Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高全良(Chuan-Liang Kao)
dc.contributor.authorFai Honen
dc.contributor.author韓暉zh_TW
dc.date.accessioned2021-06-15T06:52:58Z-
dc.date.available2021-12-31
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-02-12
dc.identifier.citation1. Murphy, E., et al., Reevaluation of human cytomegalovirus coding potential. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(23): p. 13585-13590.
2. Dolan, A., et al., Genetic content of wild-type human cytomegalovirus. J Gen Virol, 2004. 85(5): p. 1301-1312.
3. Davison, A.J., et al., The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol, 2003. 84(1): p. 17-28.
4. Gerna, G., F. Baldanti, and M.G. Revello, Pathogenesis of human cytomegalovirus infection and cellular targets. Human Immunology, 2004. 65(5): p. 381-386.
5. Jurak, I. and W. Brune, Induction of apoptosis limits cytomegalovirus cross-species infection. EMBO J, 2006. 25(11): p. 2634-2642.
6. Boyle, K.A. and T. Compton, Receptor-Binding Properties of a Soluble Form of Human Cytomegalovirus Glycoprotein B. J. Virol., 1998. 72(3): p. 1826-1833.
7. Wang, X., et al., Integrin [alpha]v[beta]3 is a coreceptor for human cytomegalovirus. Nat Med, 2005. 11(5): p. 515-521.
8. Döhner K, S.B., The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol., 2004. 285: p. 67-108.
9. Bechtel, J.T. and T. Shenk, Human Cytomegalovirus UL47 Tegument Protein Functions after Entry and before Immediate-Early Gene Expression. J. Virol., 2002. 76(3): p. 1043-1050.
10. Goldmacher, V.S., et al., A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(22): p. 12536-12541.
11. McCormick, A.L., et al., Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology, 2003. 316(2): p. 221-233.
12. Skaletskaya, A., et al., A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(14): p. 7829-7834.
13. Bauer D, T.R., Herpes viral proteins blocking the transporter associated with antigen processing TAP--from genes to function and structure. Curr Top Microbiol Immunol. , 2002. 269: p. 87-99.
14. Wiebusch, L., et al., Human cytomegalovirus immediate-early over protein 2 (IE2)-mediated activation of cyclin E is cell-cycle-independent and forces S-phase entry in IE2-arrested cells. J Gen Virol, 2003. 84(1): p. 51-60.
15. Wiebusch, L. and C. Hagemeier, The human cytomegalovirus immediate early 2 protein dissociates cellular DNA synthesis from cyclin-dependent kinase activation. EMBO J, 2001. 20(5): p. 1086-1098.
16. Paulus, C., S. Krauss, and M. Nevels, A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(10): p. 3840-3845.
17. Child, S.J., et al., Evasion of Cellular Antiviral Responses by Human Cytomegalovirus TRS1 and IRS1. J. Virol., 2004. 78(1): p. 197-205.
18. Mocarski, E.S., Immune escape and exploitation strategies of cytomegaloviruses: impact on and imitation of the major histocompatibility system. Cellular Microbiology, 2004. 6(8): p. 707-717.
19. Penfold, M.E.T. and E.S. Mocarski, Formation of Cytomegalovirus DNA Replication Compartments Defined by Localization of Viral Proteins and DNA Synthesis. Virology, 1997. 239(1): p. 46-61.
20. Mocarski, E.S., Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends in Microbiology, 2002. 10(7): p. 332-339.
21. Frère, P., et al., Infections after CD34-selected or unmanipulated autologous hematopoietic stem cell transplantation. 2006, Munksgaard International Publishers. p. 102-108.
22. Susan, M., et al., Patterns of human cytomegalovirus infection in term placentas: A preliminary analysis. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology, 2006. 35(2): p. 210-215.
23. Lazzarotto, T., et al., Avidity of immunoglobulin G directed against human cytomegalovirus during primary and secondary infections in immunocompetent and immunocompromised subjects. Clin. Diagn. Lab. Immunol., 1997. 4(4): p. 469-473.
