請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48321
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林立虹(Li-Hung Lin) | |
dc.contributor.author | Guang-Sin Lu | en |
dc.contributor.author | 盧光忻 | zh_TW |
dc.date.accessioned | 2021-06-15T06:52:29Z | - |
dc.date.available | 2013-02-20 | |
dc.date.copyright | 2011-02-20 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-02-14 | |
dc.identifier.citation | Abdrashitova, S., Abdullina, G., and Ilialetdinov, A., 1985, Glucose consumption and dehydrogenase activity of the cells of the arsenite-oxidizing bacterium Pseudomonas putida: Mikrobiologiia, v. 54, p. 679-681.
Abdrashitova, S., Mynbaeva, B., and Ilialetdinov, A., 1981, Arsenic oxidation by the heterotrophic bacteria Pseudomonas putida and Alcaligenes eutrophus: Mikrobiologiia, v. 50, p. 41-45. Afshar, S., Kim, C., Monbouquette, H.G., and Schroder, I., 1998, Effect of tungstate on nitrate reduction by the hyperthermophilic archaeon Pyrobaculum aerophilum: Applied and Environmental Microbiology, v. 64, p. 3004-3008. Aguiar, P., Beveridge, T.J., and Reysenbach, A.L., 2004, Sulfurihydrogenibium azorense, sp nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores: International Journal of Systematic and Evolutionary Microbiology, v. 54, p. 33-39. Ahmann, D., Roberts, A.L., Krumholz, L.R., and Morel, F.M.M., 1994, Microbe grows by reducing arsenic: Nature, v. 371, p. 750-750. Albuquerque, L., Ferreira, C., Tomaz, D., Tiago, I., Verissimo, A., da Costa, M.S., and Nobre, M.F., 2009, Meiothermus rufus sp nov., a new slightly thermophilic red-pigmented species and emended description of the genus Meiothermus: Systematic and Applied Microbiology, v. 32, p. 306-313. Albuquerque, L., Rainey, F.A., Nobre, M.F., and da Costa, M.S., 2010, Meiothermus granaticius sp nov., a new slightly thermophilic red-pigmented species from the Azores: Systematic and Applied Microbiology, v. 33, p. 243-246. Amo, T., Paje, M.L.F., Inagaki, A., Ezaki, S., Atomi, H., and Imanaka, T., 2002, Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air: Archaea, v. 1, p. 113-121. Anderson, C.R., and Cook, G.M., 2004, Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand: Current Microbiology, v. 48, p. 341-347. Anderson, G.L., Ellis, P.J., Kuhn, P., and Hille, R., 2002, Oxidation of arsenite by Alcaligenes faecalis, in Frankenberger, W.T., ed., Environmental Chemistry of Arsenic, Marcel Dekker, Inc., p. 343-361. Anderson, G.L., Williams, J., and Hille, R., 1992, The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenumcontaining hydroxylase: Journal of Biological Chemistry, v. 267, p. 23674-23682. Babechuk, M.G., Weisener, C.G., Fryer, B.J., Paktunc, D., and Maunders, C., 2009, Microbial reduction of ferrous arsenate: Biogeochemical implications for arsenic mobilization: Applied Geochemistry, v. 24, p. 2332-2341. Baesman, S.M., Stolz, J.F., Kulp, T.R., and Oremland, R.S., 2009, Enrichment and isolation of Bacillus beveridgei sp nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic: Extremophiles, v. 13, p. 695-705. Battaglia-Brunet, F., Dictor, M.C., Garrido, F., Crouzet, C., Morin, D., Dekeyser, K., Clarens, M., and Baranger, P., 2002, An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors: Journal of Applied Microbiology, v. 93, p. 656-667. Battaglia-Brunet, F., Joulian, C., Garrido, F., Dictor, M.C., Morin, D., Coupland, K., Johnson, D.B., Hallberg, K.B., and Baranger, P., 2006, Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp nov: Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, v. 89, p. 99-108. Bhattacharjee, H., and Rosen, B., 2007, Arsenic metabolism in prokaryotic and eukaryotic microbes, in Nies, D., and Silver, S., eds., Molecular Microbiology of Heavy Metals, Volume 6: Microbiology Monographs, Springer Berlin / Heidelberg, p. 371-406. Bissen, M., and Frimmel, F.H., 2003, Arsenic - a review. - Part 1: Occurrence, toxicity, speciation, mobility: Acta Hydrochimica Et Hydrobiologica, v. 31, p. 9-18. Blum, J.S., Bindi, A.B., Buzzelli, J., Stolz, J.F., and Oremland, R.S., 1998, Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic: Archives of Microbiology, v. 171, p. 19-30. Blum, J.S., Han, S., Lanoil, B., Saltikov, C., Witte, B., Tabita, F.R., Langley, S., Beveridge, T.J., Jahnke, L., and Oremland, R.S., 2009, Ecophysiology of 'Halarsenatibacter silvermanii' strain SLAS-1(T), gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California Applied and Environmental Microbiology, v. 