請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王淑珍(Shu-Jen Wang) | |
| dc.contributor.author | Hui-Hsin Hsiao | en |
| dc.contributor.author | 蕭惠心 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:53:13Z | - |
| dc.date.available | 2012-09-08 | |
| dc.date.copyright | 2011-09-08 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | 參考文獻
林馨逸 (2004) 綠竹筍蔗糖轉化酶及蔗糖轉運子基因表現之研究。國立臺灣大學微生物與生化學研究所碩士論文。 陳佳宜 (2007) 水稻種子發芽時期胚中蔗糖轉運蛋白基因之表現調控機制。國立臺灣大學生物資源暨農學院系碩士論文。 陳懷如 (2009) 水稻葉鞘在抽穗期間由儲存組織轉換成供源組織之分子調控機制。國立臺灣大學生物資源暨農學院系博士論文。 Aoki N, Hirose T, Scofield GN, Whitfeld PR, Furbank RT (2003) The sucrose transporter gene family in rice. Plant Cell Physiology 44: 223-232 Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB (2000) SUT2, a putative sucrose sensor in sieve elements. The Plant Cell 12: 1153-1164 Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. The Plant Journal 43: 824-836 Benhamou, N., Chrispeels M. J. (1991) Accumulation of β-fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen. Plant Physiology 97: 739-750. Bewley JD, Black M (1994) Seeds. Physiology of development and germination (2nd edition). Plenum Press, New York BlakeneyAG, Matheson TH (1984) Some properties of the stem and pollen starches of rice. Starch 36: 265-269 Blechert S, Brodschelm W, Holder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH (1995) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proceedings of the National Academy of Sciences of the United States of America 92: 4099-4105 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254 Braun DM, Slewinski TL (2009) Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiology 149: 71-81 Bush DR (1993) Proton-coupled sugar and amino acid transporters in plants. Annual Review of Plant Biology 44: 513-542 Campanoni P and Nick P (2005) Auxin-dependent cell decision and cell elongation.1-Naphthaleneacetic acid and 2,4-Dichlorophenoxyacetic acid activate different pathway. Plant Physiology 137: 939-948 Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. Journal of Biological Chemistry 280: 21437-21443 Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiology 47: 1-13 Chen HJ, Wang SJ (2008) Molecular regulation of sink-source transition in rice leaf sheaths during the heading period. Acta Physiologiae Plantarum 30: 639-649 Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology 129: 661-677 Chincinska IA, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm Bm, Kühn C (2008) Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiology 146: 515-528 Cho SK, Jeung JU, Kang KS. Shim KH, Jung KW, You MK, Ok SH, Chung YS, Hwang HG, Choi HC (2004) Identification of genes induced in wound-treated wild rice (Oryza minuta). Molecules and Cells 17: 230-236 Datta R, Chamusco KC, Chourey PS (2002) Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiology 130: 1645-1656 Dugdale B, Becker DK, Harding RM, Dale JL (2001) Intron-mediated enhancement of the banana bunchy top virus DNA-6 promoter in banana (Musa spp.) embryogenic cells and plants. Plant Cell Reports 20: 220-226 De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang H (2003) An abscisic acid sensitive checkpoint in lateral root development of Arabidopsis. The Plant Journal 33: 543-555 DeWitt ND, Sussman MR (1995) Immunocytological localization of an epitope-tagged plasma membrane proton pump (H+-ATPase) in phloem companion cells. The Plant Cell 7: 2053-2067 Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiology 141: 196-207 Furbank RT, Hirose T, Wang XD, Patrick JW, Offler CE, Scofield GN (2001) Cellular localisation and function of a sucrose transporter OsSUT1 in developing rice grains. Functional Plant Biology 28: 1187-1196 Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan K, Xu ZH, Chong K (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiology 135: 1502-1513 Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proceedings of the National Academy of Sciences USA 98: 6522-6527 Gupta A, Singh M, Mishra BS, Kushwah S, Laxmi A (2009) Role of glucose in spatial distribution of auxin regulated genes. Plant Signaling & Behavior 4: 862-863 Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kühn C (2006) Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal 45: 180-192 Hertel R, Lomax TL, Briggs WR (1983) Auxin transport in membrane vesicles from Cucurbita pepo L. Planta 157: 193-201 Hirose T, Imaizumi N, Scofield GN, Furbank RT, Ohsugi R (1997) cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant Cell Physiology 38: 1389-1396 Hirose T, Zhang Z, Miyao A, Hirochika H, Ohsugi R, Terao T (2010) Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. Journal of Experimental Botany 61: 3639-3646 Ibraheem O, Hove RM, Bradley G (2008) Sucrose assimilation and the role of sucrose transporters in plant wound response. African Journal of Biotechnology 7: 4850-4855 Ishimaru K, Hirose T, Aoki N, Takahashi S, Ono K, Yamamoto S, Wu J, Saji S, Baba T, Ugaki M (2001) Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.). Plant Cell Physiology 42: 1181-1185 Jain M, Vara Prasad PV, Boote KJ, Hartwell Jr AL, Chourey PS (2007) Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227: 67–79 Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system.Plant Molecular Biology Reporter 5: 387-405 Jepson I, Martinez A, Sweetman JP (1998) Chemical-Inducible gene expression systems for plants- a review. Pestic Science 54: 360-367 Ji XM, Raveendran M, Oane R, Ismail A, LaWtte R, Bruskiewich R,Cheng SH, Bennett J (2005) Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Molecular Biology 59: 945–964 Jeon JS, Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan P Q, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, H TR, Ward JM (2011) Impaired function of the tonoplast-localized sucrose transporter in rice (Oryza sativa), OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiology Preview. Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology 143: 849-865 Koch KE, Nolte KD, Duke ER, McCarty DR, Avigne WT (1992) Sugar levels modulate differential expression of maize sucrose synthase genes. The Plant Cell 4: 59-69 Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annual Review of Plant Biology 47: 509-540 Koide Y, Hirano H, Matsuoka K, Nakamura K (1997) The N-terminal propeptide of the precursor to sporamin acts as a vacuole-targeting signal even at the C terminus of the mature part in tobacco cells. Plant Physiology 114: 863-870 Kong J, Li Z, Tan YP, Wan CX, Li SQ, Zhu YG (2007) Different gene expression patterns of sucrose-starch metabolism during pollen maturation in cytoplasmic male-sterile and male-fertile lines of rice. Physiologia Plantarum 130: 136–147 Kühn C (2003) A comparison of the sucrose transporter systems of different plant species. Plant Biology 5: 215-232 Kühn C (2011) Sucrose transporters and plant development. Transporters and Pumps in Plant Signaling: 225-251 Kühn C, Hajirezaei MR, Fernie AR, Roessner-Tunali U, Czechowski T, Hirner B, Frommer WB (2003) The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiology 131: 102-113 Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. The Plant Cell 11: 707-726 Lauterbach C, Niedermeier M, Besenbeck R, Stadler R, Sauer N (2007) Immunolocalization of the PmSUC1 sucrose transporter in plantago major flowers and reporter gene analyses of the PmSUC1 promoter suggest a role in sucrose release from the inner integument. Plant Biology 9: 357-365 Lee PD, Su JC (1982) Sucrose-starch transforming system in rice grain-a tracer feeding study. Proceedings of National Science Council Republic of China Part B 6:189-196 Lemoine R (2000) Sucrose transporters in plants: update on function and structure. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465: 246-262 Lemoine R, Burkle L, Barker L, Sakr S, Kühn C, Regnacq M, Gaillard C, Delrot S, Frommer WB (1999) Identification of a pollen-specific sucrose transporter-like protein NtSUT3 from tobacco. FEBS Letters 454: 325-330 Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. Journal of Plant Physiology 164: 969-979 Maas C, Laufs J, Grant S, Korfhage C, Werr W (1991) The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Molecular Biology 16: 199-207 MacGregor DR, Deak KI, Ingram PA, Malamy JE (2008) Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. The Plant Cell 20: 2643-2660 Matsukura C, Saitoh T, Hirose T, Ohsugi R, Perata P, Yamaguchi J (2000) Sugar uptake and transport in rice embryo. Expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light. Plant Physiology 124: 85-93 Meyer S, Melzer M, Truernit E, HuEmmer C, Besenbeck R, Stadler R, Sauer N (2000) AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. The Plant Journal 24: 869-882 Meyer S, Lauterbach C, Niedermeier M, Barth I, Sjolund RD, Sauer N (2004) Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues. Plant Physiology 134: 684-693 Mishra BS, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4: e4502 Murata T, Akazawa T, Fukuchi S (1968) Enzymic mechanism of starch breakdown in germinating rice seeds I. An analytical study. Plant Physiology 43: 1899-1905 Nomura T, Kono Y, Akazawa T (1969) Enzymic mechanism of starch breakdown in germinating rice seeds II. scutellum as the site of sucrose synthesis. Plant Physiology 44: 765-769 Ogawa A, Kawashima C, Yamauchi A (2005) Sugar accumulation along the seminal root axis, as affected by osmotic stress in maize: a possible physiological basis for plastic lateral root development. Plant Production Science 8: 173-180 Ogawa A, Ando F, Toyofuku K, Kawashima C (2009) Sucrose metabolism for the development of seminal root in maize seedlings. Plant Production Science 12: 9-16 Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiology 48: 1319–1330 Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annual Review of Plant Biology 58: 93-113 Rani Debi B, Taketa S, Ichii M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). Journal of Plant Physiology 162: 507-515 Reinders A, Sivitz AB, Starker CG, Gantt JS, Ward JM (2008) Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Molecular Biology 68: 289-299 Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell 12: 707-719 Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. The Plant Cell 14: S185-S205 Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57: 675-709 Sakr S, Noubahni M, Bourbouloux A, Riesmeier J, Frommer WB, Sauer N and Delrot S (1997) Cutting, ageing and expression of plant membrane transporters. Biochimica et Biophysica Acta (BBA)-Biomembranes 1330: 207-216 Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. Journal of Plant Research 116: 83-91 Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Letters 581: 2309-2317 Schneidereit A, Imlau A, Sauer N (2008) Conserved cis-regulatory elements for DNA-binding-with-one-finger and homeo-domain-leucine-zipper transcription factors regulate companion cell-specific expression of the Arabidopsis thaliana SUCROSE TRANSPORTER 2 gene. Planta 228: 651-662 Schunmann PHD, Richardson AE, Smith FW, Delhaize E (2004) Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). Journal of Experimental Botany 55: 855-865 Scofield GN, Hirose T, Gaudron JA, Upadhyaya NM, Ohsugi R, Furbank RT (2002) Antisense suppression of the rice sucrose transporter gene,OsSUT1,leads to impaired grain filling and germination but does not affect photosynthesis. Functional Plant Biology 29: 815-826 Scofield GN, Aoki N, Hirose T, Takano M, Jenkins CLD, Furbank RT (2007a) The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. Journal of Experimental Botany 58: 483-495 Scofield GN, Hirose T, Aoki N, Furbank RT (2007b) Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. Journal of Experimental Botany 58: 3155-3169 Shen Z, Byers DM (1996) Isolation of Vibrio harveyi acyl carrier protein and the fabG, acpP, and fabF genes involved in fatty acid biosynthesis. Journal of bacteriology 178:571–573 Shi JH, Hao X, Wu ZC, Wu P. (2009) A new genetic factor for root gravitropism in rice (Oryza sativa L.). Journal of Zhejiang University-Science 10: 777-783 Smeekens S (1998) Sugar regulation of gene expression in plants. Current Opinion in Plant Biology 1: 230-234 Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annual Review Plant Molecular Biology 48: 67-87 Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. Journal of Plant Research 116: 83-91 Truernit E, Schmid J, Epple P, Illig J, Sauer N (1996) The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. The Plant Cell 8: 2169-2186 Truernit E, Stadler R, Baier K, Sauer N (1999) A male gametophyte specific monosaccharide transporter in Arabidopsis. The Plant Journal 17: 191-201 Wang S, Ichii M, Taketa S, Xu L, Xia K, Zhou X (2002) Lateral root formation in rice (Oryza sativa ): promotion effect of jasmonic acid. Journal of Plant Physiology 159: 827-832 Weise A, Barker L, Kühn C, Lalonde S, Buschmann H, Frommer WB, Ward JM (2000) A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. The Plant Cell 12: 1345-1355 Xiong GS, Li JY, Wang YH (2009) Advances in the regulation and crosstalks of phytohormones. Chinese Science Bulletin 54: 4069-4082 Yao SG, Mushika J, Taketa S, Ichii M (2004) The short-root mutation srt5 defines a sugar-mediated root growth in rice (Oryza sativa L.) Plant Science 167: 49-54 Yin C, Wu Q, Zeng H, Xia K, Li R (2011) Endogenous auxin is required but supraoptimal for rapid growth of rice (Oryza sativa L.) seminal roots, and auxin inhibition of rice seminal root growth is not caused by ethylene. Plant Growth Regulation 30: 20-29 Zhang DB, Wilson ZA (2009) Stamen specification and anther development in rice. Chinese Science Bulletin 54: 2342-2353 Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell 22: 672-689 Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiology 50: 644-651 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48342 | - |
| dc.description.abstract | 高等植物體內,蔗糖從細胞間質裝載進入韌皮部進行運送及由韌皮部卸載至周圍細胞的過程中,蔗糖轉運蛋白 (sucrose transporters; SUTs) 扮演極重要的角色。水稻 (Oryza sativa L.) 蔗糖轉運蛋白基因家族成員為 OsSUT1、2、3、4及5。本研究主要藉由 OsSUT2 啟動子 POsSUT2::GUS 及 OsSUT4 啟動子 POsSUT4::GUS 轉殖水稻探討兩基因之組織專一性表現及生長發育上之差異表現。分析結果顯示 OsSUT2 及 OsSUT4 基因於根及葉部均具維管束韌皮部表現專一性;在穎花發育過程中,OsSUT2 及 OsSUT4 在抽穗前主要表現於內及外穎之穎脈,隨著抽穗、開花及授粉,穎脈專一性表現消失,轉而於雌蕊及雄蕊有明顯之表現。在充實穀粒中,OsSUT2 及 OsSUT4 主要在胚及糊粉層具顯著表現。在研究根系生長發育過程中,發現 OsSUT2 及 OsSUT4 啟動子主要於細胞生長快速之部位表現,例如種子根之根尖延長區及側根形成處。藉由外加醣類處理之試驗,得知 3% 之蔗糖及葡萄糖會促進 OsSUT2 及 OsSUT4 基因表現,而甘露醇與未處理醣類之表現差異不大。另外,利用 real-time RT-PCR 分析發現 OsSUT2 及 OsSUT4 兩基因之表現於機械傷害後 15 分鐘及 1 小時內即會被大量誘導,然而隨著時間增長,此兩基因之表現將逐漸下降。 | zh_TW |
| dc.description.abstract | In higher plants, sucrose transporters (SUTs) play important roles for the sucrose loading , which sucrose enters into phloem for further transportation and then unloads to surrounding cells. The rice (Oryza sativa L.) SUT gene family are composed of five members, OsSUT1 to 5. This study focused on the investigation of the tissue-specific and developmental regulation of OsSUT2 and OsSUT4 promoter in POsSUT2::GUS and POsSUT4::GUS transgenic rice plants. The results showed that GUS was specifically expressed in phloem tissue, both in OsSUT2 and OsSUT4. In developing caryopses, the activities of OsSUT2 and OsSUT4 promoters, were obviously observed in vascular bundles of lemma and palea at pre-heading stage. After heading and flowering, expression GUS in lemma and palea become undetectable but can be found in ovaries and anthers. In germinating seeds, OsSUT2 and OsSUT4 promoter activities were dominantly presented in embryos and aleurone layers. In developing roots, OsSUT2 and OsSUT4 promoters were both active in rapid growing regions, such as elongation zone of seminal roots and the sites of lateral root formation. Expression of OsSUT2 and OsSUT4 could be enhanced by 3% sucrose and glucose in root tissues. Real-time RT-PCR analysis showed that OsSUT2 and OsSUT4 mRNA levels in leaves would quickly increase after wounding treatment for 15 min and 1 hr, respectively, but following the mRNA levels declined gradually. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:53:13Z (GMT). No. of bitstreams: 1 ntu-100-R98621116-1.pdf: 25944208 bytes, checksum: 1d0c78cb65ae86a0fabd341ec81bfe2f (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………............................i
中文摘要………………………………………………………………………………...ii Abstract………………………………………………………………………………....iii 目錄……………………………………………………………………………………..iv 表目錄…………………………………………………………………………………..vi 圖目錄………………………………………………………………………………….vii 附圖及附表目錄……………………………………………………………………......ix 縮寫字對照……………………………………………………………………………...x 前言 1. 水稻蔗糖轉運蛋白之生理功能及分類………………………………….…...….1 2. 水稻種子發芽時期內部醣類變化及運輸……………………………….…...….4 3. 水稻穎花內花粉發育過程及醣類運輸…………………………………...….….5 4. 醣類對水稻根系發育及側根生長之影響………………….……..………….….6 5. 醣類參與植物對傷害逆境之防禦機制..………………………………..…….....7 6. 本論文之研究主題………………………………………………………….....…8 材料與方法 1. 植物材料、種植及處理方法…………………...………….………………..……9 2. OsSUT2 及OsSUT4 啟動子:: GUS 轉殖水稻之分子鑑定..………..…….….….12 3. 轉殖水稻GUS 活性之組織化學染色分析….…………………….….…..….....13 4. 轉殖水稻之GUS 活性定量分析…..……………………………….……….......13 5. 即時定量RT-PCR 基因表現之分析…..…..………...……………….……..…..15 結果 1. OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻之分子鑑定…..……………..…..18 2. OsSUT2 及OsSUT4 啟動子-GUS 之組織專一性表現分析……………..........18 3. OsSUT2 及OsSUT4 啟動子於不同生育時期之活性表現分析……….………19 3.1. OsSUT2 及OsSUT4 啟動子於種子發芽生長時期之活性表現分析.…..19 3.2. OsSUT2 及OsSUT4 啟動子於穎花發育過程之活性表現分析…………20 3.3. 水稻花藥OsSUT1 ~ OsSUT5,蔗糖分解及澱粉合成相關基因之表現分 析………………………………………………………………………….20 4. 調控根系生長相關研究………………………….………………………..…….21 4.1. OsSUT4 啟動子於根系發育過程之活性表現分析………………..……. 21 4.2. 醣類對水稻根部OsSUT2 及OsSUT4 基因表現分析…...................…...22 5. 探討水稻蔗糖轉運蛋白基因受機械傷害所誘導之表現....……………...….....22 5.1. OsSUT2 及OsSUT4 基因於機械傷害處理下之表現分析……………...22 5.2. OsSUT4 啟動子受機械傷害誘導之活性定量分析…..…………………..23 討論 1. OsSUTs 基因家族之組織專一特性及不同發育時期調控機制……………...24 2. OsSUTs 基因於根部表現之調控機制……….……….…………………….....26 3. OsSUTs 與受傷防禦機制之探討……………………………………………...26 4. 結語與未來展望……………………………………………………………….28 參考文獻………….……………………………………………………………………29 表目錄 表一、OsSUT2 及OsSUT4 基因之比較….………………...…………………….…...37 圖目錄 圖一、 OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻之分子鑑定……………...….…38 圖二、 OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻於根尖處之GUS 組織化學染色 分析………………………………………...………………………………..39 圖三、 OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻於根尖處橫切面之GUS 組織化 學染色分析……………………………………………………...…………..40 圖四、 OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻葉片之GUS 組織化學染色分 析…….….…………………………………………………………………...41 圖五、 OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻葉鞘之GUS 組織化學染色分 析....................................................................................................………….42 圖六、 種子發芽時期之OsSUT 基因表現及啟動子活性分析.….………………...43 圖七、 OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻於種子發芽時期穀粒之GUS 組 織化學染色分析.. ….…………….…………….…………….……………..44 圖八、 OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻於穎花發育過程之GUS 組織化 學染色分析….……….…………….…………….…………….………..…..45 圖九、 OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻花藥內花粉之GUS 組織化學染 色分析…. ….…………….…………….…………….…………….………..46 圖十、 OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻與TNG67 穎花花藥內之花粉其 澱粉累積之表現…….…………….…………….…………….…………….47 圖十一、水稻花藥OsSUT1~OsSUT5、蔗糖分解及澱粉合成相關基因之表現分析 ………....…………………………………………………………………….48 圖十二、OsSUT4 啟動子-GUS 轉殖水稻根系之GUS 組織化學染色分析….........49 圖十三、OsSUT4 啟動子-GUS 轉殖水稻種子根之側根分化區之GUS 組織化學染色 分析.. ….…………….…………….…………….…………….…………….50 圖十四、OsSUT4 啟動子-GUS 轉殖水稻種子根側根分化區之橫切面及縱切面GUS 組織化學染色分析…………………………………………………...….…51 圖十五、水稻根系生長過程中OsSUT2 及OsSUT4 基因受醣類之外觀形態及基因表 現……………………………………….…………….………….………….52 圖十六、OsSUT2 及OsSUT4 啟動子-GUS 轉殖水稻之幼苗葉片以機械傷害後之GUS 組織化學染色分析……………………………... ….…………..…………..53 圖十七、TNG67 水稻幼苗葉部受機械傷害後OsSUT1、OsSUT2 及OsSUT4 基因表現分析……………………………………………………….…..…………..54 圖十八、POsSUT4::GUS 水稻幼苗之啟動子活性定量分析……………………….55 附表及附圖目錄 附表一、Genomic PCR 之專一性引子………………………………………..………56 附表二、Real-time RT-PCR 之專一性引子……………………………………….…..57 附表三、木村氏水耕液配方 …………………………………………………….…....60 附圖一、水稻蔗糖轉運蛋白之系統發生樹……………………………………..…...61 附圖二、OsSUT promoter::GUS 穩定性表現質體建構圖………………….….…....62 附圖三、OsSUT promoter-CYH10 質體建構圖………………………………......….63 附圖四、OsSUT2 基因啟動子序列………………………………………….....….....64 附圖五、OsSUT4 基因啟動子序列………………………………………….……….65 附圖六、POsSUT2 基因啟動子序列之cis-acting element 分析…….…..…….........66 附圖七、POsSUT4 基因啟動子序列之cis-acting element 分析…….……....……...67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 機械傷害 | zh_TW |
| dc.subject | 蔗糖轉運蛋白 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 啟動子 | zh_TW |
| dc.subject | 醣類 | zh_TW |
| dc.subject | wounding | en |
| dc.subject | sucrose transporter | en |
| dc.subject | rice (Oryza sativa L.) | en |
| dc.subject | promoter | en |
| dc.subject | sugars | en |
| dc.title | 水稻蔗糖轉運蛋白質基因OsSUT2及OsSUT4之表現分析 | zh_TW |
| dc.title | Analysis of expressions of rice sucrose transporter genes OsSUT2 and OsSUT4 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王愛玉(Ai-Yu Wang),黃文理(Wen-Lii Huang),張孟基(Men-Chi Chang),洪傳揚(Chwan-Yang Hong) | |
| dc.subject.keyword | 蔗糖轉運蛋白,水稻,啟動子,醣類,機械傷害, | zh_TW |
| dc.subject.keyword | sucrose transporter,rice (Oryza sativa L.),promoter,sugars,wounding, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 25.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
