請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48349完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 董成淵(Chen-Yuan Dong) | |
| dc.contributor.author | Ping-Jung Su | en |
| dc.contributor.author | 蘇秉榮 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:53:28Z | - |
| dc.date.available | 2016-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-12 | |
| dc.identifier.citation | 1. Shoulders, M. D., and R. T. Raines. 2009. Collagen structure and stability. Annu Rev Biochem 78:929-958.
2. Han, M., G. Giese, and J. F. Bille. 2005. Second harmonic generation imaging of collagen fibrils in cornea and sclera. Optics Express 13:5791-5797. 3. Buckwalter, J. A., and J. Martin. 1995. Degenerative joint disease. Clin Symp 47:1-32. 4. Gannaway, J. N., and C. J. R. Sheppard. 1978. Second-harmonic imaging in the scanning optical microscope. Optical and Quantum Electronics 10:435-439. 5. Sheppard, C. J. R., and R. Kompfner. 1978. Resonant Scanning Optical Microscope. Applied Optics 17:2879-2882. 6. Boyd, R. W. 2003. Nonlinear Optics. Academic Press. 7. LaComb, R., O. Nadiarnykh, and P. J. Campagnola. 2008. Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: Experiment and simulation. Biophysical Journal 94:4504-4514. 8. Brown, E., T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain. 2003. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9:796-800. 9. Lin, S. J., R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong. 2005. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Optics Letters 30:2275-2277. 10. Konig, K., K. Schenke-Layland, I. Riemann, and U. A. Stock. 2005. Multiphoton autofluorescence imaging of intratissue elastic fibers. Biomaterials 26:495-500. 11. Kuo, T. R., C. L. Wu, C. T. Hsu, W. Lo, S. J. Chiang, S. J. Lin, C. Y. Dong, and C. C. Chen. 2009. Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials 30:3002-3008. 12. Tan, H. Y., Y. Sun, W. Lo, S. W. Teng, R. J. Wu, S. H. Jee, W. C. Lin, C. H. Hsiao, H. C. Lin, Y. F. Chen, D. H. K. Ma, S. C. M. Huang, S. J. Lin, and C. Y. Dong. 2007. Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis. Journal of Biomedical Optics 12:-. 13. Tan, H. Y., Y. Sun, W. Lo, S. J. Lin, C. H. Hsiao, Y. F. Chen, S. C. M. Huang, W. C. Lin, S. H. Jee, H. S. Yu, and C. Y. Dong. 2006. Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo. Investigative Ophthalmology & Visual Science 47:5251-5259. 14. Yeh, A. T., M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy. 2005. Nonlinear optical microscopy of articular cartilage. Osteoarthritis and Cartilage 13:345-352. 15. Stoller, P., B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva. 2002. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. Journal of Biomedical Optics 7:205-214. 16. Chu, S. W., S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun. 2004. Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophysical Journal 86:3914-3922. 17. Plotnikov, S. V., A. C. Millard, P. J. Campagnola, and W. A. Mohler. 2006. Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophysical Journal 90:693-703. 18. Al-Attar, A., S. Mess, J. M. Thomassen, C. L. Kauffman, and S. P. Davison. 2006. Keloid pathogenesis and treatment. Plastic and Reconstructive Surgery 117:286-300. 19. Da Costa V (Da Costa, V., Wei R (Wei, Randy), Lim R (Lim, Ryan), Sun CH (Sun, Chung-Ho), Brown JJ (Brown, Jininiy J.), Wong BJF (Wong, Brian J. -F.) 2008. Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy. ARCHIVES OF FACIAL PLASTIC SURGERY 10:38-43. 20. Slemp, A. E., and R. E. Kirschner. 2006. Keloids and scars: a review of keloids and scars, their pathogenesis, risk factors, and management. Current Opinion in Pediatrics 18:396-402. 