24. Revello, M.G., et al., Lymphoproliferative Response in Primary Human Cytomegalovirus (HCMV) Infection Is Delayed in HCMV Transmitter Mothers. Journal of Infectious Diseases, 2006. 193(2): p. 269-276.
25. Tu, W., et al., T-Cell Immunity to Subclinical Cytomegalovirus Infection Reduces Cardiac Allograft Disease. Circulation, 2006. 114(15): p. 1608-1615.
26. Nigro, G., et al., Passive Immunization during Pregnancy for Congenital Cytomegalovirus Infection. New England Journal of Medicine, 2005. 353(13): p. 1350-1362.
27. Gambarotto K, R.-R.S., Aubard Y, Piver P, Duffetelle B, Delpeyroux C, Roussanne MC, Nicot T, Denis F., Primary cytomegalovirus infection and pregnant women: epidemiological study on 1100 women at Limoges. Pathol Biol (Paris), 1997. 45(6): p. 453-61.
28. Gratacap-Cavallier, B., et al., Cytomegalovirus seroprevalence in French pregnant women: Parity and place of birth as major predictive factors. European Journal of Epidemiology, 1998. 14(2): p. 147-152.
29. GRIFFITHS, P., C. BABOONIAN, and D. ASHBY, The Demographic Characteristics of Pregnant Women Infected with Cytomegalovirus. International Journal of Epidemiology, 1985. 14(3): p. 447-452.
30. Stagno S, P.R., Cloud G, Britt WJ, Henderson RE, Walton PD, Veren DA, Page F, Alford CA., Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA, 1986. 256(14): p. 1904-8.
31. Staras, S.A.S., et al., Seroprevalence of Cytomegalovirus Infection in the United States, 1988??994. Clinical Infectious Diseases, 2006. 43(9): p. 1143-1151.
32. Lu SC, C.L., Wu FM, Hsieh GJ, Haung SP, Chen JC, Chang AC, Hsieh WK, Chen BH., Seroprevalence of CMV antibodies in a blood donor population and premature neonates in the south-central Taiwan. Kaohsiung J Med Sci. , 1999. 15(10): p. 603-610.
33. Chen, M.-H., et al., High perinatal seroprevalence of cytomegalovirus in northern Taiwan. Journal of Paediatrics and Child Health, 2008. 44(4): p. 166-169.
34. therapy, P.o.p.a.d.i.p.w.a.H.i.i.t.e.o.h.a.a., Predictors of progression and death in patients with advanced HIV infection in the era of highly active antiretroviral therapy. Enferm Infecc Microbiol Clin., 2004 22(3): p. 142-9.
35. Chou, S., et al., Frequency of UL97 Phosphotransferase Mutations Related to Ganciclovir Resistance in Clinical Cytomegalovirus Isolates. Journal of Infectious Diseases, 1995. 172(1): p. 239-242.
36. Chou, S., et al., Viral DNA Polymerase Mutations Associated with Drug Resistance in Human Cytomegalovirus. Journal of Infectious Diseases, 2003. 188(1): p. 32-39.
37. Sullivan, V., et al., A point mutation in the human cytomegalovirus DNA polymerase gene confers resistance to ganciclovir and phosphonylmethoxyalkyl derivatives. Antimicrob. Agents Chemother., 1993. 37(1): p. 19-25.
38. Chou, S., et al., Evolution of Mutations Conferring Multidrug Resistance during Prophylaxis and Therapy for Cytomegalovirus Disease. Journal of Infectious Diseases, 1997. 176(3): p. 786-789.
39. Erice, A., et al., Progressive Disease Due to Ganciclovir-Resistant Cytomegalovirus in Immunocompromised Patients. New England Journal of Medicine, 1989. 320(5): p. 289-293.
40. Jabs, D.A., et al., Cytomegalovirus Retinitis and Viral Resistance: Prevalence of Resistance at Diagnosis, 1994. Arch Ophthalmol, 1996. 114(7): p. 809-814.
