Hypoxia inhibits L-arginine synthesis from L-citrulline in porcine pulmonary artery endothelial cells. American Journal of Physiology 269, L581-587 (1995).
111. Zhao, Y., et al. An NADPH sensor protein (HSCARG) down-regulates nitric oxide synthesis by association with argininosuccinate synthetase and is essential for epithelial cell viability. J Biol Chem 283, 11004-11013 (2008).
112. Petersen, A., Castilho, R.F., Hansson, O., Wieloch, T. & Brundin, P. Oxidative stress, mitochondrial permeability transition and activation of caspases in calcium ionophore A23187-induced death of cultured striatal neurons. Brain Res 857, 20-29 (2000).
113. Yamazaki, M., Chiba, K. & Yoshikawa, C. Genipin suppresses A23187-induced cytotoxicity in neuro2a cells. Biological & Pharmaceutical Bulletin 32, 1043-1046 (2009).
114. Nakagawa, T., et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103 (2000).
115. Kitiphongspattana, K., et al. Protective role for nitric oxide during the endoplasmic reticulum stress response in pancreatic beta-cells. Am J Physiol Endocrinol Metab 292, E1543-1554 (2007).
116. Brune, B., von Knethen, A. & Sandau, K.B. Nitric oxide (NO): an effector of apoptosis. Cell Death Differ 6, 969-975 (1999).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48374-
dc.description.abstract代謝體學係分析體內液體或組織的代謝物,以了解疾病或治療對各種代謝物的影響。本研究第一部分以分析胺基酸為例,尤其是與一氧化氮(nitric oxide,NO)生成有關的胺基酸,即精胺酸(L-arginine,L-arg)和瓜胺酸(L-citrulline,L-cit),以期了解末期腎臟病(end-stage renal disease,ESRD)對血漿中胺基酸濃度及NO生成的變化。
首先建立超高速液相層析法分析胺基酸之條件,分析正常腎功能(控制組)和ESRD族群的血漿中胺基酸濃度。全部76個志願者,其中26個人具正常腎功能,50個人有ESRD且接受腎替代性治療。另外,以Griess法測量血漿中一氧化氮代謝物(NOx)之濃度。
在17個分析的胺基酸中,經獨立t檢定發現有7個胺基酸在控制組和ESRD病人其血漿中濃度有顯著不同(p<0.05)。控制組血漿中L-cit的濃度比ESRD組低,34.3 ± 2.4 μM v.s. 80.4 ± 4.7 μM(p<0.001)。然而,血漿中L-arg濃度在兩組沒有顯著差異。至於NOx濃度,結果發現個體間分布差異大,控制組及ESRD組並無統計上明顯差異,排除界外值後,雖然ESRD組高於控制組(p<0.05),但此差異並沒有在ESRD進行腹膜透析的病人看到。
本研究建立了利用UPLC分析胺基酸之方法,較過去以HPLC分析之方法提高了解析度,並節省許多分析時間和溶劑使用量。腎臟細胞可利用精胺琥珀酸合成酶(argininosuccinate synthase,AS)和精胺琥珀酸裂解酶(argininosuccinate lyase,AL)將L-cit生合成L-arg。而AS是L-arg的合成速率限制酵素,AS的表現與胞內L-arg的再生應有重要關係,此是否影響NO的產生及細胞之存活,是第二部分研究的重點。
NO與許多生理功能及病理生理過程有關,內皮細胞一般存在endothelial nitric oxide synthase(eNOS)及inducible NOS(iNOS)蛋白,通常eNOS-NO可以維持內皮細胞的功能及完整性,而iNOS-NO通常都是受到發炎刺激引起過量生成造成病理現象。第二部分的研究探討在內皮細胞中,細胞外及細胞內生合成的L-arg之可利用性對不同NOS生成之NO和細胞存活的影響。本實驗以TR-BBB(transgenic rat blood-brain barrier)內皮細胞株當作體外細胞實驗的模型,TR-BBB內皮細胞可表現AS、eNOS和iNOS蛋白質,藉由培養於含L-arg或L-arg-free/L-cit-containing之培養液,以及利用小片段干擾核糖核酸(small interfering RNA,siRNA)短暫抑制AS基因,來調控細胞外、內L-arg之來源。