21. Berman, B., and M. R. Duncan. 1990. Pentoxifylline Inhibits the Proliferation of Human Fibroblasts Derived from Keloid, Scleroderma and Morphea Skin and Their Production of Collagen, Glycosaminoglycans and Fibronectin. British Journal of Dermatology 123:339-346. 22. Lewis, K. G., L. Bercovitch, S. W. Dill, and L. Robinson-Bostom. 2004. Acquired disorders of elastic tissue: Part II. Decreased elastic tissue. Journal of the American Academy of Dermatology 51:165-185. 23. Lewis, K. G., S. W. Dill, C. S. Wilkel, and L. Robinson-Bostom. 2004. Mid-dermal elastolysis preceded by acute neutrophilic dermatosis. Journal of Cutaneous Pathology 31:72-76. 24. Han, X., R. M. Burke, M. L. Zettel, P. Tang, and E. B. Brown. 2008. Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma. Optics Express 16:1846-1859. 25. Chen, W. L., Y. Sun, W. Lo, H. Y. Tan, and C. Y. Dong. 2008. Combination of multiphoton and reflective confocal imaging of cornea. Microscopy Research and Technique 71:83-85. 26. Williams, R. M., W. R. Zipfel, and W. W. Webb. 2005. Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88:1377-1386. 27. Tiaho, F., G. Recher, and D. Rouede. 2007. Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy. Optics Express 15:12286-12295. 28. Collier, T., D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum. 2003. Determination of epithelial tissue scattering coefficient using confocal microscopy. Ieee Journal of Selected Topics in Quantum Electronics 9:307-313. 29. Beck, K., and B. Brodsky. 1998. Supercoiled protein motifs: The collagen triple-helix and the alpha-helical coiled coil. Journal of Structural Biology 122:17-29. 30. Odin, C., Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet. 2008. Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy. Journal of Microscopy-Oxford 229:32-38. 31. Chen, W. L., T. H. Li, P. J. Su, C. K. Chou, P. T. Fwu, S. J. Lin, D. Kim, P. T. C. So, and C. Y. Dong. 2009. Second harmonic generation chi tensor microscopy for tissue imaging. Applied Physics Letters 94:-. 32. Chou, C. K., W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong. 2008. Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation. Journal of Biomedical Optics 13:-. 33. Richards, B., and E. Wolf. 1959. Electromagnetic Diffraction in Optical Systems .2. Structure of the Image Field in an Aplanatic System. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 253:358-379. 34. Chu, S. W., S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin. 2009. Selective imaging in second-harmonic-generation microscopy with anisotropic radiation. Journal of Biomedical Optics 14:-. 35. Mansfield, J. C., C. P. Winlove, J. Moger, and S. J. Matcher. 2008. Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy. Journal of Biomedical Optics 13:-. 36. Meigel, W. N., S. Gay, and L. Weber. 1977. Dermal Architecture and Collagen Type Distribution. Archives of Dermatological Research 259:1-10. 37. Epstein, E. H. 1974. [Alpha1(Iii)]3 Human Skin Collagen - Release by Pepsin Digestion and Preponderance in Fetal Life. Journal of Biological Chemistry 249:3225-3231. 38. Stoller, P., K. M. Reiser, P. M. Celliers, and A. M. Rubenchik. 2002. Polarization-modulated second harmonic generation in collagen. Biophysical Journal 82:3330-3342. 39. Odin, C., T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand. 2008. Collagen and myosin characterization by orientation field second harmonic microscopy. Optics Express 16:16151-16165. 40. Lin, S. J., C. Y. Hsiao, Y. Sun, W. Lo, W. C. Lin, G. J. Jan, S. H. Jee, and C. Y. Dong. 2005. Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy. Optics Letters 30:622-624. 41. Sun, Y., W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong. 2006. Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging. Biophysical Journal 91:2620-2625. 42. Kim, B. M., J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva. 2000. Collagen structure and nonlinear susceptibility: Effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity. Lasers in Surgery and Medicine 27:329-335. 43. Koehler, M. J., K. Konig, P. Elsner, R. Buckle, and M. Kaatz. 2006. In vivo assessment of human skin aging by multiphoton laser scanning tomography. Optics Letters 31:2879-2881. 44. Lee, H. S., S. W. Teng, H. C. Chen, W. Lo, Y. Sun, T. Y. Lin, L. L. Chiou, C. C. Jiang, and C. Y. Dong. 2006. Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy. Tissue Engineering 12:2835-2841. 45. Williams, R. M., W. R. Zipfel, and W. W. Webb. 2005. Interpreting second-harmonic generation images of collagen I fibrils. Biophysical Journal 88:1377-1386. 46. Lee, H. S., G. T. Huang, H. S. Chiang, L. L. Chiou, M. H. Chen, C. H. Hsieh, and C. C. Jiang. 2003. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells 21:190-199. 47. Chen, W. L., C. H. Huang, L. L. Chiou, T. H. Chen, Y. Y. Huang, C. C. Jiang, H. S. Lee, and C. Y. Dong. 2010. Multiphoton Imaging and Quantitative Analysis of Collagen Production by Chondrogenic Human Mesenchymal Stem Cells Cultured in Chitosan Scaffold. Tissue Eng Part C Methods. 48. Cox, G., E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell. 2003. 3-dimensional imaging of collagen using second harmonic generation. Journal of Structural Biology 141:53-62. 49. Yeh, A. T., N. Nassif, A. Zoumi, and B. J. Tromberg. 2002. Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence. Optics Letters 27:2082-2084. 50. Lin, S. J., S. H. Jee, C. J. Kuo, R. J. Wu, W. C. Lin, J. S. Chen, Y. H. Liao, C. J. Hsu, T. F. Tsai, Y. F. Chen, and C. Y. Dong. 2006. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Optics Letters 31:2756-2758. 51. Roth, S., and I. Freund. 1979. 2Nd Harmonic-Generation in Collagen. Journal of Chemical Physics 70:1637-1643. 52. Mertz, J., and L. Moreaux. 2001. Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers. Opt Commun 196:325-330. 53. Brasselet, S., V. Le Floc'h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez. 2004. In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy. Physical Review Letters 92:207401. 54. Mitchell, S. A., R. A. McAloney, D. Moffatt, N. Mora-Diez, and M. Z. Zgierski. 2005. Second-harmonic generation optical activity of a polypeptide alpha-helix at the air/water interface. Journal of Chemical Physics 122:114707. 55. Deniset-Besseau, A., J. Duboisset, E. Benichou, F. Hache, P. F. Brevet, and M. C. Schanne-Klein. 2009. Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin. Journal of Physical Chemistry B 113:13437-13445. 56. Pena, A. M., T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein. 2005. Chiroptical effects in the second harmonic signal of collagens I and IV. Journal of the American Chemical Society 127:10314-10322. 57. Psilodimitrakopoulos, S., S. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez. 2009. In vivo, pixel-resolution mapping of thick filaments' orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy. Journal of Biomedical Optics 14:11. 58. Rocha-Mendoza, I., D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen. 2007. Sum frequency vibrational spectroscopy: The molecular origins of the optical second-order nonlinearity of collagen. Biophysical Journal 93:4433-4444. 59. Chen, W. L., T. H. Li, P. J. Su, C. K. Chou, P. T. Fwu, S. J. Lin, D. Kim, P. T. C. So, and C. Y. Dong. 2009. Second harmonic generation chi tensor microscopy for tissue imaging. Applied Physics Letters 94:183902. 