75, p. 5437-5437. Bouchard, B., Beaudet, R., Villemur, R., McSween, G., Lepine, F., and Bisaillon, J.G., 1996, Isolation and characterization of Desulfitobacterium frappieri sp nov, an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol: International Journal of Systematic Bacteriology, v. 46, p. 1010-1015. Brock, T.D., and Freeze, H., 1969, Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile: Journal of Bacteriology, v. 98, p. 289-297. Bruneel, O., Personne, J.C., Casiot, C., Leblanc, M., Elbaz-Poulichet, F., Mahler, B.J., Le Fleche, A., and Grimont, P.A.D., 2003, Mediation of arsenic oxidation by Thiomonas sp in acid-mine drainage (Carnoules, France): Journal of Applied Microbiology, v. 95, p. 492-499. Cai, L., Liu, G.H., Rensing, C., and Wang, G.J., 2009a, Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils: BMC Microbiology, v. 9, p. 4-14. Cai, L., Rensing, C., Li, X.Y., and Wang, G.J., 2009b, Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp SY8 and Pseudomonas sp TS44: Applied Microbiology and Biotechnology, v. 83, p. 715-725. Cappello, S., and Yakimov, M.M., 2010, Alcanivorax, in Timmis, K.N., ed., Handbook of Hydrocarbon and Lipid Microbiology, Springer Berlin Heidelberg, p. 1737-1748. Carapito, C., Muller, D., Tarlin, E., Koechler, S., Danchin, A., Van Dorsselaer, A., Leize-Wagner, E., Bertin, P.N., and Lett, M.C., 2006, Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans, a metalloresistant beta-proteobacterium with an unsequenced genome: Biochimie, v. 88, p. 595-606. Chang, J.S., Kim, Y.H., and Kim, K.W., 2008, The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea: Applied Microbiology and Biotechnology, v. 80, p. 155-165. Chen, C.Y., Lin, L.B., Peng, Q., Ben, K.L., and Zhou, Z.M., 2002a, Meiothermus rosaceus sp nov isolated from Tengchong hot spring in Yunnan, China: FEMS Microbiology Letters, v. 216, p. 263-268. Chen, M.Y., Lin, G.H., Lin, Y.T., and Tsay, S.S., 2002b, Meiothermus taiwanensis sp nov., a novel filamentous, thermophilic species isolated in Taiwan: International Journal of Systematic and Evolutionary Microbiology, v. 52, p. 1647-1654. Chovanec, P., Stolz, J.F., and Basu, P., 2010, A proteome investigation of roxarsone degradation by Alkaliphilus oremlandii strain OhILAs: Metallomics, v. 2, p. 133-139. Christiansen, N., and Ahring, B.K., 1996, Desulfitobacterium hafniense sp nov, an anaerobic, reductively dechlorinating bacterium: International Journal of Systematic Bacteriology, v. 46, p. 442-448. Clingenpeel, S.R., D'Imperio, S., Oduro, H., Druschel, G.K., and McDermott, T.R., 2009, Cloning and In situ expression studies of the Hydrogenobaculum arsenite oxidase genes: Applied and Environmental Microbiology, v. 75, p. 3362-3365. Connon, S.A., Koski, A.K., Neal, A.L., Wood, S.A., and Magnuson, T.S., 2008, Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic, circumneutral hot spring system of the Alvord Desert: FEMS Microbiology Ecology, v. 64, p. 117-128. Costa, M., Rainey, F., and Nobre, M., 2006, The Genus Thermus and Relatives, in Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., eds., The Prokaryotes, Springer New York, p. 797-812. Cozen, A.E., Weirauch, M.T., Pollard, K.S., Bernick, D.L., Stuart, J.M., and Lowe, T.M., 2009, Transcriptional map of respiratory versatility in the hyperthermophilic Crenarchaeon Pyrobaculum aerophilum: Journal of Bacteriology, v. 191, p. 782-794. D'Imperio, S., Lehr, C.R., Breary, M., and McDermott, T.R., 2007, Autecology of an arsenite chemolithotroph: Sulfide constraints on function and distribution in a geothermal spring: Applied and Environmental Microbiology, v. 73, p. 7067-7074. Dastidar, A., and Wang, Y.-T., 2010, Kinetics of arsenite oxidation by chemoautotrophic Thiomonas arsenivorans strain b6 in a continuous Stirred Tank Reacto: Journal of Environmental Engineering-Asce, v. 136, p. 1119-1121. Dastidar, A., and Wang, Y.T., 2009, Arsenite oxidation by batch cultures of Thiomonas arsenivorans strain b6: Journal of Environmental Engineering-Asce, v. 135, p. 708-715. Donahoe-Christiansen, J., D'Imperio, S., Jackson, C.R., Inskeep, W.P., and McDermott, T.R., 2004, Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park: Applied and Environmental Microbiology, v. 70, p. 1865-1868. Drewniak, L., Matlakowska, R., and Sklodowska, A., 2008, Arsenite and arsenate metabolism of Sinorhizobium sp M14 living in the extreme environment of the Zloty Stok gold mine: Geomicrobiology Journal, v. 25, p. 363-370. Duquesne, K., Lieutaud, A., Ratouchniak, J., Muller, D., Lett, M.C., and Bonnefoy, V., 2008, Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study: Environmental Microbiology, v. 10, p. 228-237. Duran, R., 2010, Marinobacter, in Timmis, K.N., ed., Handbook of Hydrocarbon and Lipid Microbiology, Springer Berlin Heidelberg, p. 1725-1735. Escobar, B., Huenupi, E., Godoy, I., and Wiertz, J.V., 2000, Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70 degrees C: Biotechnology Letters, v. 22, p. 205-209. Fan, H., Su, C., Wang, Y., Yao, J., Zhao, K., and Wang, G., 2008, Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China: Journal of Applied Microbiology, v. 105, p. 529-539. Feinberg, L.F., and Holden, J.F., 2006, Characterization of dissimilatory Fe(III) versus NO3- reduction in the hyperthermophilic archaeon Pyrobaculum aerophilum: Journal of Bacteriology, v. 188, p. 525-531. Feinberg, L.F., Srikanth, R., Vachet, R.W., and Holden, J.F., 2008, Constraints on anaerobic respiration in the hyperthermophilic archaea Pyrobaculum islandicum and Pyrobaculum aerophilum: Applied and Environmental Microbiology, v. 74, p. 396-402. Fisher, E., M.S, 2006, Microbial transformation of arsenic and the characterization of Clostridium sp. strain OhILAs, Duquesne University, 110 p. Fisher, J.C., and Hollibaugh, J.T., 2008, Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California: Applied and Environmental Microbiology, v. 74, p. 2588-2594. Fuchs, T., Huber, H., Burggraf, S., and Stetter, K.O., 1996, 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb nov: Systematic and Applied Microbiology, v. 19, p. 56-60. Fujita, M., Ike, M., Nishimoto, S., Takahashi, K., and Kashiwa, M., 1997, Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1: Journal of Fermentation and Bioengineering, v. 83, p. 517-522. Garcia-Dominguez, E., Mumford, A., Rhine, E.D., Paschal, A., and Young, L.Y., 2008, Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments: FEMS Microbiology Ecology, v. 66, p. 401-410. Garelick, H., Jones, H., Dybowska, A., and Valsami-Jones, E., 2008, Arsenic pollution sources, in Whitacre, D.M., ed., Arsenic Pollution and Remediation: An International Perspective, Volume 197, Springer Science, p. 17-60. Gihring, T.M., and Banfield, J.F., 2001, Arsenite oxidation and arsenate respiration by a new Thermus isolate: FEMS Microbiology Letters, v. 204, p. 335-340. Gihring, T.M., Druschel, G.K., McCleskey, R.B., Hamers, R.J., and Banfield, J.F., 2001, Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations: Environmental Science & Technology, v. 35, p. 3857-3862. Gonzalez-Contreras, P., Weijma, J., van der Weijden, R., and Buisman, C.J.N., 2010, Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal: Environmental Science & Technology, v. 44, p. 675-680. Goto, K., Tanaka, T., Yamamoto, R., Suzuki, T., and Tokuda, H., 2007, Characteristics of Alicyclobacillus, in Yokota, A., Fujii, T., and Goto, K., eds., Alicyclobacillus, Springer Japan, p. 9-48. Green, H., 1918, Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank: S. Afr. J. Sci, v. 14, p. 465-467. Grimaud, R., 2010, Marinobacter, in Timmis, K.N., ed., Handbook of Hydrocarbon and Lipid Microbiology, Springer Berlin Heidelberg, p. 1289-1296. Hallberg, K.B., Sehlin, H.M., and Lindstrom, E.B., 1996, Toxicity of arsenic during high temperature bioleaching of gold-bearing arsenical pyrite: Applied Microbiology and Biotechnology, v. 45, p. 212-216. Han, X., and Gu, J.-D., 2009, Sorption and transformation of toxic metals by microorganisms, in Mitchell, R., and Gu, J.-D., eds., Environmental Microbiology, Wiley-Blackwell Pub, p. 153-176. Handley, K.M., Hery, M., and Lloyd, J.R., 2009a, Marinobacter santoriniensis sp nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment: International Journal of Systematic and Evolutionary Microbiology, v. 59, p. 886-892. Handley, K.M., Hery, M., and Lloyd, J.R., 2009b, Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis: Environmental Microbiology, v. 11, p. 1601-1611. He, Z.G., Zhong, H.F., and Li, Y.Q., 2004, Acidianus tengchongensis sp nov., a new species of acidothermophilic Archaeon isolated from an acidothermal spring: Current Microbiology, v. 48, p. 159-163. Herbel, M., and Fendorf, S., 2006, Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands: Chemical Geology, v. 228, p. 16-32. Herbel, M.J., Blum, J.S., Hoeft, S.E., Cohen, S.M., Arnold, L.L., Lisak, J., Stolz, J.F., and Oremland, R.S., 2002, Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut: FEMS Microbiology Ecology, v. 41, p. 59-67. Hoeft, S.E., Blum, J.S., Stolz, J.F., Tabita, F.R., Witte, B., King, G.M., Santini, J.M., and Oremland, R.S., 2007, Alkalilimnicola ehrlichii sp nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor: International Journal of Systematic and Evolutionary Microbiology, v. 57, p. 504-512. Hoeft, S.E., Kulp, T.R., Han, S., Lanoil, B., and Oremland, R.S., 2010, Coupled arsenotrophy in a hot spring photosynthetic biofilm at Mono Lake, California: Applied and Environmental Microbiology, v. 76, p. 4633-4639. Hoeft, S.E., Kulp, T.R., Stolz, J.F., Hollibaugh, J.T., and Oremland, R.S., 2004, Dissimilatory arsenate reduction with sulfide as electron donor: Experiments with mono lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer: Applied and Environmental Microbiology, v. 70, p. 2741-2747. Hollibaugh, J.T., Budinoff, C., Hollibaugh, R.A., Ransom, B., and Bano, N., 2006, Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a Soda Lake: Applied and Environmental Microbiology, v. 72, p. 2043-2049. Holliger, C., Wohlfarth, G., and Diekert, G., 1998, Reductive dechlorination in the energy metabolism of anaerobic bacteria: FEMS Microbiology Reviews, v. 22, p. 383-398. Huber, H., Hohn, M.J., Rachel, R., Fuchs, T., Wimmer, V.C., and Stetter, K.O., 2002, A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont: Nature, v. 417, p. 63-67. Huber, H., and Prangishvili, D., 2006, Sulfolobales, in Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., eds., The Prokaryotes, Springer New York, p. 23-51. Huber, R., and Eder, W., 2006, Aquificales, in Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., eds., The Prokaryotes, Springer New York, p. 925-938. Huber, R., Kristjansson, J.K., and Stetter, K.O., 1987, Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C: Archives of Microbiology, v. 149, p. 95-101. Huber, R., Sacher, M., Vollmann, A., Huber, H., and Rose, D., 2000, Respiration of arsenate and selenate by hyperthermophilic archaea: Systematic and Applied Microbiology, v. 23, p. 305-314. Ilyaletdinov, A.N., and Abdrashitova, S.A., 1981, Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture: Mikrobiologiia, v. 50, p. 135-140. Imperio, T., Viti, C., and Marri, L., 2008, Alicyclobacillus pohliae sp nov., a thermophilic, endospore-forming bacterium isolated from geothermal soil of the north-west slope of Mount Melbourne (Antarctica): International Journal of Systematic and Evolutionary Microbiology, v. 58, p. 221-225. Inskeep, W., and McDermott, T., 2005, Geomicrobiology of acid-sulfate-chloride springs in Yellowstone National Park: Geothermal biology and geochemistry in Yellowstone National Park, v. 1, p. 143-162. Inskeep, W.P., Macur, R.E., Harrison, G., Bostick, B.C., and Fendorf, S., 2004, Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring, Yellowstone National Park: Geochimica Et Cosmochimica Acta, v. 68, p. 3141-3155. Jensen, A., and Finster, K., 2005, Isolation and characterization of Sulfurospirillum carboxydovorans sp nov., a new microaerophilic carbon monoxide oxidizing epsilon Proteobacterium: Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, v. 87, p. 339-353. Jiang, C.Y., Liu, Y., Liu, Y.Y., You, X.Y., Guo, X., and Liu, S.J., 2008, Alicyclobacillus ferrooxydans sp nov., a ferrous-oxidizing bacterium from solfataric soil: International Journal of Systematic and Evolutionary Microbiology, v. 58, p. 2898-2903. Joe, S.J., Suto, K., Inoie, C., and Chida, T., 2007, Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant: Journal of Bioscience and Bioengineering, v. 104, p. 117-123. Jones, C.A., Langner, H.W., Anderson, K., McDermott, T.R., and Inskeep, W.P., 2000, Rates of microbially mediated arsenate reduction and solubilization: Soil Science Society of America Journal, v. 64, p. 600-608. Karavaiko, G.I., Bogdanova, T.I., Tourova, T.P., Kondrat'eva, T.F., Tsaplina, I.A., Egorova, M.A., Krasil'nikova, E.N., and Zakharchuk, L.M., 2005, Reclassification of 'Sulfobacillus thermosulfidooxidans subsp thermotolerans' strain K1 as Alicyclobacillus tolerans sp nov and Sulfobacillus disulfidooxidans Dufresne et al 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus: International Journal of Systematic and Evolutionary Microbiology, v. 55, p. 941-947. Kashefi, K., and Lovley, D.R., 2000, Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum: Applied and Environmental Microbiology, v. 