請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48314完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鹿兒陽(Erh-Yang Lu) | |
| dc.contributor.author | Chuan Liu | en |
| dc.contributor.author | 劉佺 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:52:14Z | - |
| dc.date.available | 2011-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-14 | |
| dc.identifier.citation | 周富三 (1997) 台灣南部槲樹植群生態之研究。國立台灣大學森林學系研究所碩士論文36頁。
陳玉峰 (2007) 物種生態誌-無患子。生態臺灣:臺灣生態學會季刊 16: 37–40。 楊淑瀚 (2007) 溪頭天然闊葉林枯落物及其落葉氮、磷濃度之動態變化。國立台灣大學森林環境暨資源學系碩士論文67頁。 鍾年均 (1994) 台灣中部沙里仙區植群生態與保育特性之研究。國立台灣大學森林學研究所博士論文183頁。 Allen, D. C. and J. E. Coufal (1984) Introduction to forest entomology: a training manual for forest technicians. Syracuse University Press, Syracuse, New York. pp. 152. Ball, J. P., K. Danell and P. Sunesson (2000) Response of a herbivore community to increased food quality and quantity: an experiment with nitrogen fertilizer in a boreal forest. Journal of Applied Ecology 37: 247–255. Baraza, E., J. M. Gomez, J. A. Hodar and R. Zamora (2004) Herbivory has a greater impact in shade than in sun: response of Quercus pyrenaica seedlings to multifactorial environmental variation. Canadian Journal of Botany 82(3): 357–364. Baraza, E., R. Zamora and J. A. Hodar (2006) Conditional outcomes in plant-herbivore interactions: neighbours matters. Oikos 113: 148–156. Barber, N. A. (2010) Light Environment and Leaf Characteristics Affect Distribution of Corythuca arcuata (Hemiptera: Tingidae). Environmental Entomology 39(2): 492–497. Berryman, A. A. (1986) Forest insects: principle and practice of population management. Plenum Press, New York. pp. 279. Bryant, S. R., C. D. Thomas and J. S. Bale (2000) Thermal ecology of gregarious and solitary nettle-feeding nymphalid butterfly larvae. Oecologia 122: 1–10. Callaway, R. M. and F. I. Pugnaire (1999) Facilitation in plant communities. In: F. I. Pugnaire and F. Valladares (Eds.), Handbook of functional plant ecology. Marcel Dekker, New York, New York, USA. pp. 623–648. Chapin, F. S. (1980) The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233–260. Cobb, R. C., D. A. Orwig, A. W. D’Amato, M. L. Kizlinski and D. R. Foster (2008) Multi-year ecosystem response to hemlock woolly adelgid infestation in southern New England forests. Canadian Journal of Forest Research 38: 834–843. Coley, P. D (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53: 209–233. Coley, P. D. and J. A. Barone (1996) Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27: 305–335. Cornelissen, T. and P. Stiling (2009) Responses of different herbivore guilds to nutrient addition and natural enemy exclusion. Ecoscience 13(1): 66–74. Crawley, M. J. (1993) On the consequences of herbivory. Evolutionary Ecology 7: 124‐125. Denslow, J. S. (1987) Tropical rainforest gaps and tree species diversity. Annual Review of Ecology and Systematics 18: 431–451. Dudt, J. F. and D. J. Shure (1994) The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75: 86‐98. Eichhorn, M. P., S. G. Compton and S. E. Hartley (2006) Seedling species determines rates of leaf herbivory in a Malaysian rain forest. Journal of Tropical Ecology 22: 513–519. Eichhorn, M. P., K. C. Fagan, S. G. Compton, D. H. Dent and S. E. Hartley (2007) Explaining leaf herbivory rates on tree seedlings in a Malaysian rain forest. Biotropica 39: 416–421. Eichhorn, M. P., R. Nilus, S. G. Compton, S. E. Hartley and D. F. R. P. Burslem (2010) Herbivory of tropical rain forest tree seedlings correlates with future mortality. Ecology 91(4): 1092–1101. Elirifi, I. R. and D. H. Turpin (1985) Steady-state luxury consumption and the concept of optimum nutrient ratios: A study with phosphate and nitrate limited Selenastrum minutum (Chlorophyta). Journal of Phycology 21: 592–602. Fang, X., J. Yuan, G. Wang