41. Rapp, M., et al., Identification of the murine cytomegalovirus glycoprotein B gene and its expression by recombinant vaccinia virus. J. Virol., 1992. 66(7): p. 4399-4406.
42. Snydman, D.R., et al., Use of Cytomegalovirus Immune Globulin to Prevent Cytomegalovirus Disease in Renal-Transplant Recipients. New England Journal of Medicine, 1987. 317(17): p. 1049-1054.
43. EBPG, European Best Practice Guidelines for Renal Transplantation (part 1). Nephrol Dial Transplant., 2000. 15(7): p. 71-74.
44. Snydman, D.R., et al., Cytomegalovirus Immune Globulin Prophylaxis in Liver Transplantation. Annals of Internal Medicine, 1993. 119(10): p. 984-991.
45. Robert, M.K., et al., Impact of prophylaxis with cytogam alone on the incidence of CMV viremia in CMV-seropositive lung transplant recipients. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 2003. 22(7): p. 754-763.
46. Bonaros, N.E., et al., Comparison of combined prophylaxis of cytomegalovirus hyperimmune globulin plus ganciclovir versus cytomegalovirus hyperimmune globulin alone in high-risk heart transplant recipients 1. Transplantation, 2004. 77(6): p. 890-897.
47. Alfred, A.K., et al., Long-term results of CMV hyperimmune globulin prophylaxis in 377 heart transplant recipients. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 2003. 22(3): p. 250-257.
48. Valantine, H.A., et al., IMPACT OF CYTOMEGALOVIRUS HYPERIMMUNE GLOBULIN ON OUTCOME AFTER CARDIOTHORACIC TRANSPLANTATION: A Comparative Study of Combined Prophylaxis with CMV Hyperimmune Globulin Plus Ganciclovir Versus Ganciclovir Alone. Transplantation, 2001. 72(10): p. 1647-1652.
49. Weill, D., et al., Combination Prophylaxis with Ganciclovir and Cytomegalovirus (CMV) Immune Globulin After Lung Transplantation: Effective CMV Prevention Following Daclizumab Induction. American Journal of Transplantation, 2003. 3(4): p. 492-496.
50. Fowler, K.B., et al., The Outcome of Congenital Cytomegalovirus Infection in Relation to Maternal Antibody Status. New England Journal of Medicine, 1992. 326(10): p. 663-667.
51. Enders G, B.U., Lindemann L, Schalasta G, Daiminger A., Prenatal diagnosis of congenital cytomegalovirus infection in 189 pregnancies with known outcome. Prenat Diagn., 2001. 21(5): p. 362-77.
52. Fowler, K.B., S. Stagno, and R.F. Pass, Maternal Immunity and Prevention of Congenital Cytomegalovirus Infection. JAMA: The Journal of the American Medical Association, 2003. 289(8): p. 1008-1011.
53. Fowler, K., et al., The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N. Engl. J. Med., 1992. 326(10): p. 663-667.
54. Maidji, E., et al., Antibody Treatment Promotes Compensation for Human Cytomegalovirus-Induced Pathogenesis and a Hypoxia-Like Condition in Placentas with Congenital Infection. Am J Pathol: p. ajpath.2010.091210.
55. Britt, W.J., L. Vugler, and E.B. Stephens, Induction of complement-dependent and -independent neutralizing antibodies by recombinant-derived human cytomegalovirus gp55-116 (gB). J. Virol., 1988. 62(9): p. 3309-3318.
56. Gonczol, E., et al., Immune responses to isolated human cytomegalovirus envelope proteins. J. Virol., 1986. 58(2): p. 661-664.
57. Schoppel, K., et al., The Humoral Immune Response against Human Cytomegalovirus Is Characterized by a Delayed Synthesis of Glycoprotein-Specific Antibodies. Journal of Infectious Diseases, 1997. 175(3): p. 533-544.