結果發現不論在regular medium或L-arg-free/L-cit-containing medium,抑制AS時,測得之eNOS-NO產量皆減少,尤其在L-arg-free/L-cit-containg medium中更少; iNOS-NO則不受AS影響,但L-arg-free/L-cit-containing medium中iNOS-NO產量較少,剩約三分之一。至於西方墨點法之結果顯示抑制AS後,兩種培養液中細胞的AS蛋白表現量皆減少;而eNOS蛋白表現僅在regular medium顯著增加。同時,也發現抑制AS,使細胞內L-cit濃度增加的趨勢。此外,AS基因沉默的TR-BBB內皮細胞,無外來刺激活化eNOS和iNOS時,在regular medium和L-arg-free/L-cit-containing medium中,細胞存活率分別減少約一成五和二成;A23187刺激eNOS後,細胞存活率分別增加約四成五和五成;而cytokines刺激iNOS後,細胞存活不受AS影響。
總結,本研究第二部分成功建立了針對AS基因進行沉默之內皮細胞株,有效地抑制AS蛋白質表現約七成。AS的表現顯著影響eNOS-NO生成,證實eNOS不僅將細胞外L-arg作為受質,也將細胞內從L-cit重新合成之L-arg做為受質;而AS的表現對於iNOS-NO生成沒有顯著影響,iNOS主要依賴細胞外L-arg作為受質。此外,在無外來刺激情況下,抑制AS表現會使內皮細胞之存活率降低。
AS蛋白表現對於eNOS-NO生成及內皮細胞存活具有重要影響,腎臟衰竭病人是否能藉由AS蛋白表現的調控,進而擴張血管或延緩內皮細胞的傷害,值得未來進一步的研究探討。
zh_TW
dc.description.abstractMetabolomics is to analyze the metabolites in body fluids or tissues in order to understand the effect of diseases or treatments on various metabolites. The first part of this study is a targeted metabolomics amino acid study in end-stage renal disease (ESRD) patients. We focus on nitric oxide (NO) production related amino acids, i.e. L-arginine (L-arg) and L-citrulline (L-cit) to understand the influence of end-stage renal disease (ESRD) on plasma concentrations of amino acids and NO.
We established a UPLC (ultra-performance liquid chromatography) method to analyze plasma concentrations of amino acids in normal renal function (control) and ESRD populations. Total 76 volunteers were recruited, 26 people with normal renal functions, 50 people under renal replacement therapy (ESRD). In addition, we measured plasma concentration of NO metabolites (NOx) by Griess assay.
Among the 17 analyzed amino acids, plasma concentration of 7 amino acids were significantly different between control and ESRD patients by independent student-t test (p<0.05). The plasma L-cit concentration was lower in control than in ESRD group, 34.3 ± 2.4 μM v.s. 80.4 ± 4.7 μM (p<0.001). However, there was no difference in plasma L-arg concentration in both groups. From our results, the NOx concentration was distributed widely among individuals, and there was no difference between control and ESRD group. After excluded the outliers, the NOx concentration was higher in ESRD than in control (p<0.01), but there was no difference between control and ESRD patients under continuous ambulatory peritoneal dialysis (CAPD).
Here we established the method for analyzing amino acids by UPLC, which increased the resolution and reduced the expenditure of time and solvents. L-cit can be converted to L-arg by argininosuccinate synthase (AS) and argininosuccinate lyase (AL) in renal. AS is a rate-limiting enzyme in the pathway of the regeneration of L-arg. Therefore, there is an important correlation between AS expression and intracellular L-arg regeneration. The effect of AS expression on NO production and cell viability would be investigated in the second part.