and Z. Zhao (2006) Fruit production of shrub, Caragana korshinskii, following above-ground partial shoot removal: mechanisms underlying compensation. Plant Ecology 187: 213–225. Feeny, P. (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565–581. Givnish, T. J. (1982) On the adaptive significance of leaf height in forest herbs. American Naturalist 120: 353–381. Gomez-Aparicio, L., R. Zamora, J. Castro and J. A. Hodar (2008) Facilitation of tree saplings by nurse plants: Microhabitat amelioration or protection against herbivores? Journal of Vegetation Science 19: 161–172. Hauck, M., C. Dulamsuren and C. Heimes (2008) Effects of insect herbivory on the performance of Larix sibirica in a forest-steppe ecotone. Environmental and Experimental Botany 62: 351–356. Hirose, T. and M. J. A. Werger (1995) Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology 76(2): 466–474. Huang, T. C. (Ed.) (2003) Flora of Taiwan, vol. 6, 2nd edition. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan. pp. 343. Huttunen, L., P. Niemela, H. Peltolaa, S. Heiskab, M. Rousic and S. Kellomaki (2007) Is a defoliated silver birch seedling able to overcompensate the growth under changing climate? Environmental and Experimental Botany 60(2): 227–238. Kimmins, J. P. (2004) Forest ecology, 3rd edition. Prentice Hall, New Jersey. pp. 611. Klapwijk, M. J., B. C. Grobler, K. Ward, D. Wheeler and O. T. Lewis (2010) Influence of experimental warming and shading on host–parasitoid synchrony. Global Change Biology 16: 102–112. Lovett, G. M. and P. Tobiessen (1993) Carbon and nitrogen assimilation in red oaks (Quercus rubra L.) subject to defoliation and nitrogen stress. Tree Physiology 12: 259–269. Lovett, G. M., L. M. Christenson, P. M. Groffman, C. G. Jones, J. E. Hart and M. J. Mitchell (2002) Insect defoliation and nitrogen cycling in forests. BioScience 52: 335–341. Lowman, M. D. (1984) An assessment of techniques for measuring herbivory: is rainforest defoliation more intense than we thought? Biotropica 16: 264–268. Lowman, M. D. (1992) Leaf growth dynamics and herbivory in five species of Australian rain-forest canopy trees. Journal of Ecology 80: 433–447. Marquis, R. J (1984) Leaf herbivore decrease fitness of a tropical plant. Science 226: 537‐539. Marquis, R. J., I. R. Diniz and H. C. Morais (2001) Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. Journal of Tropical Ecology 17:127–148. Moore, P. D. and S. B. Chapman (1986) Methods in plant ecology. 2nd edition. Blackwell Scientific Publications. Oxford, London, Edinburgh. pp. 536. Muth, N. Z., E. C. Kluger, J. H. Levy, M. J. Edwards and R. A. Niesenbaum (2008) Increased per capita herbivory in the shade: Necessity, feedback, or luxury consumption. Ecoscience 15(2): 182–188. Nabity, P. D. J. A. Zavala and E. H. DeLucia (2009) Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Annals of Botany 103: 655–663. Newingham, B. A., R. M. Callaway and H. BassiriRad (2007) Allocating nitrogen away from a herbivore: a novel compensatory response to root herbivory. Oecologia 153: 913–920. Niesenbaum, R. A. and E. C. Kluger (2006) When studying the effects of light on herbivory, should one consider temperature? The case of Epimecis hortaria F. (Lepidoptera: Geometridae) feeding on Lindera benzoin L. (Lauraceae). Environmental Entomology 35: 600–606. Parker, G. G. (1995) Structure and microclimate of forest canopies. In: M. D. Lowman and N. M. Nadkarni (Eds.), Forest Canopies. Academic Press, San Diego, CA. pp. 73–106. Petrakis, P. V. and A. Legakis (2007) The role of predation in shaping biological communities, with particular emphasis to insects. In: A. Elewa (Ed.), Predation in organisms: A distinct fenomenon, Springer-Verlag. pp. 87–122. Porter, K. (1981) The population dynamics of small colonies of the butterfly Euphydryas aurinia. PhD Thesis, University of Oxford. pp. 285. Porter, K. (1983) Multivoltinism in Apanteles bignellii and the influence of weather on synchronisation with its host Euphydryas aurinia. Entomologia Experimentalis et Applicata 34: 155–162. Rodriguez-Calcerrada, J., J. A. Pardos, L. Gil, P. B. Reich and I. Aranda (2008) Light response in seedlings of a temperate (Quercus petraea) and a sub-Mediterranean species (Quercus pyrenaica): contrasting ecological strategies as potential keys to regeneration performance in mixed marginal populations. Plant Ecology 195: 273–285. Rowe, E. C., J. R. Healey, G. Edwards-Jones, J. Hills, M. Howells and D. L. Jones (2006) Fertilizer application during primary succession changes the structure of plant and herbivore communities. Biological Conservation 131: 510–522. Sauge, M. H., L. Grechi and J. L. Poessel (2010) Nitrogen fertilization effects on Myzus persicae aphid dynamics on peach: vegetative growth allocation or chemical defence? Entomologia Experimentalis et Applicata 136: 123–133. Selaya, N. G., R. J. Oomen, J. J. C. Netten, M. J. A. Werger and N. P. R. Anten (2008) Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession. Journal of Ecology 96(6): 1211–1221. Stadler, B., T. Muller, D. Orwig and R. Cobb (2005) Hemlock Woolly Adelgid in New England Forests: Canopy Impacts Transforming Ecosystem Processes and Landscapes. Ecosystems 8: 233–247. Sterner, R. W. and M. S. Schwalbach (2001) Diel integration of food quality by Daphnia: Luxury consumption by a freshwater planktonic herbivore. Limnology and Oceanography 46(2): 416–420. Strauss, S. Y. and A. A. Agrawal (1999) The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution 14:179–185. Thomas, S. C, A. J. Sztaba and S. M. Smith (2010) Herbivory patterns in mature sugar maple: variation with vertical canopy strata and tree ontogeny. Ecological Entomology 35: 1–8. Waterman, P. G. and S. Mole (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publications. Oxford, London. pp. 66–103. Wise, M. J., J. J. Cummins and C. D. Young (2008) Compensation for floral herbivory in Solanum carolinense: identifying mechanisms of tolerance. Evolutionary Ecology 22: 19–37. Zangerl, A. R., J. G. Hamilton, T. J. Miller, A. R. Crofts, K. Oxborough, M. R. Berenbaum and E. H. de Lucia (2002) Impact of folivory on photosynthesis is greater than the sum of its holes. Proceedings of the National Academy of Sciences 99: 1088–1091. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48314 | - |
| dc.description.abstract | 本研究自2009年4月24日至11月28日在台大實驗林溪頭苗圃進行,針對6種台灣原生闊葉樹種(紅楠、青剛櫟、烏心石、櫸木、楓香及無患子)3到4年生之苗木進行施肥及遮蔭處理,以破壞性取樣及連續性調查了解不同演替階段樹種間葉面積損失率(量化昆蟲植食程度)及葉部特性的反應,探討葉面積損失率及葉部特性間的關係。
葉面積損失率在樹種間有顯著差異,可依樹種的演替階段作區隔。演替初期樹種(櫸木、楓香、無患子)的葉面積損失率較高,演替晚期樹種(紅楠、青剛櫟、烏心石)較低,且演替初期樹種之葉片硬度較低、葉部氮濃度較高,而葉部總酚類濃度的變異較大,在演替階段間沒有明顯的趨勢。施肥處理會顯著提高葉片之氮濃度並降低總酚類濃度及比葉重,但對葉面積損失率沒有顯著影響。遮蔭處理下,葉部氮濃度較高,總酚類濃度、比葉重較低,而第2採樣階段的葉面積損失率顯著降低。 破壞性取樣中,僅在第1採樣階段葉面積損失率與葉部氮濃度有顯著正相關,與總酚類濃度、比葉重及葉片硬度有顯著負相關;連續性調查的最大葉面積損失率與葉部氮濃度有顯著正相關,與總酚類濃度沒有顯著相關性,與比葉重及葉片硬度有顯著負相關。葉部氮濃度與總酚類濃度呈負相關,比葉重與葉部氮濃度有負相關,與總酚類濃度在第1採樣階段有正相關。 總結而言,演替前期的物種因葉片硬度低且葉部氮濃度高,受植食損失的情況較嚴重,施肥與遮蔭處理會影響葉部特性,未來可考慮差異較大的施肥與遮蔭處理進行試驗或延長調查時間,以期更確定植食程度與葉片特性之間的關係。 | zh_TW |
| dc.description.abstract | From April to November, 2009, we investigated the leaf area loss (LAL, to quantify insect herbivory) and leaf traits in the seedlings of 6 native hardwood species, Machilus thunbergii, Cyclobalanopsis glauca, Michelia compressa var. formosana, Zelkova serrata, Liquidambar formosana and Sapindus mukorossii in Chitou nursery of the Experimental Forest, National Taiwan University. Fertilization and shading were applied to examine the effects of light regime and nutrient supply on these 6 species of different successional stages.
Compared to the late-successional species (Mac. thunbergii, C. glauca, Mic. compressa var. formosana), the early-successional species (Z. serrata, L. formosana and S. mukorossii) were higher in LAL and leaf N and lower in leaf toughness. Leaf total phenols were also significantly different between species, but the difference was not consistent with successional stages. Fertilization had no significant effect on LAL, but resulted in higher leaf N, lower leaf total phenols, and lower leaf mass per area (LMA). Shading lowered LAL in the 2nd sampling, leaf total phenols, LMA, and toughness, but increased leaf N. There was significantly positive correlation between LAL and leaf N, and negative correlations between LAL and total phenols, LMA, and leaf toughness in the 1st sampling. In the continuous monitoring, the maximum of leaf area loss was in significantly positive correlation with leaf N, and in negative correlation with LMA and leaf toughness. There was negative correlation between leaf N and total phenols, positive correlation between LMA and leaf N, and positive correlation between LMA and total phenols in the 1st sampling stage. In conclusion, fertilization and shading treatments would affect leaf traits. The early-successional species with lower leaf toughness and higher N suffered higher loss of herbivory. The effects of fertilization and shading on herbivory were not conclusive in this relatively short-term study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:52:14Z (GMT). No. of bitstreams: 1 ntu-100-R98625018-1.pdf: 550398 bytes, checksum: 16887c2186b97b37c4aa25db9fd6f0a4 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………………………… ii
中文摘要…………………………………………………………………………… iii Abstract…………………………………………………………………………… iv 目錄………………………………………………………………………………… v 圖目錄……………………………………………………………………………… vii 表目錄……………………………………………………………………………… viii 前言………………………………………………………………………………… 1 壹、前人研究……………………………………………………………………… 3 一、植食作用………………………………………………………………… 3 二、影響植食作用的植物特性……………………………………………… 3 (一) 葉部特性…………………………………………………………… 4 (二) 過量攝食…………………………………………………………… 5 三、影響植食作用的環境因子……………………………………………… 5 (一) 光度差異…………………………………………………………… 5 (二) 土壤養分…………………………………………………………… 7 四、植食作用對植物的影響………………………………………………… 8 (一) 植食作用對苗木的影響…………………………………………… 8 (二) 植食作用對生態系的影響………………………………………… 10 貳、材料與方法…………………………………………………………………… 11 一、苗圃環境………………………………………………………………… 11 二、試驗材料………………………………………………………………… 11 三、試驗處理………………………………………………………………… 11 (一) 遮蔭處理…………………………………………………………… 12 (二) 施肥處理…………………………………………………………… 12 四、連續性調查……………………………………………………………… 13 五、破壞性取樣……………………………………………………………… 13 (一) 葉面積損失率……………………………………………………… 14 (二) 葉部特性分析……………………………………………………… 14 六、統計分析………………………………………………………………… 15 參、結果…………………………………………………………………………… 16 一、當年生葉片動態………………………………………………………… 16 二、葉面積損失率…………………………………………………………… 16 (一) 破壞性取樣………………………………………………………… 16 (二) 連續性調查………………………………………………………… 16 三、葉部特性………………………………………………………………… 19 (一) 葉部物理特性……………………………………………………… 19 (二) 葉部化學性質……………………………………………………… 20 四、葉面積損失率與葉部特性之相關性……………………………… 21 (一) 葉部特性間的相關性……………………………………………… 22 (二) 葉面積損失率與葉部特性之相關性………………………… 22 肆、討論…………………………………………………………………………… 23 一、破壞性取樣與連續性調查……………………………………………… 23 二、樹種間的差異…………………………………………………………… 24 三、施肥處理的影響………………………………………………………… 25 四、遮蔭處理的影響………………………………………………………… 26 伍、結論…………………………………………………………………………… 29 陸、參考文獻……………………………………………………………………… 30 | |
| dc.language.iso | zh-TW | |
| dc.subject | 葉部特性 | zh_TW |
| dc.subject | 台灣原生闊葉樹 | zh_TW |
| dc.subject | 遮蔭 | zh_TW |
| dc.subject | 施肥 | zh_TW |
| dc.subject | 葉面積損失率 | zh_TW |
| dc.subject | shading | en |
| dc.subject | leaf traits | en |
| dc.subject | leaf area loss | en |
| dc.subject | fertilization | en |
| dc.subject | native hardwood species | en |
| dc.title | 溪頭地區六種台灣原生闊葉樹種葉部特性及昆蟲植食程度之研究 | zh_TW |
| dc.title | Leaf Traits and Insect Herbivory of Six Native Hardwood Species in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳子英,曾彥學,顏江河 | |
| dc.subject.keyword | 台灣原生闊葉樹,遮蔭,施肥,葉面積損失率,葉部特性, | zh_TW |
| dc.subject.keyword | native hardwood species,shading,fertilization,leaf area loss,leaf traits, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 537.5 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