58. Gicklhorn, D., et al., Differential effects of glycoprotein B epitope-specific antibodies on human cytomegalovirus-induced cell-cell fusion. J Gen Virol, 2003. 84(7): p. 1859-1862.
59. Lantto, J., J.M. Fletcher, and M. Ohlin, Binding Characteristics Determine the Neutralizing Potential of Antibody Fragments Specific for Antigenic Domain 2 on Glycoprotein B of Human Cytomegalovirus. Virology, 2003. 305(1): p. 201-209.
60. Britt, W.J. and S. Boppana, Human cytomegalovirus virion proteins. Human Immunology, 2004. 65(5): p. 395-402.
61. Compton, T., Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends in Cell Biology, 2004. 14(1): p. 5-8.
62. Qadri, I., et al., Assembly of conformation-dependent neutralizing domains on glycoprotein B of human cytomegalovirus. J Gen Virol, 1992. 73(11): p. 2913-2921.
63. Schoppel, K., et al., Antibodies Specific for the Antigenic Domain 1 of Glycoprotein B (gpUL55) of Human Cytomegalovirus Bind to Different Substructures. Virology, 1996. 216(1): p. 133-145.
64. Utz, U., et al., Identification of a neutralizing epitope on glycoprotein gp58 of human cytomegalovirus. J. Virol., 1989. 63(5): p. 1995-2001.
65. Wagner, B., et al., A continuous sequence of more than 70 amino acids is essential for antibody binding to the dominant antigenic site of glycoprotein gp58 of human cytomegalovirus. J. Virol., 1992. 66(9): p. 5290-5297.
66. Kniess, N., et al., Distribution of linear antigenic sites on glycoprotein gp55 of human cytomegalovirus. J. Virol., 1991. 65(1): p. 138-146.
67. Chou, S. and K.M. Dennison, Analysis of Interstrain Variation in Cytomegalovirus Glycoprotein B Sequences Encoding Neutralization-Related Epitopes. Journal of Infectious Diseases, 1991. 163(6): p. 1229-1234.
68. Lehner, R., T. Stamminger, and M. Mach, Comparative sequence analysis of human cytomegalovirus strains. J. Clin. Microbiol., 1991. 29(11): p. 2494-2502.
69. Roy, D.M., J.E. Grundy, and V.C. Emery, Sequence variation within neutralizing epitopes of the envelope glycoprotein B of human cytomegalovirus: comparison of isolates from renal transplant recipients and AIDS patients. J Gen Virol, 1993. 74(11): p. 2499-2505.
70. Meyer, H., et al., Glycoprotein gp116 of human cytomegalovirus contains epitopes for strain-common and strain-specific antibodies. J Gen Virol, 1992. 73(9): p. 2375-2383.
71. Braunagel, S.C., et al., Autographa californicaNucleopolyhedrovirus Infection Results in Sf9 Cell Cycle Arrest at G2/M Phase. Virology, 1998. 244(1): p. 195-211.
72. Ikeda, M. and M. Kobayashi, Cell-Cycle Perturbation in Sf9 Cells Infected withAutographa californicaNucleopolyhedrovirus. Virology, 1999. 258(1): p. 176-188.
73. Charlton, C.A. and L.E. Volkman, Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected Spodoptera frugiperda cells. J. Virol., 1991. 65(3): p. 1219-1227.
74. Charlton, C.A. and L.E. Volkman, Penetration of Autographa californica Nuclear Polyhedrosis Virus Nucleocapsids into IPLB Sf 21 Cells Induces Actin Cable Formation. Virology, 1993. 197(1): p. 245-254.
75. Roncarati, R. and D. Knebel-Morsdorf, Identification of the early actin-rearrangement-inducing factor gene, arif-1, from Autographa californica multicapsid nuclear polyhedrosis virus. J. Virol., 1997. 71(10): p. 7933-7941.
76. Ribeiro, B.M., K. Hutchinson, and L.K. Miller, A mutant baculovirus with a temperature-sensitive IE-1 transregulatory protein. J. Virol., 1994. 68(2): p. 1075-1084.