NO is related to various physiological functions and pathophysiological processes. There are endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) protein in endothelial cells. It is known that eNOS-NO can maintain function and integrity of endothelial cells, whereas iNOS-NO is overproduced under the inflammatory status. Therefore, the second part of this study is to study the impact of the availability of extracellular L-arg and intracellular regenerated L-arg on NO production via different NOSs and cell viability in cultured endothelial cells. We used TR-BBB (transgenic rat blood-brain barrier) endothelial cell line, expressing AS, eNOS, and iNOS proteins, as an in vitro model. The cells were cultured in the presence and absence of L-arg medium, respectively, and silenced AS gene by siRNA (small interference RNA) to control the availability of L-arg.
From our results, they showed that no matter in regular or L-arg-free/L-cit-containing medium, when AS were down-regulated, eNOS-NO production was decreased, especially in the latter medium. On the contrary, AS did not affect iNOS-NO production. However, in L-arg-free/L-cit-containing medium, iNOS-NO production was decreased, remaining about 1/3 of that in regular medium. From results of western blotting, they indicated that AS protein expression decreased in both mediums when AS were down-regulated by AS-siRNA, whereas eNOS protein expression only increased in regular medium. Besides, the intracellular L-cit concentration had an increased trend when AS were down-regulated. In addition, AS silencing reduced 15% and 20% cell viability of cells grown in regular medium and L-arg-free/L-cit-containing medium, respectively, without any stimulation. Under A23187 stimulation, the cell viability was increased about 45% and 50% in respective medium. Under cytokines stimulation, the cell viability was not affected by AS silencing.
To conclude, in the second part study, we established an AS silencing endothelial cell line whose AS protein was efficiently down-regulated to 30%. AS knockdown affects the amount of eNOS-NO production. This demonstrated that eNOS not only used extracellular L-arg as substrate, but also used regenerated L-arg from L-cit as substrate. However, AS silencing had no effect on iNOS-NO production indicating that iNOS mainly relied on extracellular L-arg as substrate. In addition, the cell viability was decreased in AS silencing endothelial cells without stimulation.
AS protein expression is important for eNOS-NO production and endothelial cell viability. It is necessary to evaluate possible beneficial effect in maintaining vasodilatation and viable endothelial via regulation of AS protein expression in renal failure patients in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:54:22Z (GMT). No. of bitstreams: 1