60. Su, P. J., W. L. Chen, T. H. Li, C. K. Chou, T. H. Chen, Y. Y. Ho, C. H. Huang, S. J. Chang, Y. Y. Huang, H. S. Lee, and C. Y. Dong. 2010. The Discrimination of Type I and Type II Collagen and the Label-free Imaging of Engineered Cartilage Tissue. Biomaterials 31:9415-9421. 61. Goldstein, H. Classical mechanics, 1980. Addison-Wesley, Reading, MA, USA, isbn 0-321-18897-7. 62. Kriech, M. A., and J. C. Conboy. 2003. Label-free chiral detection of melittin binding to a membrane. Journal of the American Chemical Society 125:1148-1149. 63. Freund, I., M. Deutsch, and A. Sprecher. 1986. Connective-Tissue Polarity - Optical 2Nd-Harmonic Microscopy, Crossed-Beam Summation, and Small-Angle Scattering in Rat-Tail Tendon. Biophysical Journal 50:693-712. 64. Chou, C. K., W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong. 2008. Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation. Journal of Biomedical Optics 13:014005. 65. Hirose, C., N. Akamatsu, and K. Domen. 1992. Formulas for the Analysis of Surface Sum-Frequency Generation Spectrum by Ch Stretching Modes of Methyl and Methylene Groups. Journal of Chemical Physics 96:997-1004. 66. Hirose, C., H. Yamamoto, N. Akamatsu, and K. Domen. 1993. Orientation Analysis by Simulation of Vibrational Sum-Frequency Generation Spectrum - Ch Stretching Bands of the Methyl-Group. Journal of Physical Chemistry 97:10064-10069. 67. Mansfield, J. C., C. P. Winlove, J. Moger, and S. J. Matcher. 2008. Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy. Journal of Biomedical Optics 13:044020. 68. Parry, D. A. D., G. R. G. Barnes, and A. S. Craig. 1978. Comparison of Size Distribution of Collagen Fibrils in Connective Tissues as a Function of Age and a Possible Relation between Fibril Size Distribution and Mechanical-Properties. Proceedings of the Royal Society of London Series B-Biological Sciences 203:305-321. 69. Bella, J., M. Eaton, B. Brodsky, and H. M. Berman. 1994. Crystal-Structure and Molecular-Structure of a Collagen-Like Peptide at 1.9-Angstrom Resolution. Science 266:75-81. 70. Hongo, C., V. Nagarajan, K. Noguchi, S. Kamitori, K. Okuyama, Y. Tanaka, and N. Nishino. 2001. Average crystal structure of (Pro-Pro-Gly)(9) at 1.0 angstrom resolution. Polym. J. 33:812-818. 71. Kawahara, K., Y. Nishi, S. Nakamura, S. Uchiyama, Y. Nishiuchi, T. Nakazawa, T. Ohkubo, and Y. Kobayashi. 2005. Effect of hydration on the stability of the collagen-like triple-helical structure of [4(R)-hydroxyprolyl-4(R)-hydroxyprolylglycine](10). Biochemistry 44:15812-15822. 72. Vanderrest, M., and R. Garrone. 1991. Collagen Family of Proteins. Faseb Journal 5:2814-2823. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48349 | - |
| dc.description.abstract | 本論文使用二階電化率顯微術來研究膠原蛋白的結構。利用旋轉線性飛秒脈衝激發光,研究病理皮膚,軟骨組織工程與眼角膜。藉由測量影像中每一個點的二階電化率張量,並轉換成影像圖,發現此張量可以用來鑑別病理皮膚,第一型與第二型的膠原纖維。更進一步,建立分子模型,來描述所觀測到的張量變異,並且此模型和已知的高解析x-ray的數據吻合。除此之外,將這顯微術更進一步推廣,測量透明材料的折射率、膠原纖維的相關聯常數和纖維走向的亂度。最後,本研究發現,在眼角膜的正向與背向背頻訊號裡,隱藏著纖維走向有強相關聯的特質。 | zh_TW |
| dc.description.abstract | In the thesis, excitation polarization-resolved second harmonic generation (PSHG) microscopy is utilized to study the most rich mammal protein: collagen. Using PSHG microscopy, second harmonic generation (SHG) signal as a function of the excitation polarization angle was measured for normal and pathological human dermis, engineered cartilage tissue, and cornea. Second-order susceptibility (SOS,χ (2) ) tensor ratios of different collagen types were determined to single-pixel resolution and the results were displayed as images.
It was found that χ (2) tensor ratios can be used in the discrimination of normal and pathological skin dermis which normal dermis contain approximately 80% type I collagen and 20% type III collagen. SOS microscopy was found to be useful in distinguish the type I and type II collagen. In particular, χzzz|χzxx = 1.40 ± 0.04 and χxzx|χzxx = 0.53 ± 0.10 are obtained for type I collagen from rat tail tendon, and χzzz|χzxx = 1.14 ± 0.09 and χxzx|χzxx = 0.29 ± 0.11 for type II collagen from rat trachea cartilage. We also extended this methodology to the label-free SOS imaging of engineered cartilage tissue and we found that the presence of type I and II collagen in the tissue can be identified. Next, in an attempt to better explain the SOS results for collagen, we developed a new molecular model which incorporated the SOS contributions of peptide and methylene groups and it was found that the model is consistent with high resolution x-ray diffraction data in collagen-like model peptides. As extensions to the work described above, the methodology described in this thesis was also found to be able to determine fibril orientation. Strong correlation of fibril orientation between forward and backward scattering SHG was found and the described approach has great potential in the application of clinical ophthalmology. Finally, localized birefringence of a material was found to be determinable through depth-resolved SOS microscopy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:53:28Z (GMT). No. of bitstreams: 1 ntu-100-D94222010-1.pdf: 9233881 bytes, checksum: 03dba2dc5ce2544ff60c904bfc75e02b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1. Introduction..............................................................................................................8
1.1 Collagen ..........................................................................................................8 1.2 Second harmonic generation (SHG) microscopy......................................12 1.2.1 Requirement of non-centrosymmetry.............................................12 1.2.2 SHG from a nonlinear dipole radiator............................................13 1.2.3 χ (2) tensor components in cylindrical symmetry ........................14 1.2.4 Relationship of SHG intensity and excitation linear polarizations ......................................................................................................................14 2. Label-free imaging of pathological skin dermis..................................................16 2.1 Introduction..................................................................................................16 2.2 Materials and methods ................................................................................17 2.2.1 Second order susceptibility image analysis.....................................17 2.2.2 Excitation polarization resolved second harmonic generation microscope ..................................................................................................20 2.2.3 Specimen preparation.......................................................................22 2.3 Results and discussions................................................................................23 3. Discrimination of type I/II collagen......................................................................31 3.1 Introduction..................................................................................................31 3.2 Materials and Methods................................................................................33 3.2.1 Excitation polarization-resolved SHG microscope ........................33 3.2.2 Sample preparation ..........................................................................33 3.3 Results and Discussion.................................................................................37 3.4 Summary.......................................................................................................45 4. Determination of collagen nanostructure ............................................................47 4.1 Introduction..................................................................................................47 4.2 Theoretical Background..............................................................................49 4.2.1 Cylindrical symmetry of collagen molecules ..................................49 4.2.2 Molecular origins of second order susceptibility: peptide groups50 4.2.3 Molecular origins of second order susceptibility: methylene groups..........................................................................................................51 4.2.4 Molecular origins of second order susceptibility: peptide and methylene groups combined......................................................................52 4.3 Materials and Methods................................................................................56 4.3.1 Excitation polarization-resolved SHG microscope ........................56 4.3.2 Sample preparation: pure type I and II collagens in tissues and mixed types of collagen..............................................................................56 4.3.3 Data analysis......................................................................................58 4.4 Results and Discussion.................................................................................59 5. Measurement of birefringence and attenuation..................................................72 5.1 Motivation.....................................................................................................72 5.2 Measurement of birefringence....................................................................72 5.3 Attenuation of light......................................................................................73 5.4 Measurement of corneal birefringence ......................................................74 6. Orientation correlation length..............................................................................75 6.1 Introduction..................................................................................................75 6.2 Methods.........................................................................................................76 6.3 Results ...........................................................................................................77 7. Analysis of orienation angles.................................................................................79 7.1 Introduction..................................................................................................79 7.2 Results ...........................................................................................................79 8. Conclusions and perspectives................................................................................81 9. References...............................................................................................................82 10. Publication lists ....................................................................................................89 | |
| dc.language.iso | en | |
| dc.subject | 二階電化率 | zh_TW |
| dc.subject | 膠原蛋白 | zh_TW |
| dc.subject | second order susceptibility | en |
| dc.subject | collagen | en |
| dc.title | 二階電化率顯微術於膠原蛋白結構的研究 | zh_TW |
| dc.title | Investigation of collagen structure through second order susceptibility microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 朱士維(Shi-Wei Chu),李宣書(Hsuan-Shu Lee),楊台鴻(Tai-Hong Young),黃義侑(Yi-You Huang),陳永芳(Yang-Fang Chen),章為皓(Wei-Hau Chang),楊維元(Wei-Yuan Young) | |
| dc.subject.keyword | 膠原蛋白,二階電化率, | zh_TW |
| dc.subject.keyword | collagen,second order susceptibility, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 9.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