77. Gordon JD, C.E., Phenotypic characterization and physical mapping of a temperature-sensitive mutant of Autographa californica nuclear polyhedrosis virus defective in DNA synthesis. Virology, 1984. 138(1): p. 69-81.
78. Schultz, K.L.W. and P.D. Friesen, Baculovirus DNA Replication-Specific Expression Factors Trigger Apoptosis and Shutoff of Host Protein Synthesis during Infection. J. Virol., 2009. 83(21): p. 11123-11132.
79. Vlak, J.M., et al., Functional Studies on the p10 Gene of Autographa californica Nuclear Polyhedrosis Virus Using a Recombinant Expressing a p10-beta-Galactosidase Fusion Gene. J Gen Virol, 1988. 69(4): p. 765-776.
80. Williams, G.V., et al., A Cytopathological Investigation of Autographa californica Nuclear Polyhedrosis Virus p10 Gene Function Using Insertion/Deletion Mutants. J Gen Virol, 1989. 70(1): p. 187-202.
81. Markus Rothe, S.P.-K., Dieter Lang, Rolf Vornhagen, Walter Hinderer, Kerstin Weise, Hans-H. Sonneborn, Bodo Plachter,, An antigen fragment encompassing the AD2 domains of glycoprotein B from two different strains is sufficient for differentiation of primary vs. recurrent human cytomegalovirus infection by ELISA. Journal of Medical Virology, 2001. 65(4): p. 719-729.
82. Chen, Y.-J., W.-S. Chen, and T.-Y. Wu, Development of a bi-cistronic baculovirus expression vector by the Rhopalosiphum padi virus 5' internal ribosome entry site. Biochemical and Biophysical Research Communications, 2005. 335(2): p. 616-623.
83. Ranjan A, H.S., Influence of codon usage and translational initiation codon context in the AcNPV-based expression system: computer analysis using homologous and heterologous genes. Virus Genes, 1995. 9(2): p. 149-53.
84. Hills D, C.-R.C., Baculovirus expression of human basic fibroblast growth factor from a synthetic gene: role of the Kozak consensus and comparison with bacterial expression. Biochim Biophys Acta., 1995. 1260(1): p. 14-20.
85. Speckner, A., et al., The antigenic domain 1 of human cytomegalovirus glycoprotein B contains an intramolecular disulphide bond. J. Gen. Virol., 2000. 81(11): p. 2659-2663.
86. Ohlin, M., et al., Fine specificity of the human immune response to the major neutralization epitopes expressed on cytomegalovirus gp58/116 (gB), as determined with human monoclonal antibodies. J. Virol., 1993. 67(2): p. 703-710.
87. Geoghegan, K.F., et al., Initiation of translation at an upstream non-AUG codon accounting for N-terminally extended minor forms of recombinant proteins expressed in insect cells. Protein Expression and Purification. 76(1): p. 72-78.
88. Hillar, A., G. Otulakowski, and H. O'Brodovich, Purification and characterization of a recombinant rat prohaptoglobin expressed in baculovirus-infected Sf9 insect cells. Protein Expression and Purification, 2007. 55(2): p. 246-256.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48335-
dc.description.abstract人類巨細胞病毒(Human cytomegalovirus, HCMV)屬於皰疹病毒科(Herpesviridae)。一般健康成人感染巨細胞病毒並不會產生臨床症狀,但對免疫系統受損的病人或免疫功能尚未發展完全的嬰兒,巨細胞病毒會造成肺炎、肝炎、腦炎等嚴重疾病,並造成很高的致死率。
目前治療巨細胞病毒可以ganciclovir等藥物抑制病毒複製,但有研究指出對ganciclovir等藥物具抗藥性的病毒株已經產生。Intravenous Immunoglobulin (IVIG)近年被發現在臨床應用上可有效地預防胎兒受到感染。IVIG是從超過一千人的混合血漿中純化出來的免疫球蛋白(IgG),有中和體內HCMV病毒的效用。IVIG的製備必須先大量篩選含有HCMV中和抗體的血清,但中和試驗的操作過程複雜且十分費時,並不適合用於大量篩選,因此有研發新的中和抗體測試方法的必要性。我們希望可以藉由表現HCMV重組蛋白質建立酵素連結免疫吸附試驗(ELISA)取代傳統的中和試驗。
在人體感染HCMV後產生中和抗體的研究,最廣為報導會產生中和抗體的特異性抗原是B醣蛋白質 (glycoprotein B),而其中AD1(antigenic domain 1)和AD2(antigenic domain 2)更是大部分中和抗體所結合的位置。為了解臺灣HCMV臨床株在此兩個區域的基因差異性,我們從臺大醫院病毒室取得病毒臨床株進行gB AD1和AD2的序列分析。結果顯示AD1的變異性較低(相似度98.58%),而AD2的變異性較大(相似度87.83%),與前人研究相符。種系分析則顯示臺灣臨床株的AD2可劃分為兩個族群,而歐洲國家則有與臺灣臨床株差異較大的族群。由於上述兩個domain是產生中和抗體的重要抗原,且AD2的基因變異可分成兩個族群,因此製造AD1和包含二株不同病毒的AD2重組蛋白質預期可以達到偵測中和抗體的效果。本研究選用baculovirus表現系統表現目標蛋白質,希望得到的重組蛋白質可以被醣化而增加抗體偵測的敏感度。
本研究使用臺大醫院分離出來的HCMV病毒株TW71與參考病毒株AD169作為基因的來源,先用PCR方法分別增幅AD169 gB signal peptide (Sig)、gB AD1、gB AD2和TW71 gB AD2基因片段,然後把基因分別連接成AD169 gB Sig-AD1和gB Sig-AD2AD169-TW71並建構在轉移載體上,確認序列沒有錯誤後利用桿狀病毒蛋白質表現系統製造基因重組桿狀病毒,並感染昆蟲細胞得到重組蛋白質。為了瞭解蛋白質被醣化後是否可以提高抗體偵測的敏感度,我們同時構築了不帶有signal peptide的AD2AD169-TW71,使其製造出來的蛋白質不被醣化。利用人類血清抗體進行西方點墨法,結果顯示此三種重組蛋白質均具有抗原性。使用純化之Sig-AD2重組蛋白質建立ELISA偵測HCMV血清抗體陽性和陰性檢體,得到陽性率為64.29 %,專一性為100 %。將ELISA的數據與中和試驗的結果進行相關性分析後得到相關系數為0.4477,而與商用EIA結果比較的相關系數則為0.7407,Sig-AD2 ELISA方法所檢測的數值普遍比EIA的結果低。綜合以上實驗結果,顯示單獨的Sig-AD2抗原所建立之偵測方法的敏感度並不足以用作中和抗體的偵測,未來期望加入Sig-AD1抗原共同偵測可以提高ELISA的敏感度,且預期可以比商用EIA的方法更能接近中和試驗的結果。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T06:52:58Z (GMT). No. of bitstreams: 1
ntu-100-R97424004-1.pdf: 2720073 bytes, checksum: 649d1fd50191ad9c7f040492227e4814 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書.....................................................i
致謝.................................................................ii
中文摘要.............................................................iii
英文摘要.............................................................v
第一章 緒論.........................................................1
第一節 人類巨細胞病毒
一、病毒構造.............................................1
二、病毒的基本特性.......................................1
三、病毒的複製...........................................2
四、致病機制.............................................3
五、血清流行病學.........................................4
六、抗人類巨細胞病毒的藥物治療和預防.....................4
七、免疫球蛋白製劑.......................................5
八、人類巨細胞病毒醣蛋白質B.............................6
第二節 桿狀病毒
一、病毒結構.............................................7
二、病毒的複製...........................................7
三、利用桿狀病毒作為蛋白質表現系統.......................9
第三節 研究目的................................................10
第二章 材料與方法..................................................12
第一節 實驗材料................................................12
一、試劑、試藥..........................................12
二、商用套組............................................13
三、細胞株..............................................14
四、病毒株..............................................14
五、血清檢體............................................15
第二節 實驗方法.................................................15
一、試劑之配製..........................................15
二、細胞培養............................................21
三、病毒培養............................................23
四、偵測病毒力價........................................24
五、病毒核酸之抽取......................................26
六、巨細胞病毒醣蛋白質B基因之構築......................26
七、製造攜帶目標基因之重組桿狀病毒......................30
八、利用重組病毒進行蛋白質表現..........................33
九、蛋白質偵測..........................................34
十、蛋白質純化..........................................36
十一、ELISA酵素連結免疫吸附試驗........................37
十二、中和試驗..........................................37
第三章 實驗結果....................................................39
第一節 酵素免疫法與中和試驗的相關性比較.........................39
第二節 人類巨細胞病毒醣蛋白質B AD1、AD2核酸序列分析..........39
第三節 重組基因的建構...........................................40
第四節 製造重組桿狀病毒.........................................40
第五節 重組桿狀病毒感染細胞之能力...............................41
一、Bac-Sig-AD1和Bac-Sig-AD2AD169-TW71...................41
二、Bac-AD2AD169-TW71-12G1...............................41
第六節 重組蛋白質的特性預測.....................................41
第七節 表現重組蛋白質...........................................42
一、重組蛋白質的表現位置偵測.............................42
二、使用人類血清偵測重組蛋白質...........................43
三、比較不同細胞株表現重組蛋白質的效果...................44
四、重組蛋白質的最適化表現條件...........................44
五、重組蛋白質的純化......................................44
六、重組蛋白質的產量.....................................45
第八節 酵素免疫法的建立.........................................45
一、Goat anti-human IgG conjugated AP的最適合稀釋濃度.......45
二、測試重組蛋白質之最適合coating濃度....................46
三、以人類血清進行酵素免疫法測試蛋白質的抗原性...........46
四、使用Sig-AD2AD169-TW71重組蛋白質建立酵素免疫法.........47
五、以Sig-AD2AD169-TW71抗原建立之ELISA與血清中和效價之
相關性比較...........................................47
第四章 討論........................................................48
第一節 gB AD2序列之變異性與血清中和效價之關係.................48
第二節 影響桿狀病毒載體的蛋白質表現能力之因素..................49
第三節 重組蛋白質的特性........................................49
第四節 重組蛋白質之表現與純化..................................51
第五節 重組蛋白質於抗體檢測上之應用............................52
參考文獻............................................................94
附錄...............................................................102
dc.language.isozh-TW
dc.subject蛋白表現zh_TW
dc.subject巨細胞病毒zh_TW
dc.subject醣蛋白Bzh_TW
dc.subject中和抗體zh_TW
dc.subject中和試驗zh_TW
dc.subject酵素免疫吸附試驗zh_TW
dc.subject桿狀病毒zh_TW
dc.subjectglycoprotein Ben
dc.subjectprotein expressionen
dc.subjectbaculovirusen
dc.subjectELISAen
dc.subjectneutralization testen
dc.subjectneutralizing antibodyen
dc.subjectCMVen
dc.title以桿狀病毒表現載體於昆蟲細胞表現人類巨細胞病毒gB AD1及AD2蛋白質片段及其在抗體檢測上之應用zh_TW
dc.titleExpression of Human Cytomegalovirus Glycoprotein B AD1 and AD2 Fragments in Insect Cells by Baculovirus Expression System and Its Application in Antibody Detectionen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李君男(Chun-Nan Lee),張淑媛(Sui-Yuan Chang),吳宗遠
dc.subject.keyword巨細胞病毒,醣蛋白B,中和抗體,中和試驗,酵素免疫吸附試驗,桿狀病毒,蛋白表現,zh_TW
dc.subject.keywordCMV,glycoprotein B,neutralizing antibody,neutralization test,ELISA,baculovirus,protein expression,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2011-02-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved