請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48323
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃升龍 | |
dc.contributor.author | Shan-Chuang Pei | en |
dc.contributor.author | 裴善莊 | zh_TW |
dc.date.accessioned | 2021-06-15T06:52:33Z | - |
dc.date.available | 2014-02-20 | |
dc.date.copyright | 2011-02-20 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-02-14 | |
dc.identifier.citation | Chapter 1
[1.1] P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118 (1961). [1.2] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a non-linear dielectric,” Phys. Rev. 127, 1918 (1962). [1.3] P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23 (1963). [1.4] G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834 (1997). [1.5] L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B. 12, 2102 (1995). [1.6] J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214 (1997). [1.7] A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, and E. Lebiush, “Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP,” Opt. Lett. 22, 1214 (1997). [1.8] H. Karlsson, F. Laurell, and L. K. Cheng, “Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation,” Appl. Phys. Lett. 22, 1598 (1997). [1.9] P. Pernot-Rejmankova, P. A. Thomas, P. Cloetens, F. Lorut, J. Baruchel, Z. W. Hu, P. Urenskic, and G. Rosenman, “Periodically poled KTA crystal investigated using coherent X-ray beams,” J. Appl. Cryst. 33, 1149 (2000). [1.10] P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, P. Henriksson, G. Arvidsson, and F. Laurell, “Periodically poled RbTiOAsO4 femtosecond optical parametric oscillator tunable from 1.38 to 1.58 μm,” Appl. Phys. B: Lasers Opt. 68, 177 (1999). [1.11] V. Pruneri and P.G. Kazansky, “Frequency doubling of picosecond pulses in periodically poled D-shape silica fibre,” Electron. Lett. 33, 318 (1997). [1.12] P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B. 14, 3170 (1997). [1.13] G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356 (1999). [1.14] R. S. Jacobsen1, K. N. Andersen, P. I. Borel, J. F. Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri1, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199 (2006). [1.15] E. Lallier, L. Becouarn, M. Brevignon, and J. Lehoux, “Infrared difference frequency generation with quasi-phase-matched GaAs,” Electron. Lett. 34, 1609 (1998). [1.16] A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs–AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370 (2000). [1.17] L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001). [1.18] A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann,“Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077 (2003). [1.19] H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall,“Study of nonlinear optical effects in GaN:Mg epitaxial film,” Appl. Phys. Lett. 69, 29537 (1996). [1.20] C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, “Piezoelectric coefficient of aluminum nitride and gallium nitride,” J. Appl. Phys. 88, 5360 (2000). [1.21] D. N. Nikogosyan, “Nonlinear Optical Crystals: A Complete Survey,” Springer-Science (2005). [1.22] http://www.almazoptics.com [1.23] G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron. 16, 373 (1984). [1.24] D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319 (1997). [1.25] M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura,“Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465 (2002). [1.26] A. Bruner, D. Eger, M.B. Oron, P. Blau, M. Katz, and S. Ruschin “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194 (2003). [1.27] A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, S. Ruschin, “Refractive index dispersionmeasurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66 (2002). [1.28] A. Yariv, “Optical electrionics in modern communications,” Oxford, 5th edition, (1997). [1.29] J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918 (1962). [1.30] K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. of Quantum Electron. 30, 1596 (1994). [1.31] J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys. 42, 1846 (1971). [1.32] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides,” IEEE Photon. Technol. Lett. 4, 872 (1992). [1.33] Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett. 65, 558 (1994). [1.34] H. Ito, C. Takyu and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221, (1991). [1.35] A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy,” Appl. Phys. Lett. 85, 452 (2004). [1.36] I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method,” J. Appl. Phys. 40, 1690 (1969). [1.37] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “1ST-order quasi-phase matched LiNbO3 wave-guide periodically poled by applying an external-field for efficient blue 2nd-harmonic generation,” Appl. Phys. Lett. 62, 435 (1993). [1.38] D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of 2nd-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607 (1980). Chapter 2 [2.1] C. A. Burrus and J. stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett. 26, 318 (1975). [2.2] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal fibers,” Rev. Sci. Instrum. 55, 1791 (1984). [2.3] N. Ohnishi and T. Yao, “A novel growth technique for single-crystal fibers – the micro-czochralski (μ-Cz) method,” Jpn. J. Appl. Phys. 28, L278 (1989). [2.4] H. Oguri, H. Yamamura, and T. Orito, “Growth of MgO doped LiNbO3 single-crystal fibers by a novel drawing down method,” J. Cryst. Growth, 110, 669 (1991). [2.5] D. H. Yoon and T. Fukuda, “Characterization of micro single crystals grown by the micro-pulling down method,” J. Cryst. Growth, 144, 201 (1994). [2.6] A. Brenier, G. Foulon, M. Ferriol, and G. Boulon, “The laser-heated-pedestal growth of LiNbO3:MgO crystal fibres with ferroelectric domain inversion by in situ electric field poling,” J. Phys. D: Appl. Phys., 30, L37 (1997). [2.7] Y. Lu, D. A. Iyad, and R. J. Knize, “Fabrication and characterization of periodically poled lithium niobate single crystal fibers,” Integrated Ferroelectrics, 90, 53 (2007). [2.8] L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, “Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field,” Opt. Commun. 253, 375 (2005). [2.9] S. Uda and W. A. Tiller, “The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3,” J. Cryst. Growth, 121, 93, (1992). [2.10] C. Y. Lo, “Growth, Characterization, and Application of Doped-YAG Single -crystal Fibers,” Ph. D. Dissertation, Institute of Electro-Optical Engineering, National Sun Yat-Sen University (2004). [2.11] A. A. Ballman and H. Brown, “Ferroelectric domain reversal in lithium metatantalate,” Ferroelectrics 4, 189 (1972). [2.12] P. Rudolph and T. Fukuda, “Fiber crystal growth from the melt,” Cryst. Res. Technol. 34, 13 (1999). [2.13] M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747 (1995). [2.14] I. Bhaumik, V. K. Wadhawan, P. K. Gupta, and K. Kitamura, “The ferroelectric phase transition in lithium tantalate single crystals: A composition-dependence study,” J. Appl. Phys. 103, 014108 (2008). [2.15] J. C. Chen and Y. C. Lee, “The influence of temperature distribution upon the structure of LiNbO3 crystal rods grown using the LHPG method,” J. Crys. Growth 208, 508 (2000). [2.16] S. A. Korpela, J. Ni, A. Chait, and M. Kassemi, “Radiative heat transfer in fiber drawing and crystal pulling,” J. Crys. Growth 165, 455 (1996). [2.17] A. F. Devonshire, “Theory of ferroelectrics,” Adv. Phys. 3, 85 (1954). [2.18] S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90, 2949 (2001). [2.19] C. S. Yu and A. H. Kung, “Grazing-incidence periodically poled LiNbO3 optical parametric oscillator,” J. Opt. Soc. Amer. B 16, 2233 (1999). [2.20] S. C. Pei, T. S. Ho, T. M. Tai, L. M. Lee, J. C. Chen, A. H. Kung, F. J. Kao, and S. L. Huang, “Drawing of single-crystal and glass-clad lithium tantalite fibers by the laser-heated pedestal growth method,” J. Appl. Cryst. 43, 48 (2010). [2.21] Y. K. Su, S. J. Chang, L. W. Ji, C. S, Chang, L. W. Wu, W. C. Lai, T. H. Fang, and K. T. Lam, “InGaN/GaN blue light-emitting diodes with self-assembled quantum dots,” Semicond. Sci. Technol., 19, 389 (2004). [2.22] W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett., 56, 2291 (1990). [2.23] Z. Ye, Q. Lou, J. Dong, Y. Weim, and L. Lin, “Compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide crystals,” Opt. Lett., 30, 73 ( 2005). [2.24] P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett., 29, 95 (2004). [2.25] D. H. Jundt, “Lithium Niobate Single Crystal Fiber Growth and Quasi-Phase Matching,” Ph.D. dissertation, Stanford University, CA (1991). [2.26] M. Taya, M. C. Bashaw, and M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett. 21, 857 (1996). [2.27] L. Becouarn, E. Lallier, M. Brevignon, and J. Lehoux, “Cascaded second-harmonic and sum-frequency generation of a CO2 laser by use of a single quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1508 (1998). [2.28] L. M. Lee, S. C. Pei, D. F. Lin, P. C. Chiu, M. C. Tsai, T. M. Tai, D. H. Sun, A. H. Kung, and S. L. Huang, “Generation of tunable blue-green light using ZnO periodically poled lithium niobate crystal fiber by self-cascaded second-order nonlinearity,” J. Opt. Soc. Am. B 24, 1909 (2007). Chapter 3 [3.1] R. L. Barns and J. R. Carruthers, “Lithium tantalate single crystal stoiehiometry,” J. Appl. Cryst. 3, 395 (1970). [3.2] S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Science and Eng. B 120, 125 (2005). [3.3] M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273, 199 (2002). [3.4] A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96, 7445 (2004). [3.5] G. H. Lee, “Optical properties of ZnO thin films on LiNbO3 and LiTaO3 substrates grown by pulsed laser deposition,” Solid State Commun. 128, 351 (2003). [3.6] T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651 (2000). [3.7] I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1-xO single crystals and their optical properties,” J. Cryst. Growth 229, 243 (2001). [3.8] C. Y. Hou, “Study of growth habit of LiNbO3 single crystals,” J. Cryst. Growth 50, 757 (1980). [3.9] C. Mignotte, “Proton and helium implanted waveguides in pure and Nd-doped lithium tantalate,” Nuclear Instruments and Methods in Phys. Research B. 229, 55 (2005). [3.10] S. Tascu, P. Moretti, S. Kostritskii, and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides,” Opt. Mater. 24, 297 (2003). [3.11] G. Foulon, M. Ferriol, A. Brenier, M.T. Cohen-Adad, and G. Boulon, “Laser heated pedestal growth and optical properties of Yb3+-doped LiNbO3 single crystal fibers,” Chem. Phys. Lett. 245, 555 (1995). [3.12] L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, “Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field,” Opt. Commun. 253, 375 (2005). [3.13] R. Burlot, M. Ferriol, R. Moncorge, and G. Boulon, “Li2O evaporation during the laser heated pedestal growth of LiTaO3 single-crystal fibers,” Eur. J. Solid State Inorg. Chem. 35, 1 (1998). [3.14] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett. 29, 439 (2004). [3.15] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005). [3.16] Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, “Nanostructure formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal,” J. Crystal Growth 289, 515 (2006). [3.17] P. Y. Chen, C. L. Chang, K. Y. Huang, C. W. Lan, W. H. Cheng, and S. L. Huang, “In vivo ultrahigh-resolution optical coherence tomography,” J. Appl. Cryst. 42, 553 (2009). [3.18] J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21 1547 (1996). [3.19] C. Y. Lo, P. L. Huang, T. S. Chou, L. M. Lee, T. Y. Chang, and S. L. Huang, “Efficient Nd:Y3Al5O12 crystal fiber laser,” Jap. J. Appl. Phys. 41, 1228 (2002). [3.20] J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, “Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,” J. Cryst. Growth 274, 522 (2005). Chapter 4 [4.1] B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 19, 15149 (2008). [4.2] B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800 (2002). [4.3] W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221 (1999). [4.4] M. Bashkansky, M. D. Duncan, M. Kahn, D. Lewis III, and J. Reintjes, “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography,” Opt. Lett. 22, 61 (1999). [4.5] Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11, 1 (2006). [4.6] M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404 (2004). [4.7] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence Tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003). [4.8] A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathé, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349 (2002). [4.9] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991). [4.10] B. Bouma and G. Tearney, Handbook of optical coherence tomography, New York, Marcel Dekker, 2002. [4.11] H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications,” J. Am. Coll. Cardiol. Intv. 2, 1035 (2009). [4.12] M. Bashkansky, M. D. Duncan, L. Goldberg, J. P. Koplow, and J. Reintjes, “Characteristics of a Yb-doped superfluorescent fiber source for use in optical coherence tomography,” Opt. Express 3, 305 (1998). [4.13] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission”, Opt. Lett. 29, 439 (2004). [4.14] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005). [4.15] C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett. 35, 811 (2010). [4.16] L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52 (1995). [4.17] G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834 (1997). [4.18] L. M. Lee, S. C. Pei, D. F. Lin, P. C. Chiu, M. C. Tsai, T. M. Tai, D. H. Sun, A. H. Kung, and S. L. Huang, “Generation of tunable blue-green light using ZnO periodically poled lithium niobate crystal fiber by self-cascaded second-order nonlinearity,” J. Opt. Soc. Am. B 24, 1909 (2007). [4.19] J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405 (2005). [4.20] K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, and D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186 (1999). [4.21] J. Harris, G. Norris, and G. McConnell, “Characterization of periodically poled materials using nonlinear microscopy,” Opt. Express 16, 5667 (2008). [4.22] Y. Sheng, A. Best, H. J. Butt, W. Krolikowski, A. Arie, and K. Koynov, “Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation,” Opt. Express 18, 16539 (2010). [4.23] S. Kim, V. Gopalan, and B. Steiner, “Direct x-ray synchrotron imaging of strains at 180° domain walls in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77, 2051 (2000). [4.24] V. Gopalan and M. C. Gupta, “Origin and characteristics of internal fields in LiNbO3 crystals,” Ferroelectrics 198, 49 (1997). [4.25] V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect-domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449 (2007). [4.26] S. Kim and V. Gopalan, “Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate,” Mater. Sci. Eng. B 120, 91 (2005). [4.27] T. J. Yang, V. Gopalan, P. Swart, and U. Mohideen, “Experimental study of internal fields and movement of single ferroelectric domain walls,” J. Phys. Chem. Solids 61, 275 (2000). [4.28] T. Jach, S. Kim, V. Gopalan, S. Durbin, and D. Bright, “Long-range strains and the effects of applied field at 180° ferroelectric domain walls in lithium niobate,” Phys. Rev. B 69, 1 (2004). [4.29] S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90, 2949 (2001). [4.30] S. C. Pei, T. S. Ho, C. C. Tsai, T. H. Chen, Y. Ho, P. L. Huang, A. H. Kung, and S. L. Huang, “Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics,” submitted to Opt. Express. [4.31] K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Grützner, and D. Stifter, “Transversal ultrahigh-resolution polarization-sensitive optical coherence tomography for strain mapping in materials,” Opt. Express 14, 5945 (2006). [4.32] G. Arlt and H. Neumann, “Internal bias in ferroelectric ceramics: origin and time dependence,” Ferroelectrics 87, 109 (1988). [4.33] P. V. Lambeck and G. H. Jonker, “Ferroelectric domain stabilization in BaTiO3 by bulk ordering of defects,” Ferroelectrics 22, 729 (1977). [4.34] W. L. Warren, G. E. Pike, K. Vanheusden, D. Dimos, B. A. Tuttle, and J. Robertson, “Defect-dipole alignment and tetragonal strain in ferroelectrics,” J. Appl. Phys. 79, 9250 (1996). [4.35] O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111 (2007). [4.36] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553 (1997). [4.37] S. M. Zhang, K. M. Wang, X. Liu, Z. Bi, and X. H. Liu, “Planar and ridge waveguides formed in LiNbO3 by proton exchange combined with oxygen ion implantation,” Opt. Express 18, 15609 (2010). [4.38] M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Kocha, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87, 231108 (2005). [4.39] M. S. Ab-Rahman and M. H. M. Zaman, “The measurement of refractive index and thickness of planar waveguide using couple mode theory method – the programming highlight,” Australian J. of Basic Appl. Sciences 3, 2901 (2009). [4.40] J. Vollmer, J. P. Nisius, P. Hertel, and E. Kratzig, “Refractive index profiles of LiNbO3: Ti waveguides,” Appl. Phys. A 32, 125 (1983). [4.41] J. Olivares, M. A. Diaz-Garcia, and J. M. Cabrera, “Direct measurement of ordinary refractive index of proton exchanged LiNbO3 waveguides,” Opt. Commun. 92, 40 (1992). [4.42] M. Digonnet, M. Fejer, and R. Byer, “Characterization of proton-exchanged waveguides in MgO: LiNbO3,” Opt. Lett. 10, 235 (1985). [4.43] C. H. Chen, “High efficiency APE PPLN waveguide,” Thesis, National Tsing Hua University (2004). [4.44] S. L. Huang, W. L. Wu, and P. L. Huang, “Measurement of temperature gradient in diode-laser-pumped high-power solid-state laser by low-coherence reflectometry,” Appl. Phys. Lett. 73, 3342 (1998). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48323 | - |
dc.description.abstract | 在以光纖為主的非線性應用中,週期性極化反轉鐵電材料之晶體光纖具有許多優勢,本論文中首先介紹利用雷射加熱基座長晶法(LHPG)結合外加電場即時監控(in-situ)極化反轉過程,製作週期性極化反轉之鈮酸鋰(PPLN)及鉭酸鋰(PPLT)晶體光纖。實際應用上,在摻氧化鋅之PPLN晶體光纖中,以自串接式(Self-cascaded)的倍頻(SHG)加和頻(SFG)來產生可調變波長之藍綠光輸出,可調範圍從471.3 nm至515 nm,具有超過40 nm的可調頻寬。
此外,為了達到低損耗之光波傳導,首次利用共抽絲雷射加熱基座長晶法來製造出具玻璃纖衣結構之鉭酸鋰(LT)晶體光纖,藉由折射率分布曲線的量測可將玻璃纖衣結構之晶體光纖分為兩類: 一種為步階式折射率光纖,另一種為漸變折射率光纖,目前兩種光纖結構皆為多模光纖,但是若藉由高精準度控制LHPG系統也可以製作出單模LT晶體光纖。 在材料分析與特性量測方面,光學同調斷層掃描術(OCT)首次被應用在非線性晶體之檢測。我們利用自製的摻鈰釔鋁石榴石雙纖衣晶體光纖所產生的寬頻光源,來架設超高解析度OCT系統,可以成功的檢測出在PPLN極化反轉邊界的折射率差值與邊界之均勻性,更進一步地,針對週期性極化反轉鐵電材料之波導元件,其複合結構、色散、以及微小的折射率對比度皆可利用其非破壞性檢測之特性來完成量測與分析。其中,OCT系統在鐵電材料中的縱深解析度為0.68 μm,橫向解析度為3.2 μm以及折射率對比之靈敏度為4×10-7。 量測結果中,針對摻氧化鎂共融比之週期性極化反轉鈮酸鋰晶體,可計算出其+z以及-z反轉區域之折射率差為4.2×10-4,對於鐵電材料極化反轉過程的品質為重要之指標。更進一步地,針對非尋常光(extraordinary ray)波長500 nm到750 nm間,常溫下之色散曲線也可求得。利用OCT系統的高空間解析度以及高折射率對比靈敏度之檢測技術,未來可應用有助於準相位匹配非線性之波導元件的發展,來達到波長轉換效率的增進,以及耦光的模態匹配來降低插入損耗。 | zh_TW |
dc.description.abstract | Periodically poled ferroelectric crystal fibers are expected to have advantages when using in fiber based nonlinear applications. The laser-heated pedestal growth (LHPG) method with the external electric field in-situ poling is used to fabricate periodically poled LiNbO3 (PPLN) and periodically poled LiTaO3 (PPLT) crystal fibers. In application, a novel self-cascaded first-order second-harmonic generation and third-order sum-frequency generation in a ZnO:PPLN crystal fiber was demonstrated for the generation of tunable blue–green light. The tuning range was more than 40 nm, from 471.3 to 515 nm.
To facilitate wave propagation with low loss, glass-clad LT fibers were fabricated by a co-drawing LHPG method for the first time. The glass-clad fibers are classified into two different categories by the measurements of refractive index profiles. One is a step-index fiber and the other is a graded-index fiber. Both fiber types are multimode at present, but single-mode LT fibers could be fabricated with the high-precision control of the LHPG system. To characterize the periodically poled ferroelectrics, optical coherence tomography (OCT) technique was employed on the nonlinear medium for the first time. Using the Ce3+:YAG double-clad crystal fiber based ultrahigh resolution OCT system, the refractive index difference and uniformity of domain boundary a PPLN crystal were successfully examined. Furthermore, it is demonstrated that the complex structure, dispersion, and small index contrast of periodically poled ferroelectric waveguides can be non-invasively characterized. An axial resolution of 0.68 μm, an transversal resolution of 3.2 μm, and an index contrast sensitivity of 4×10-7 were achieved. The index difference between the +z and –z domains in a MgO-doped congruent LiNbO3 was estimated to be 4.2×10-4, which is an important indicator for the quality of the poled ferroelectrics. The dispersion of extraordinary wave of a 5 mol.% MgO-doped CLN was characterized from 500 to 750 nm at room temperature. The high spatial resolution and high index contrast sensitivity technique can facilitate the development of quasi-phased nonlinear waveguide devices for improving wavelength conversion efficiency as well as reducing insertion loss by mode-matched coupling. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:52:33Z (GMT). No. of bitstreams: 1 ntu-100-D93941007-1.pdf: 4546737 bytes, checksum: 69a8c574565fbadce715a985d695e083 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Abstract i
中文摘要 iii Table of Contents iv List of Figures vi List of Tables xi Chapter 1 Introduction of Periodically Poled Ferroelectrics 1 1.1 Ferroelectric Materials – LiNbO3 and LiTaO3 3 1.2 Quasi-phase Matching 7 1.2.1 Nonlinear Frequency Conversion and Birefringence Phase Matching 7 1.2.2 Theory of Quasi-phase Matching 14 1.3 Domain Reversal Mechanism 17 References 20 Chapter 2 Fabrication of Periodically Poled Ferroelectric Crystal Fibers 23 2.1 Review on Periodically Poled LiNbO3 (PPLN) Crystal Fiber 24 2.2 Laser-heated Pedestal Growth (LHPG) on Ferroelectric Crystal Fiber 29 2.2.1 No In-situ Bias 29 2.2.2 With In-situ Bias 33 2.3 Characterization 43 2.3.1 Material Characterization 43 2.3.2 Optical Characterization 46 2.4 Applications of PPLN Crystal Fiber 51 References 55 Chapter 3 Drawing of Glass-clad LiTaO3 Fibers by the LHPG Method 58 3.1 Motivation 59 3.2 Experimental Setup of Co-drawing LHPG Method 61 3.3 Results and Discussion 64 3.3.1 Required CO2 Power and Periodic Poling 64 3.3.2 Fused-silica Cladding 65 3.3.3 Pyrex Cladding 68 3.4 Summary 70 References 71 Chapter 4 Non-invasive Characterization of Periodically Poled Ferroelectrics 73 4.1 Ce3+:YAG Crystal Fiber Based Optical Coherence Tomography 74 4.1.1 Introduction of Optical Coherence Tomography 75 4.1.2 Ce3+:YAG DCF based Broadband Light Source 82 4.1.3 System Performance 85 4.2 Domain Boundaries Analysis on MgO-doped Congruent LiNbO3 90 4.2.1 Motivation 91 4.2.2 Review – The Unexpected Index Difference near Domain Boundaries 92 4.2.3 Etched Surface Morphology 93 4.2.4 Extraordinary Index Difference near Domain Boundaries 94 4.2.5 Dispersion Characterization 97 4.2.6 Axial Scan on Other Ferroelectrics 98 4.2.7 Summary of the Domain Boundaries Analysis on PPLX 99 4.3 Wave-guiding Properties of Periodically Poled Ferroelectrics 100 4.3.1 Planar Ridge Waveguide 100 4.3.2 Proton Exchanged Waveguide 102 4.4 Characterization of PPLN Crystal Fibers by OCT 109 References 112 Chapter 5 Conclusions 116 | |
dc.language.iso | en | |
dc.title | 週期性極化反轉鐵電材料之製備與特性檢測 | zh_TW |
dc.title | Fabrication and characterization of periodically poled ferroelectrics | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 孔慶昌,王維新,林恭如,黃鼎偉,高甫仁 | |
dc.subject.keyword | 週期性極化反轉,鐵電性材料,光學同調斷層掃瞄術, | zh_TW |
dc.subject.keyword | periodically poled,ferroelectrics,optical coherence tomography, | en |
dc.relation.page | 117 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-02-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 4.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。