ntu-100-R97423008-1.pdf: 2162416 bytes, checksum: 16a445266861024e39f2d45e93825610 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
ABSTRACT VI
縮寫表 XV
第 1 章 緒論 1
1.1. 代謝體學(Metabolomics) 1
1.2. 與精胺酸(L-arginine)相關之代謝物和腎臟病之間的關係 1
1.3. L-arg的生理角色以及合成路徑 2
1.4. 精胺酸琥珀酸合成酶(AS)的重要性 3
1.5. 一氧化氮合成酶(NOS) 4
1.6. 內皮型一氧化氮合成酶(eNOS)產生的一氧化氮對內皮細胞的重要性 5
第 2 章 實驗目的 6
第 3 章 實驗材料 7
3.1. 胺基酸濃度測定 7
3.2. 細胞培養 7
3.3. 細胞轉染 8
3.4. 萃取細胞中的蛋白質 8
3.5. 蛋白質濃度測定 9
3.6. 西方墨點法 9
3.7. 培養液預處理 11
3.8. 一氧化氮產量之測量 11
3.9. 細胞存活分析 12
第 4 章 實驗方法 13
4.1. 胺基酸濃度測定 13
4.1.1. 胺基酸標準品配製 13
4.1.2. 收集病人血漿檢體 13
4.1.3. 收集細胞外液與內液 13
4.1.4. 樣品去除蛋白質 14
4.1.5. 胺基酸衍生化反應(derivation reaction) 14
4.1.6. 超高效能液相層析法(Ultra Performance Liquid Chromatography) 15
4.2. 細胞培養 16
4.3. 細胞轉染 17
4.4. 萃取細胞中的蛋白質:RIPA緩衝液 18
4.5. 蛋白質濃度測定 18
4.6. 西方墨點法 18
4.7. 培養液預處理 20
4.8. 一氧化氮產量之測量 21
4.8.1. 血漿中一氧化氮 21
4.8.2. 細胞培養液中一氧化氮 22
4.8.2.1. Griess法 22
4.8.2.2. 螢光法 22
4.8.3. 經由內皮型一氧化氮合成酶(eNOS)產生的一氧化氮 23
4.8.4. 經由誘導型一氧化氮合成酶(iNOS)產生的一氧化氮 23
4.9. 細胞存活分析 24
4.9.1. MTT分析法 24
4.9.2. 蛋白質分析法 24
4.10. 統計分析 25
第 5 章 實驗結果 26
5.1. 健康正常人和末期腎臟病人血漿中代謝物之差異 26
5.1.1. 胺基酸濃度之變化 26
5.1.2. 一氧化氮產量之差異 27
5.2. AS基因沉默內皮細胞株之建立 27
5.2.1. 尋找TR-BBB細胞轉染之合適條件 28
5.2.2. 評估AS-siRNA將AS基因沉默之效果 28
5.3. L-arg的可利用性對不同NOS產生的一氧化氮之影響 29
5.3.1. 由eNOS產生的一氧化氮產量之變化 29
5.3.2. 由iNOS產生的一氧化氮產量之變化 30
5.4. L-arg的可利用性對AS和eNOS蛋白質表現的影響 30
5.5. L-arg的可利用性對細胞內、外L-arg及L-cit之影響 31
5.6. 細胞存活分析 32
5.6.1. 無外來刺激時,L-arg可利用性對細胞存活的影響 32
5.6.2. A23187刺激後,L-arg可利用性對細胞存活的影響 32
5.6.3. A23187刺激後,eNOS產生的一氧化氮和細胞存活率之間關聯性 33
5.6.4. Cytokines刺激後,L-arg可利用性對細胞存活的影響 33
第 6 章 實驗討論 34
6.1. 慢性腎臟病人其血漿中L-cit濃度高於正常健康人 34
6.2. 慢性腎臟病人其血漿中一氧化氮代謝物濃度之變化 37
6.3. 內皮型和誘導型一氧化氮合成酶對細胞外L-arg以及細胞內從L-cit生合成之L-arg的選擇性 39
6.4. AS在細胞存活上扮演的角色 41
6.5. 實驗限制 42
第 7 章 結論 44
參考文獻 82
dc.language.isozh-TW
dc.subject一氧化氮合成&#37238zh_TW
dc.subject末期腎臟病zh_TW
dc.subject精胺酸zh_TW
dc.subject瓜胺酸zh_TW
dc.subject精胺琥珀酸合成&#37238zh_TW
dc.subject小片段干擾核醣核酸zh_TW
dc.subject一氧化氮zh_TW
dc.subjectargininosuccinate synthaseen
dc.subjectnitric oxide synthaseen
dc.subjectnitric oxideen
dc.subjectsiRNAen
dc.subjectend-stage renal diseaseen
dc.subjectL-arginineen
dc.subjectL-citrullineen
dc.title精胺酸的可利用性對內皮細胞之一氧化氮生成和細胞存活的影響zh_TW
dc.titleImpact of arginine availability on nitric oxide production and cell viability in cultured endothelial cellsen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林水龍,余明俊
dc.subject.keyword末期腎臟病,精胺酸,瓜胺酸,精胺琥珀酸合成&#37238,小片段干擾核醣核酸,一氧化氮,一氧化氮合成&#37238,zh_TW
dc.subject.keywordend-stage renal disease,L-arginine,L-citrulline,argininosuccinate synthase,siRNA,nitric oxide,nitric oxide synthase,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2011-02-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved