請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48355完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周仲島(Ben Jong-Dao Jou) | |
| dc.contributor.author | Hsiao-Wei Lai | en |
| dc.contributor.author | 賴曉薇 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:53:41Z | - |
| dc.date.available | 2011-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-11 | |
| dc.identifier.citation | Akiyama, T., 1984a: A medium-scale cloud cluster in a Baiu front. Part I: Evolution process and a fine structure. J. Meteor. Soc. Japan, 62, 485–504.
——, 1984b: A medium-scale cloud cluster in a Baiu front. Part II: Thermal and kinematics fields and heat budget. J. Meteor. Soc. Japan, 62, 505–520. Bartels, D. L. and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104–118. Bartels, D. L., J. M. Brown, and E. I. Tollerud, 1997: Structure of a midtropospheric vortex induced by a mesoscale convective system. Mon. Wea. Rev., 125, 193–211. Brandes, E. A., 1990: Evolution and structure of the 6–7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev., 118, 109–127. Bracken, W. E. and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353-376. Chang, C. P., S. C. Hou, H. C. Kuo, and G. T. J. Chen, 1998: The development of an intense East Asian summer monsoon disturbance with strong vertical coupling. Mon. Wea. Rev., 126, 2692-2712. Chang, C. P., L. Yi, and G. T. J. Chen, 2000: A numerical simulation of vortex development during the 1992 East Asian summer monsoon onset using the Navy Regional model. Mon. Wea. Rev., 128, 1604-1631. Chang, P.-L., P.-F. Lin, B. J.-D. Jou and J. Zhang, 2009: An application of reflectivity climatology in constructing radar hybrid scans over complex terrain. J. Atmos. Oceanic Technol. 26, 1315–1327. Chen, G. T.-J., 1977: A synoptic case study on mean structures of Mei-Yu in Taiwan. Atmos. Sci., 4, 38–47. Chen, G. T.-J., 1983: Observational aspects of the Meiyu phenomena in subtropical China. J. Meteor. Soc. Japan, 61, 306–312. Chen, G. T. J., 1992: Mesoscale features observed in the Taiwan Mei-yu season. J. Meteor. Soc. Japan, 70, 497–516. Chen, G. T. J., 2004: Research on the phenomena of Meiyu during the past quarter century: An overview. East Asian Monsoon, C. P. Chang, Ed., Series for Meteorology of East Asia, Vol. 2, World Scientific, 357–403. Chen, G. T. J., and C.-P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (mei-yu) over southeastern China and Japan. Mon. Wea. Rev., 108, 942–953. Chen, G. T.-J, W.-H. Huang and Y.-M. Wang, 2001: The relationship of mesoscale convective systems and precipitation over northern Tawan in Meiyu season. Atmos. Sci., 29, 21-36 Chen, G. T. J., C. C. Wang, and S. W. Chang, 2008: A diagnostic case study of Meiyu frontogenesis and development of wave-like frontal disturbances in the subtropical environment. Mon. Wea. Rev. 136, 41-61. Chen, G. T.-J. and C.-C. Yu 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-yu season. Mon. Wea. Rev., 116, 884-891. Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 2401–2426. Chen, Y.-L., X. A. Chen, S. Chen, and Y. H. Kuo, 1997: A numerical study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 125, 2583–2604. Ciesielski, P. E., W.-M. Chang, S.-C. Huang, R. H. Johnson, B. J.-D. Jou, W.-C. Lee, P.-H. Lin, C.-H. Liu and J. Wang, 2010: Quality controlled upper-air sounding dataset for TiMREX/SoWMEX: Development and corrections. J. Atmos. Oceanic Technol., 27, 1802-1821. Cotton, W. R., M.-S. Lin, R. L. McAnelly, and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev., 117, 765–783. Cram, T. A., M. T. Montgomery, and R. F. A. Hertenstein, 2002: Early evolution of vertical vorticity in a numerically simulated idealized convective line. J. Atmos. Sci., 59, 2113–2127. Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 3606–3624. Davis, C. A., and S. B. Trier, 2002: Cloud-resolving simulations of mesoscale vortex intensification and its effect on a serial mesoscale convective system. Mon. Wea. Rev., 130, 2839–2858. Davis, C. A., and S. B. Trier, 2007: Mesoscale convective vortices observed during BAMEX, Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 2029-2049. Davis, C. A., and T. J. Galarneau Jr., 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686-704. DeMaria, M., J. A. Knaff, and B. H. Conell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233. Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373-396. Ding, Y. H., Y. Zhang, Q. Ma, and G. Hu, 2001: Analysis of the large-scale circulation features and synoptic systems in east Asia during the intensive observation period of GAME/HUBEX. J. Meteor. Soc. Japan, 79, 277-300. Du, J., and H.-R. Cho, 1996: Potential vorticity anomaly and mesoscale convective systems on the Baiu (Mei-Yu) front. J. Meteor. Soc. Japan, 74, 891–908. Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2008: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys. Discuss., 8, 11 149–11 292. Fang, Z., 1985: The preliminary study of medium-scale cloud cluster over Changjiang basin in summer. Adv. Atmos. Sci., 2, 334–340. Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 1780–1807. Geng, B., Yamada H., K. K. Reddy, H. Uyeda and Y. Fujiyoshi, 2004: An observational study of the development of a rainband on a Meiyu front causing heavy rainfall in the downstream region of the Yangtze River. J. Meteor. Soc. Japan, 82, 1095-1115. Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700. Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: On the role of ‘‘vortical’’ hot towers in formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 1209–1232. Holton, J. R., M. Bell, and W.-C. Lee, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 2778–2800. Johnson, R. H. and J. F. Bresch, 1991: Diagnosed characteristics of precipitation systems over Taiwan during the May–June 1987 TAMEX. Mon. Wea. Rev., 119, 2540–2557. Jou, B. J.-D. and S.-M. Deng, 1992: Structure of a Low-Level Jet and its Role in Triggering and organizing moist convection over Taiwan: A TAMEX case study. Terr. Atmos. Oceanic Sci., 3, 39–58. Jou, B. J.-D. and S.-M. Deng, 1998: The organization of convection in a Mei-yu frontal rainband. Terr. Atmos. Oceanic Sci., 4, 533-572. Jou, B. J. D., W. C. Lee, and R. H. Johnson, 2010: An overview of SoWMEX/TiMREX. Selected Papers of the Fourth International Monsoon Workshop, Edited C. P. Chang, World Scientific Publication, Singapore, 1-16. Kirk, J. R., 2003: Comparing the dynamical development of two mesoscale convective vortices. Mon. Wea. Rev., 131, 862–890. Kuo, H.-C., and C.-H. Horng, 1994: A study of finite amplitude barotropic instability. Terr. Atmos. Oceanic Sci., 5, 199–243. Kuo, Y.-H., L. Cheng, and R. A. Anthes, 1986: Mesocale analyses of Sichuan flood catastrophe, 11–15 July 1981. Mon. Wea. Rev., 114, 1984–2003. Kuo, Y.-H., L. Cheng, and J. W. Bao, 1988: Numerical simulation of the 1981 Sichuan flood. Part I: Evolution of a mesoscale southwest vortex. Mon. Wea. Rev., 116, 2481–2504. Lee, C.-S, Y.-L. Lin and K. K-W. Cheung, 2006: Tropical cyclone formations in the South China Sea associated with the Mei-Yu front. Mon. Wea. Rev., 134, 2670–2687. LeMone, M., E. J. Zipser, and S. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sic., 55, 3493-3518. Li, Y.-L., S.-Y. Tao, and C.-X. Du, 1993: An analysis of meso-convective cloud clusters in Mei-yu front (in Chinese). Quart. J. Appl. Meteor., 4, 278–285. Li, J., Y.-L. Chen, and W.-C. Lee, 1997: Analysis of a heavy rainfall event during TAMEX. Mon. Wea. Rev., 125, 1060–1082. Lin, Y.-J., R. W. Pasken and H.-W. Chang, 1992: The structure of a subtropical prefrontal convective rainband. Part I: Mesoscale kinematic structure determined from dual-Doppler measurements. Mon. Wea. Rev., 120, 1816-1836. Loehrer, S. M., T. A. Edmands, and J. A. Moore, 1996: TOGA COARE upper-air sounding data archive: development and quality control procedures. Bull. Amer. Meteor. Soc., 77, 2651-2671. Lucas, C., and E. J. Zipser, and M. A. LeMone, 1994: Convective available potential energy in the environment of oceanic and continental clouds: Correction and comments. J. Atmos. Sic., 51, 3829–3830. Ninomiya, K., T. Akiyama, and M. Ikawa, 1988a: Evolution and fine structure of a long-lived meso-_-scale convective system in Baiu frontal zone. Part I: Evolution and meso-_-scale characteristics. J. Meteor. Soc. Japan, 66, 331–350. Ninomiya, K., T. Akiyama, and M. Ikawa, 1988b: Evolution and fine structure of a long-lived meso-a-scale convective system in a Baiu front zone. Part II: Meso-g-scale characteristics of precipitation. J. Meteor. Soc. Japan, 66, 351–371. Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241–266. Olsson, P. Q., and W. R. Cotton, 1997: Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part I: Numerical simulation. J. Atmos. Sci., 54, 457–478. Ray, P. S., A. Robinson and Y. Lin, 1991: Radar analysis of a TAMEX frontal system. Mon. Wea. Rev., 119, 2519-2539. Raymond, D. J. and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067–3077. Schumacher, R. S. and R. H. Johnson, 2009: Quasi-stationary, extreme-rain- producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555-574. Smull, B. F. and R. A. Houze Jr., 1987: Rear Inflow in Squall Lines with Trailing Stratiform Precipitation. Wea. Rev., 115, 2869-2889. Steranka, J., E. B. Rodgers, and R. C. Gentry, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 1539–1546. Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23–30. Trier, S. B., and C. A. Davis, 2002: Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130, 877–899. Trier, S. B., and C. A. Davis, 2007: Mesoscale convective vortices observed during NAMEX. Part II: Influences on secondary deep convection. Mon. Wea. Rev., 135, 2051-2075. Wu, G. X., and S. J. Chen, 1985: The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc., 111, 1049–1070. Wang, B., 1987: The development mechanism for Tibetan Plateau warm vortices. J. Atmos. Sci., 44, 2978–2994. Wang, B. and I. Orlanski, 1987: Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon. Wea. Rev., 115, 1370–1393. Wang, W., Y. H. Kuo, and T. T. Warner, 1993: A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau. Mon. Wea. Rev., 121, 2542–2561. Webster, P. J., and H.-R. Chang, 1997: Atmospheric wave propagation in heterogeneous flow:Basic flowconstraints on tropicalextratropical interaction and equatorial wave modification. Dyn. Atmos. Oceans, 27, 91–134. Weisman, M. L. and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 2603–2622. Yamasaki, M., 2005: A numerical study of cloud clusters and a meso-α-scale low associated with a Meiyu front. J. Meteor. Soc. Japan, 83, 305-329. Ye, D.-Z., 1981: Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 14–19. Yu, C.-K., B. J.-D. Jou, and B. F. Smull, 1999: Formative stage of a long-lived mesoscale vortex observed by airborne Doppler radar. Mon. Wea. Rev., 127, 838–857. Zhang, D.-L., and J. M. Fritsch, 1988: A numerical investigation of a convectively generated, inertially stable, extratropical warm-core mesovortex over land. Part I: Structure and evolution. Mon. Wea. Rev., 116, 2660–2687. Zhang, D.-L. 1992: The formation of a cooling induced mesovortex in the trailing stratiform region of a midlatitude squall line. Mon. Wea. Rev., 120, 2764–2785. Zhang, Q.-H., K.-H. Lau, Y.-H. Kuo, and S.-J. Chen, 2003: A numerical study of a mesoscale convective system over the Taiwan Strait. Mon. Wea. Rev., 131, 1150-1170. Zipser, E. J. and C. Gautier, 1978: Mesoscale events within a GATE tropical depression. Mon. Wea. Rev., 106, 789–805. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48355 | - |
| dc.description.abstract | 2008年臺灣和美國聯合的西南氣流觀測實驗期間,一副熱帶海洋性中尺度氣渦旋生成於台灣海峽上。本個案研究利用第六次加強觀測期間(6月4日1800 UTC至6月6日1200 UTC)所收集的資料,包括飛機投落送在海面上的量測、地基探空和雷達網連等高空間解析度的觀測,清楚地呈現此中尺度渦旋的運動場及熱動力場結構,並使用新一代中尺度數值天氣預報模式(Advanced Research Weather Research and Forecasting Model,ARW)之高時空解析度的數值模擬,探討其旋生機制及相關的中尺度對流系統發展過程。
2008年6月4-5日,伴隨梅雨鋒面有一明顯氣漩式渦度帶存在,由台灣中部經台灣海峽延伸至香港附近,此一水平風切長帶是由南北兩側具低層噴流的西南氣流以及東風沉降氣流所組成,環境的中低層垂直風切弱(500-925hPa間約為1.5 m s-1),然而深層風切將近18 m s-1(200-850 hPa間)以上,高層有分流。6月4日1800 UTC,衛星觀測到一中尺度對流系統迅速發展,形成逗點狀雲系,在中尺度對流系統的北側發現螺旋狀雲帶,投落送分析顯示伴隨之渦漩的水平尺度約200公里,發展高度約為6公里,呈現向東傾斜的特徵;渦漩中心附近的大氣具有條件性不穩度及潛在不穩度,並顯示出渦漩前側潮濕、後側逐漸乾化的強烈對比,降雨回波演變成不對稱型態,強降水的低層及其前側有冷池,最強暖心出現在300-400 hPa,中低層伴隨有中尺度低壓。在較強的線狀對流雨帶中,雷達徑向風場亦觀測到一個尺度較小的次渦漩,水平尺度大約25-30公里,最大的風切渦度可達3x10-3 s-1。 模擬渦漩顯出與觀測相似的中尺度結構。模擬之對流初始生成於環境渦度帶中,附近之低邊界層較冷,大氣中層潮濕,具中等對流可用位能,低自由對流高度,個別對流胞皆伴隨深而筆直的渦度熱塔,伴隨潛熱加熱的中高層虛位溫擾動可達5K,模擬之中尺度低壓較觀測稍強。渦度分析顯示渦度由約750 hPa向上下增強,最大渦度的高度隨時間下降至近地層,拉伸作用是渦漩加強的主要來源,扭轉項在750 hPa以上為正貢獻。 然而,觀測及模擬都證明乾燥的中層後側入流被渦漩環流加強,甚至有沉降加熱,渦漩後側及中心的乾化不只抑制層狀降水的生成,更使對流系統逐漸遠離渦漩中心。除此之外,在中對流層以上環境的深層垂直風切逐漸增強,限制了渦漩的垂直伸展(<6公里),最終此副熱帶海洋性中尺度渦漩並沒有進一步形成颱風。 | zh_TW |
| dc.description.abstract | This study investigates a subtropical oceanic mesoscale convective vortex (MCV) that occurred from 1800 UTC 4 June to 1200 UTC 6 June 2008 during Intensive Observing Period (IOP) 6 of the Southwest Monsoon Experiment (SoWMEX) and the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). The dense observations over Taiwan, the Taiwan Strait and South China Sea are using to examine the kinematics and thermodynamic structure of the MCV. High resolution simulation through the Advanced Research Weather Research and Forecasting Model (ARW) are adopted to reveal the cyclogenesis and the overall evolution.
During 4-5 June 2008, a Meiyu front accompanied with a nearly barotropic vorticity strip across the middle Taiwan through the southern Taiwan Strait which formed as a southwesterly low-level jet developed to the south of subsiding easterly flow. The vertical wind shear between 500-925 hPa was weak, and yet the deep wind shear reached 18 m s-1 between 200-850 hPa. A mesoscale convective system (MCS) developed rapidly after 1800 UTC 4 June. The high-tropospheric difffluence was presented. An eastward tilted MCV was revealed on the northern edge of the MCS with a horizontal scale of 200 km and the depth of 6 km. In the vicinity of the MCV center, the atmosphere possessed conditional and potential instability. The moist front flank and gradually drying rear flank resulted in the asymmetric precipitation. The cool pool was observed beneath the heavy precipitation. The mid-tropospheric mesolow cohered with higher-level warn core. An inner sub-vortex, on a scale of 25–30 km with maximum shear vorticity of 3x10-3 s-1, embedded in the stronger convection line. The simulated vortex has similar structure compared with the observation. The incipient convection initialed within the ambient vorticity. In the vicinity area, there were colder boundary layer, moist mid-tropospheric air, medium convective available potential energy and low level of free convection. The vortical hot towels were cohered with individual convective cells. The convective updraft maintain by latent heating. The vorticity analyses show the vorticity strengthened upward and downward from 750 hPa. The altitude of maximum vorticity decreased to the near boundary layer. Stretching effect was the principal contribution of cyclogensis, tilting effect provided the positive contribution in the mid-troposphere. Nevertheless, the dry rear inflow penetrated into the MCV not only suppressed staitifrom precipitation but also inhibited convection in the upshear direction. Beside, the intensifying vertical wind shear in the higher troposphere limited the vortex vertical extent to about 6 km. The subtropical oceanic MCV did not further grow into a Typhoon. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:53:41Z (GMT). No. of bitstreams: 1 ntu-100-D91229003-1.pdf: 23820298 bytes, checksum: 9e3a1f36c690777df3350b23c3d95852 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1. Introduction 1
1.1 Background 1 1.2 Overview of the June 5–6 mesoscale convective vortex 2 1.3 Review of mesocyclones associated with Meiyu fronts 2 1.4 Objective and outline of paper 5 2. Data source and analyzed methods 9 2.1 Observation data and weather analyzed methods 9 2.2 Model setting and vorticity diagnostic methods 13 3. Subtropical oceanic mesoscale convective vortex 21 3.1 Overview of mesoscale disturbances 21 3.2 Synoptic environment and ambient vorticity strip 22 3.3 Distribution of thermodynamic parameters and precipitation 23 3.4 The kinematic and thermodynamic structure of the subtropical oceanic MCV 26 3.5 Radial velocity dipole and sub-vortex 31 4. Modeling results 55 4.1 Sub-synoptic feature 55 4.2 Evolution of the subtropical oceanic MCV 64 4.3 Vorticity diagnoses 67 5. Discussion 91 5.1 Larger-scale favorable environment of the cyclogenesis within a wavy disturbance rainband and downscaling cyclogenesis 91 5.2 Kinematic, thermodynamic structure of the subtropic MCV and associated precipitation 94 6. Concluding remarks 101 7. References 107 Appendix A: Dropsonde flight mission summary 118 Appendix B: Sounding site Table and Skew T - log P diagrams 120 Appendix C: Evolution of Small scale vortex 131 | |
| dc.language.iso | en | |
| dc.subject | 飛機投落送 | zh_TW |
| dc.subject | 西南氣流實驗 | zh_TW |
| dc.subject | 副熱帶海洋性中尺度渦漩 | zh_TW |
| dc.subject | 次渦漩 | zh_TW |
| dc.subject | 環 境渦度長帶 | zh_TW |
| dc.subject | sub-vortex | en |
| dc.subject | dropsonde | en |
| dc.subject | SoWMEX/TiMREX | en |
| dc.subject | subtropical oceanic MCV | en |
| dc.subject | ambient vorticity strip | en |
| dc.title | 西南氣流實驗期間之副熱帶海洋性中尺度氣旋個案研究 | zh_TW |
| dc.title | A Subtropical Oceanic Mesoscale Convective Vortex Observed During SoWMEX/TiMREX | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | Christopher A. Davis(Christopher A. Davis) | |
| dc.contributor.oralexamcommittee | 陳泰然,郭鴻基,紀水上,陳台琦,吳俊傑,簡芳菁 | |
| dc.subject.keyword | 西南氣流實驗,飛機投落送,副熱帶海洋性中尺度渦漩,次渦漩,環 境渦度長帶, | zh_TW |
| dc.subject.keyword | SoWMEX/TiMREX,dropsonde,subtropical oceanic MCV,sub-vortex,ambient vorticity strip, | en |
| dc.relation.page | 132 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 23.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