66, p. 1050-1056. Kashiwa, M., Nishimoto, S., Takahashi, K., Ike, M., and Fujita, M., 2000, Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp SF-1: Journal of Bioscience and Bioengineering, v. 89, p. 528-533. Kashyap, D.R., Botero, L.M., Franck, W.L., Hassett, D.J., and McDermott, T.R., 2006, Complex regulation of arsenite oxidation in Agrobacterium tumefaciens: Journal of Bacteriology, v. 188, p. 1081-1088. Katsoyiannis, I.A., and Zouboulis, A.I., 2004, Application of biological processes for the removal of arsenic from groundwaters: Water Research, v. 38, p. 17-26. Kieft, T.L., Fredrickson, J.K., Onstott, T.C., Gorby, Y.A., Kostandarithes, H.M., Bailey, T.J., Kennedy, D.W., Li, S.W., Plymale, A.E., Spadoni, C.M., and Gray, M.S., 1999, Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate: Applied and Environmental Microbiology, v. 65, p. 1214-1221. Klein, B., Bouriat, P., Goulas, P., and Grimaud, R., 2010, Behavior of Marinobacter hydrocarbonoclasticus SP17 cells during Initiation of biofilm formation at the alkane-water interface: Biotechnology and Bioengineering, v. 105, p. 461-468. Krafft, T., and Macy, J.M., 1998, Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis: European Journal of Biochemistry, v. 255, p. 647-653. Kulp, T.R., Hoeft, S.E., Asao, M., Madigan, M.T., Hollibaugh, J.T., Fisher, J.C., Stolz, J.F., Culbertson, C.W., Miller, L.G., and Oremland, R.S., 2008, Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California: Science, v. 321, p. 967-970. Lane, D., 1991, 16S/23S rRNA sequencing, in E, S., and M, G., eds., Nucleic Acid Techniques in Bacterial Systematics, J. Wiley & Sons, Chichester, p. 115-175. Laverman, A.M., Blum, J.S., Schaefer, J.K., Phillips, E.J.P., Lovley, D.R., and Oremland, R.S., 1995, Growth of strain SES-3 with arsenate and other diverse electron acceptors: Applied and Environmental Microbiology, v. 61, p. 3556-3561. Le Hecho, I., and Matera, V., 2001, Arsenic behavior in contaminated soils, in Selim, H.M., and Sparks, D.L., eds., Heavy Metals Release in Soils, CRC Press, p. 207-235. Lebrun, E., Brugna, M., Baymann, F., Muller, D., Lievremont, D., Lett, M.C., and Nitschke, W., 2003, Arsenite oxidase, an ancient bioenergetic enzyme: Molecular Biology and Evolution, v. 20, p. 686-693. Ledbetter, R.N., Connon, S.A., Neal, A.L., Dohnalkova, A., and Magnuson, T.S., 2007, Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, oregon: Applied and Environmental Microbiology, v. 73, p. 5928-5936. Ledbetter, R.N., and Magnuson, T.S., 2010, The geomicrobiology of arsenic, in Barton, L.L., Mandl, M., and Loy, A., eds., Geomicrobiology: Molecular and Environmental Perspective, Springer Berlin / Heidelberg, p. 147-168. Legge, J.W., 1954, Bacterial oxidation of arsenite 4: some properties of the bacterial cytochromes: Australian Journal of Biological Sciences, v. 7, p. 504-514. Legge, J.W., and Turner, A.W., 1954, Bacterial oxidation of arsenite 3: cell-free arsenite dehydrogenase: Australian Journal of Biological Sciences, v. 7, p. 496-503. Liang, H.C., and Thomson, B.M., 2010, Minerals and mine drainage: Water Environment Research, v. 82, p. 1485-1533. Lievremont, D., Bertin, P.N., and Lett, M.C., 2009, Arsenic in contaminated waters: Biogeochemical cycle, microbial metabolism and biotreatment processes: Biochimie, v. 91, p. 1229-1237. Liu, A., Garcia-Dominguez, E., Rhine, E.D., and Young, L.Y., 2004, A novel arsenate respiring isolate that can utilize aromatic substrates: FEMS Microbiology Ecology, v. 48, p. 323-332. London, J., 1963, Thiobacillus intermedius nov. sp., a novel type of facultative autotroph: Archiv Fur Mikrobiologie, v. 46, p. 329-337. Lonergan, D.J., Jenter, H.L., Coates, J.D., Phillips, E.J.P., Schmidt, T.M., and Lovley, D.R., 1996, Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria: Journal of Bacteriology, v. 178, p. 2402-2408. Luijten, M., de Weert, J., Smidt, H., Boschker, H.T.S., de Vos, W.M., Schraa, G., and Stams, A.J.M., 2003, Description of Sulfurospirillum halorespirans sp nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov: International Journal of Systematic and Evolutionary Microbiology, v. 53, p. 787-793. Luijten, M., Weelink, S.A.B., Godschalk, B., Langenhoff, A.A.M., van Eekert, M.H.A., Schraa, G., and Stams, A.J.M., 2004, Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms: FEMS Microbiology Ecology, v. 49, p. 145-150. Macur, R.E., Jackson, C.R., Botero, L.M., McDermott, T.R., and Inskeep, W.P., 2004, Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil: Environmental Science & Technology, v. 38, p. 104-111. Macur, R.E., Wheeler, J.T., McDermott, T.R., and Inskeep, W.P., 2001, Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings: Environmental Science & Technology, v. 35, p. 3676-3682. Macy, J.M., Nunan, K., Hagen, K.D., Dixon, D.R., Harbour, P.J., Cahill, M., and Sly, L.I., 1996, Chrysiogenes arsenatis gen nov, sp nov; a new arsenate-respiring bacterium isolated from gold mine wastewater: International Journal of Systematic Bacteriology, v. 46, p. 1153-1157. Macy, J.M., and Santini, J.M., 2002, Unique modes of arsenate respiration by Chrysiogenes arsenatis and Desulfomicrobium sp str. Ben-RB, in Frankenberger, W.T., ed., Environmental Chemistry of Arsenic, Marcel Dekker, Inc., p. 297-312. Macy, J.M., Santini, J.M., Pauling, B.V., O'Neill, A.H., and Sly, L.I., 2000, Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction: Archives of Microbiology, v. 173, p. 49-57. Malasarn, D., Keeffe, J.R., and Newman, D.K., 2008, Characterization of the arsenate respiratory reductase from Shewanella sp strain ANA-3: Journal of Bacteriology, v. 190, p. 135-142. Malasarn, D., Saltikov, W., Campbell, K.M., Santini, J.M., Hering, J.G., and Newman, D.K., 2004, arrA is a reliable marker for As(V) respiration: Science, v. 306, p. 455-455. Manilla-Perez, E., Lange, A.B., Hetzler, S., and Steinbuechel, A., 2010, Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons: Applied Microbiology and Biotechnology, v. 86, p. 1693-1706. Martins dos Santos, V., Sabirova, J., Timmis, K.N., Yakimov, M.M., and Golyshin, P.N., 2010, Alcanivorax borkumensis, in Timmis, K.N., ed., Handbook of Hydrocarbon and Lipid Microbiology, Springer Berlin Heidelberg, p. 1265-1288. Masscheleyn, P.H., Delaune, R.D., and Patrick, W.H., 1991, Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil: Environmental Science & Technology, v. 25, p. 1414-1419. Meng, Y.L., Liu, Z.J., and Rosen, B.P., 2004, As(III) and Sb(III) uptake by G1pF and efflux by ArsB in Escherichia coli: Journal of Biological Chemistry, v. 279, p. 18334-18341. Moeller, C., and van Heerden, E., 2006, Isolation of a soluble and membrane-associated Fe(III) reductase from the thermophile, Thermus scotoductus (SA-01): FEMS Microbiology Letters, v. 265, p. 237-243. Moreira, D., and Amils, R., 1997, Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: Proposal for Thiomonas gen nov: International Journal of Systematic Bacteriology, v. 47, p. 522-528. Mukhopadhyay, R., Rosen, B.P., Phung, L.T., and Silver, S., 2002, Microbial arsenic: from geocycles to genes and enzymes: FEMS Microbiology Reviews, v. 26, p. 311-325. Muller, D., Lievremont, D., Simeonova, D.D., Hubert, J.C., and Lett, M.C., 2003, Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium: Journal of Bacteriology, v. 185, p. 135-141. Muller, D., Simeonova, D.D., Riegel, P., Mangenot, S., Koechler, S., Lievremont, D., Bertin, P.N., and Lett, M.C., 2006, Herminiimonas arsenicoxydans sp nov., a metalloresistant bacterium: International Journal of Systematic and Evolutionary Microbiology, v. 56, p. 1765-1769. Murphy, J.N., and Saltikov, C.W., 2007, The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species: Journal of Bacteriology, v. 189, p. 2283-2290. Murphy, J.N., and Saltikov, C.W., 2009, The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp strain ANA-3: Journal of Bacteriology, v. 191, p. 6722-6731. Nagvenkar, G.S., and Ramaiah, N., 2010, Arsenite tolerance and biotransformation potential in estuarine bacteria: Ecotoxicology, v. 19, p. 604-613. Nakano, M., Okunishi, S., Tanaka, R., and Maeda, H., 2009, Denitrifying activity and homologous enzyme analysis of Alcanivorax dieselolei strain N1203: Biocontrol Science, v. 14, p. 97-105. Nazina, T.N., Sokolova, D.S., Grigoryan, A.A., Shestakova, N.M., Mikhailova, E.M., Poltaraus, A.B., Tourova, T.P., Lysenko, A.M., Osipov, G.A., and Belyaev, S.S., 2005, Geobacillus jurassicus sp nov., a new thermophilic bacterium isolated from a high-temperature petroleum Geobacillus species reservoir, and the validation of the Geobacillus species: Systematic and Applied Microbiology, v. 28, p. 43-53. Newman, D.K., Beveridge, T.J., and Morel, F.M.M., 1997a, Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum: Applied and Environmental Microbiology, v. 63, p. 2022-2028. Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R., and Morel, F.M.M., 1997b, Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov: Archives of Microbiology, v. 168, p. 380-388. Niggemyer, A., Spring, S., Stackebrandt, E., and Rosenzweig, R.F., 2001, Isolation and characterization of a novel As(V)-reducing bacterium: Implications for arsenic mobilization and the genus Desulfitobacterium: Applied and Environmental Microbiology, v. 67, p. 5568-5580. Oremland, R.S., Blum, J.S., Culbertson, C.W., Visscher, P.T., Miller, L.G., Dowdle, P., and Strohmaier, F.E., 1994, Isolation, growth, and metabolism of an obligately anaerobic, selenaterespiring bacterium, strain SES-3: Applied and Environmental Microbiology, v. 60, p. 3011-3019. Oremland, R.S., Hoeft, S.E., Santini, J.A., Bano, N., Hollibaugh, R.A., and Hollibaugh, J.T., 2002a, Anaerobic oxidation of arsenite in Mono Lake water and by facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1: Applied and Environmental Microbiology, v. 68, p. 4795-4802. Oremland, R.S., Kulp, T.R., Blum, J.S., Hoeft, S.E., Baesman, S., Miller, L.G., and Stolz, J.F., 2005, A microbial arsenic cycle in a salt-saturated, extreme environment: Science, v. 308, p. 1305-1308. Oremland, R.S., Newman, D.K., Kail, B.W., and Stolz, J.F., 2002b, Bacterial respiration of arsenate and its significance in the environment, in Frankenberger, W.T., ed., Environmental Chemistry of Arsenic, Marcel Dekker, Inc., p. 273-295. Oremland, R.S., Saltikov, C.W., Wolfe-Simon, F., and Stolz, J.F., 2009, Arsenic in the evolution of earth and extraterrestrial ecosystems: Geomicrobiology Journal, v. 26, p. 522-536. Oremland, R.S., and Stolz, J.F., 2003, The ecology of arsenic: Science, v. 300, p. 939-944. Oremland, R.S., and Stolz, J.F., 2005, Arsenic, microbes and contaminated aquifers: Trends in Microbiology, v. 13, p. 45-49. Osborne, F.H., and Ehrlich, H.L., 1976, Oxidation of arsenite by a soil isolate of Alcaligenes: Journal of Applied Bacteriology, v. 41, p. 295-305. Osborne, T.H., Jamieson, H.E., Hudson-Edwards, K.A., Nordstrom, D.K., Walker, S.R., Ward, S.A., and Santini, J.M., 2010, Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser: BMC Microbiology, v. 10, p. 205-212. Oshima, T., an | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48321 | - |
dc.description.abstract | 地熱溫泉中常含有高濃度的砷,被認為對微生物是具有毒性。瞭解微生物催化反應如何轉化砷價態,有助於探索自然環境中微生物和砷之間的交互作用。本研究第一個目的是純化並探討嗜熱砷轉化菌的生理特性,以擴充目前我們已知全球嗜熱砷轉換菌之多樣性及微生物在地熱環境中砷循環可能扮演的角色。到目前為止,沒有任何文獻總結砷轉換機制和親緣關係之間的連結,本研究第二個目的是系統性總結目前已發表文獻中,可培養菌株之親緣與砷代謝之關係。
本研究將採集自台灣與菲律賓的地熱流體樣本接種入含砷培養基,並培養於40至90oC,利用塗盤或系列稀釋的方式,從大屯火山群地區與關仔嶺溫泉純化分離出五隻菌株;從龜山島淺海熱液溫泉中純化分離出三十五隻菌株;另外結合自本實驗室過去純化分離或由陳俊堯博士提供共二十隻菌株,共挑選其中九隻嗜熱菌株進一步探討其砷轉換能力之特性,在這些菌株中 Anoxybacillus 和 Alicyclobacillus 相關菌株被確認可氧化三價砷;相對的, Acidianu 和 Geobacillus 相關菌株可還原五價砷; Meiothermus 和 Thermus 相關菌株則可雙向轉化砷。三隻純化分離自龜山島的嗜中溫菌株則為化學自營亞砷酸鹽氧化菌,隸屬於菌屬 Marinobacter 與 Alcanivorax。這是第一次報導 Alicyclobacillus 、 Anoxybacillus 、 Acidianus 、 Geobacillus 、 Meiothermus 、 和 Alcanivorax 屬中菌株具有轉換物種砷的能力。這個結果不只擴大了目前對地熱環境中砷轉換菌多樣性的瞭解,同樣也利於建立微生物活動和現地砷轉化過程之關係。 親緣和砷生理代謝之間的關係總結如下:異營亞砷酸鹽氧化菌主要分佈在Deinococcus-Thermus 、 Alphaproteobacteria 、 Betaproteobacteria 和 Gammaproteobacteria 中的 Psudomonas ;化學自營亞砷酸鹽氧化菌則主要為 Alphaproteobacteria 和 Betaproteobacteria 之成員,或 Gammaproteobacteria 和 Aquificae 中一些菌株;砷酸鹽異化還原菌則住要隸屬於 Pyrobaculum 、 Chrysiogenetes 、 Firmicutes 、 Deltaproteobacteria 、 Epsilonproteobacteria 分類中占優勢,亦有一些 Aquificae 和 Gammaproteobacteria 之成員;異營砷酸鹽還原菌則零散分佈於許多分類群,包含:Crenarchaeota 、 Actinobacteria 、 Bacteroidetes 、 Deinococcus-Thermus 、 Firmicutes 、 Alphaproteobacteria 和 Gammaproteobacteria。這樣的結果顯示砷轉換機制僅主要分佈於某些親緣分支之中。 | zh_TW |
dc.description.abstract | Geothermal springs typically contain high arsenic concentrations that are considered to be toxic to microorganisms. Understanding how microbially-catalytic reactions are involved in the changes of the redox state of arsenic would provide important constraints on the interaction between arsenic and microorganisms in natural occurrences. The first aim of this study was to isolate and characterize the physiological properties of thermophilic arsenic transformers in order to enhance our understanding about the global diversity and microbial role in the arsenic cycling in geothermal environments. To date, there is no literature that summarizes arsenic transforming mechanisms in connection with phylogenetic relationships. Therefore, the second aim of this study was to synthesize and summarize the relationships between the phylogeny and arsenic metabolism for cultivable strains previously published in liteatures.
Geothermal fluid samples collected from Taiwan and Philippines were inoculated into arsenite-containing media and incubated at 40 to 90oC. Five strains were isolated through plating or series dilution from the Ta-Tun volcanic area and Kuan-Tzu-Ling mud spring; thirty-five strains from the shallow submarine hydrothermal vent in the Kuei-Shan Island. Twenty strains were isolated from previous studies or provided by Dr. Chun-Yao Chen. Of these strains, nine thermophilic strains were further subject to the characterization of their arsenic transforming capabilities. Among these strains, Alicyclobacillus- and Anoxybacillus- related strains were identified to oxidize arsenite. In contrast, Acidianus- and Geobacillus-related strains were capable of reducing arsenate. Meiothermus- and Thermus-related strains were able to dually transform arsenic species. Three mesophilic strains obtained from the Kuei-Shan Island were chemolithoautotrophic arsenite oxidizers. The capability of transforming arsenic redox states by strains of Alicyclobacillus-, Anoxybacillus-, Acidianus-, Geobacillus-, Meiothermus-, and Alcanivorax- genus is first reported. These results not only expand the current view about the diversity of arsenic transformers in geothermal environments, but also facilitate to establish the linkages between microbial activities and in situ arsenic transforming processes. The relationships between the phylogeny and arsenic metabolism was summarized as followed: heterotrophic arsenite oxidizers predominantly appear in Deinococcus-Thermus, Alphaproteobacteria, Betaproteobacteria and Psudomonas of Gammaproteobacteria; chemoautotrophic arsenite oxidizers were composed of members related with Alphaproteobacteria and Betaproteobacteria, and some strains in Gammaproteobacteria and Aquificae; dissimilatory arsenate-reducing prokaryotes were primarily affiliated with Pyrobaculum, Chrysiogenetes, Firmicutes, Deltaproteobacteria, Epsilonproteobacteria, and some Aquificae and Gammaproteobacteria members; heterotrophic arsenate reducers erratically scatter in almost all taxa, including Crenarchaeota, Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes, Alphaproteobacteria, and Gammaproteobacteria. The results show that arsenic transforming mechanisms could be correlated with certain phylogenetic clades. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:52:29Z (GMT). No. of bitstreams: 1 ntu-100-R97224216-1.pdf: 5585391 bytes, checksum: 2ace051555a4106d05d69309b7bf902c (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 摘 要 I
ABSTRACT III TABLE OF CONTENTS V LIST OF TABLES IX LIST OF FIGURES X CHAPTER 1 INTRODUCTION 1 1.1. ARSENIC REDOX TRANSFORMATION IN ENVIRONMENTS 1 1.1.1. Arsenic chemistry, speciation and behavior 1 1.1.2. Source, concentration, occurrence and distribution of arsenic in environments 4 1.2. ARSENIC METABOLISM MECHANISMS AND BIOTRANSFORMATION OF ARSENIC 5 1.2.1. Toxicity responses and uptake mechanisms of arsenic in microorganisms 6 1.2.2. Biotransformation of arsenic 8 1.3. DIVERSITY OF CULTIVABLE THERMOPHILIC ARSENIC RELATED MICROORGANISMS 9 1.4. RATIONALS AND OBJECTIVES 10 CHAPTER 2 MATERIALS AND METHODS 12 2.1. STUDY SITE AND SAMPLING METHOD 12 2.2. ENRICHMENTS AND ISOLATIONS 12 2.2.1. Medium design 12 2.2.2. Enrichment 16 2.2.3. Isolation 16 2.2.4. Preservation of pure strains 19 2.3. PREVIOUSLY ISOLATED CULTURE 19 2.4. SEQUENCING AND PHYLOGENETIC ANALYSIS 20 2.4.1. DNA extraction 20 2.4.2. PCR amplification 21 2.4.3. Phylogenetic analysis 21 2.5. PHENOTYPIC CHARACTERIZATION AND PHYSIOLOGICAL TEST 22 2.5.1. Morphology 22 2.5.2. Temperature range and optimal temperature for growth 22 2.5.3. Carbon source utilization 22 2.5.4. Anaerobic fermentation 23 2.6. ARSENIC TRANSFORMATION AND ARSENIC ANALYTICAL METHODS 23 2.6.1. Growth condition and medium composition 23 2.6.2. Chemoautotrophic arsenite oxidation and dissimilatory arsenate reduction 24 2.6.3. Separation of arsenite from arsenate 24 2.6.4. ICP-AES 25 CHAPTER 3 RESULTS 27 3.1. ENRICHMENTS AND ISOLATES 27 3.1.1. Enrichments 27 3.1.2. Isolates 27 3.1.3. Sequence and phylogenetic analyses of isolates and known arsenic transforming strains 29 3.2. PHENOTYPIC CHARACTERIZATION AND PHYSIOLOGICAL TESTS 29 3.2.1. Morphological characterization 29 3.2.2. Temperature range and optimal temperature 33 3.2.3. Carbon source utilization 33 3.2.4. Anaerobic fermentation 33 3.3. ARSENIC TRANSFORMING ASSAY 34 3.3.1. Heterotrophic arsenic biotransformation 34 3.3.2. Chemoautotrophic arsenite oxidation and dissimilatory arsenate reduction 47 CHAPTER 4 DISCUSSION 48 4.1. CHARACTERIZATION OF ISOLATED STRAINS 48 4.1.1. Genus Alicyclobacillus 48 4.1.2. Genus Acidianus 49 4.1.3. Genus Thermus 51 4.1.4. Genus Meiothermus 53 4.1.5. Genus Geobacillus 54 4.1.6. Genus Anoxybacillus 55 4.1.7. Genus Marinobacter 55 4.1.8. Genus Alcanivorax 56 4.2. DIVERSITY OF ARSENIC TRANSFORMERS 57 4.2.1. Phylogenetic relationships of arsenic transformers 58 4.2.2. Extreme characteristics associated with arsenic transformers 65 4.2.3. Arsenic dual-transformers 68 4.3. ECOLOGICAL AND ENVIRONMENTAL SIGNIFICANCE 69 CHAPTER 5 CONCLUSIONS 72 REFERENCES 73 APPENDIX A 101 APPENDIX B 119 | |
dc.language.iso | en | |
dc.title | 台灣與菲律賓地熱溫泉中可培養嗜熱砷轉化菌之多樣性與生理代謝特性 | zh_TW |
dc.title | Diversity and metabolic characteristics of cultivable thermophilic arsenic transformers from geothermal springs in Taiwan and the Philippines | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王珮玲(Pei-Ling Wang),陳俊堯(Chun-Yao Chen),劉雅瑄 | |
dc.subject.keyword | 砷代謝,嗜熱菌,地熱生態系統,台灣,菲律賓, | zh_TW |
dc.subject.keyword | arsenic metabolism,thermophile,geothermal ecosystem,Taiwan,the Philippines, | en |
dc.relation.page | 127 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-02-14 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 5.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。