請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48290完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李芳仁 | |
| dc.contributor.author | Chia-Hsin Chen | en |
| dc.contributor.author | 陳佳欣 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:51:27Z | - |
| dc.date.available | 2016-03-03 | |
| dc.date.copyright | 2011-03-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-15 | |
| dc.identifier.citation | Balkovetz, D.F., E.R. Gerrard, Jr., S. Li, D. Johnson, J. Lee, J.W. Tobias, K.K. Rogers, R.W. Snyder, and J.H. Lipschutz. 2004. Gene expression alterations during HGF-induced dedifferentiation of a renal tubular epithelial cell line (MDCK) using a novel canine DNA microarray. Am J Physiol Renal Physiol. 286:F702-710.
Bryant, D.M., and J.L. Stow. 2004. The ins and outs of E-cadherin trafficking. Trends Cell Biol. 14:427-434. Chen, C.L., and H.C. Chen. 2009. Functional suppression of E-cadherin by protein kinase Cdelta. J Cell Sci. 122:513-523. D'Souza-Schorey, C., E. van Donselaar, V.W. Hsu, C. Yang, P.D. Stahl, and P.J. Peters. 1998. ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J Cell Biol. 140:603-616. Dascher, C., and W.E. Balch. 1994. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J Biol Chem. 269:1437-1448. Donaldson, J.G., and A. Honda. 2005. Localization and function of Arf family GTPases. Biochem Soc Trans. 33:639-642. Drees, F., S. Pokutta, S. Yamada, W.J. Nelson, and W.I. Weis. 2005. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell. 123:903-915. Engel, T., A. Lueken, G. Bode, U. Hobohm, S. Lorkowski, B. Schlueter, S. Rust, P. Cullen, M. Pech, G. Assmann, and U. Seedorf. 2004. ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett. 566:241-246. Enomoto, K., and D.M. Gill. 1980. Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP ribosylation of the GTP-dependent regulatory component. J Biol Chem. 255:1252-1258. Gillingham, A.K., and S. Munro. 2007. The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol. 23:579-611. Golji, J., R. Collins, and M.R. Mofrad. 2009. Molecular mechanics of the alpha-actinin rod domain: bending, torsional, and extensional behavior. PLoS Comput Biol. 5:e1000389. Hirano, S., N. Kimoto, Y. Shimoyama, S. Hirohashi, and M. Takeichi. 1992. Identification of a neural alpha-catenin as a key regulator of cadherin function and multicellular organization. Cell. 70:293-301. Jacobs, S., C. Schilf, F. Fliegert, S. Koling, Y. Weber, A. Schurmann, and H.G. Joost. 1999. ADP-ribosylation factor (ARF)-like 4, 6, and 7 represent a subgroup of the ARF family characterization by rapid nucleotide exchange and a nuclear localization signal. FEBS Lett. 456:384-388. Kahn, R.A., J. Cherfils, M. Elias, R.C. Lovering, S. Munro, and A. Schurmann. 2006. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J Cell Biol. 172:645-650. Kahn, R.A., P. Randazzo, T. Serafini, O. Weiss, C. Rulka, J. Clark, M. Amherdt, P. Roller, L. Orci, and J.E. Rothman. 1992. The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J Biol Chem. 267:13039-13046. Kamei, T., T. Matozaki, T. Sakisaka, A. Kodama, S. Yokoyama, Y.F. Peng, K. Nakano, K. Takaishi, and Y. Takai. 1999. Coendocytosis of cadherin and c-Met coupled to disruption of cell-cell adhesion in MDCK cells--regulation by Rho, Rac and Rab small G proteins. Oncogene. 18:6776-6784. Kobielak, A., and E. Fuchs. 2004. Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol. 5:614-625. Kobielak, A., H.A. Pasolli, and E. Fuchs. 2004. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol. 6:21-30. Kofron, M., A. Spagnuolo, M. Klymkowsky, C. Wylie, and J. Heasman. 1997. The roles of maternal alpha-catenin and plakoglobin in the early Xenopus embryo. Development. 124:1553-1560. Le, T.L., A.S. Yap, and J.L. Stow. 1999. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol. 146:219-232. Lee, G.Y., P.A. Kenny, E.H. Lee, and M.J. Bissell. 2007. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 4:359-365. Li, C.-C. 2007. Functional Characterization of ADP-Ribosylation Factor-Like Protein 4D (ARL4D). Li, C.C., T.C. Chiang, T.S. Wu, G. Pacheco-Rodriguez, J. Moss, and F.J. Lee. 2007. ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell. 18:4420-4437. Lin, C.-T. 2008. Functional characterization of human ARF-like proteins, ARL4Dand its interacted protein α-catenin. Lin, C.Y., P.H. Huang, W.L. Liao, H.J. Cheng, C.F. Huang, J.C. Kuo, W.A. Patton, D. Massenburg, J. Moss, and F.J. Lee. 2000. ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J Biol Chem. 275:37815-37823. Lin, C.Y., C.C. Li, P.H. Huang, and F.J. Lee. 2002. A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J Cell Sci. 115:4433-4445. Mitin, N., K.L. Rossman, and C.J. Der. 2005. Signaling interplay in Ras superfamily function. Curr Biol. 15:R563-574. Moss, J., and M. Vaughan. 1995. Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem. 270:12327-12330. Palacios, F., L. Price, J. Schweitzer, J.G. Collard, and C. D'Souza-Schorey. 2001. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J. 20:4973-4986. Palacios, F., J.K. Schweitzer, R.L. Boshans, and C. D'Souza-Schorey. 2002. ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol. 4:929-936. Perez-Moreno, M., and E. Fuchs. 2006. Catenins: keeping cells from getting their signals crossed. Dev Cell. 11:601-612. Schurmann, A., M. Breiner, W. Becker, C. Huppertz, H. Kainulainen, H. Kentrup, and H.G. Joost. 1994. Cloning of two novel ADP-ribosylation factor-like proteins and characterization of their differential expression in 3T3-L1 cells. J Biol Chem. 269:15683-15688. Schurmann, A., S. Koling, S. Jacobs, P. Saftig, S. Krauss, G. Wennemuth, R. Kluge, and H.G. Joost. 2002. Reduced sperm count and normal fertility in male mice with targeted disruption of the ADP-ribosylation factor-like 4 (Arl4) gene. Mol Cell Biol. 22:2761-2768. Scott, J.A., and A.S. Yap. 2006. Cinderella no longer: alpha-catenin steps out of cadherin's shadow. J Cell Sci. 119:4599-4605. Tamkun, J.W., R.A. Kahn, M. Kissinger, B.J. Brizuela, C. Rulka, M.P. Scott, and J.A. Kennison. 1991. The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc Natl Acad Sci U S A. 88:3120-3124. Tushir, J.S., and C. D'Souza-Schorey. 2007. ARF6-dependent activation of ERK and Rac1 modulates epithelial tubule development. EMBO J. 26:1806-1819. Watabe, M., A. Nagafuchi, S. Tsukita, and M. Takeichi. 1994. Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J Cell Biol. 127:247-256. Wennerberg, K., K.L. Rossman, and C.J. Der. 2005. The Ras superfamily at a glance. J Cell Sci. 118:843-846. Wu, T.-S. 2004. Functional characterization of Arf-like protein, ARL5 and its interacting protein EB1. In thesis. Yang, J., P. Dokurno, N.K. Tonks, and D. Barford. 2001. Crystal structure of the M-fragment of alpha-catenin: implications for modulation of cell adhesion. EMBO J. 20:3645-3656. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48290 | - |
| dc.description.abstract | 腺嘌呤核苷二磷酸核醣化因子相似蛋白4D (ARL4D) 隸屬於Ras小分子G蛋白家族的成員之一。近年來的研究指出ARL4D參與在肌動蛋白的重組以及神經細胞的可塑性。為了探討更多ARL4D在生理上的意義,我們利用酵母菌雙雜合篩選法找出可能會與ARL4D作用的蛋白質α-catenin。Alpha-catenin是adherens junctions (AJ)的結構蛋白,負責強化細胞間黏附和維持AJ的穩定性,我們利用犬腎臟上皮細胞(MDCK)去研究ARL4D和α-catenin作用在生理上的功能,並探討ARL4D是否會影響細胞間的黏附作用。
我們利用Tet-off系統在MDCK細胞誘導ARL4D表現。當細胞培養在不含Doxcycline的培養液時,外生性的ARL4D會開始表現,此外,ARL4D的表現量會隨著藥物劑量及時間有所變化。在這篇研究當中,我們先利用pull down assay去驗證ARL4D可以和α-catenin有直接的作用,並在細胞免疫螢光染色觀察到ARL4D和α-catenin皆位於細胞膜。進一步,在細胞凝集的實驗中,我們發現ARL4D扮演著一個重要的角色去降低細胞間的黏附作用。另外,大量表現 ARL4D活化態的突變株時,會減弱細胞間黏附,並引起AJ另一個主要結構蛋白E-cadherin在細胞內累積的現象。而細胞黏附對於個體細胞要組裝成三度空間的組織結構是重要的。我們利用犬腎臟上皮細胞在三度空間培養下會長成囊胚的特性去觀察ARL4D是否會因為細胞黏附受損而影響到囊胚發育,初步結果顯示囊胚結構的AJ並沒有明顯的缺陷,然而ARL4D是否影響到囊胚形狀的發育仍需進一步觀察。總結來說,ARL4D和α-catenin作用可能會影響α-catenin的功能,讓E-cadherin在細胞中的位置有不正常的分佈,進而影響到細胞間的黏附作用。 | zh_TW |
| dc.description.abstract | ARL4D is a developmentally regulated member of the ADP-ribosylation factor-like (ARL) family, which belongs to Ras superfamily. Recent studies have shown that ARL4D is involved in actin remodeling and neural plasticity. In order to investigate more physiological function of ARL4D, we have identified a putative interacting protein, α-catenin, by using yeast-two hybrid system. Alpha-catenin is an intercellular adhesion protein that connects the E-cadherin-β-catenin complex to the actin cytoskeleton and strengthens cell-cell adhesiveness. In this study, we use Madin-Darby canine kidney (MDCK) cells as a model to explore the functional roles of ARL4D and α-catenin on the modulation of adherens junctions.
We used the inducible ARL4D expression in Tet-off system. In this system, the expression of exogenous ARL4D could be up-regulated by the omission of tetracycline derivative doxcycline. Besides, the expression of ARL4D was in a dosage dependent and time dependent manner. We first used pull down assay to verify whether ARL4D directly interacts with α-catenin in vitro. Immunofluorescence data showed that ARL4D colocalizes with α-catenin at plasma membrane. We further examined whether the function of α-catenin affected by ARL4D. In cell aggregation assay, we found that overexpression constitutively active form ARL4DQ80L weakened the cell-cell adhesion. In addition, and knockdown endogenous ARL4D in MDCK cells enhanced cell aggregation. ARL4D was required for diminishing the aggregation of MDCK cells. Because α-catenin was a key component to anchor E-cadherin at plasma membrane, we further observed the localization of E-cadherin. We found that ARL4DQ80L overexpression enhanced the accumulation of intracellular E-cadherin. These data implicated that ARL4D was involved in down-regulation of cell-cell adhesion. Cell adhesion is crucial for the assembly of individual cells into the three- dimensional tissue. Thus, we provided three-dimensional culture as a more physiological relevant approach to address whether ARL4D affect tissue architecture. ARL4DQ80L overexpression did not affect the AJ in cysts. However, whether ARL4D affect the processes of individual cells into tissue structures will be examined in the future. Taken together, ARL4D might affect the function of α-catenin. In addition, ARL4D might be involved in regulation the localization of E-cadherin, and therefore modulated cell-cell adhesion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:51:27Z (GMT). No. of bitstreams: 1 ntu-100-R97448013-1.pdf: 2319529 bytes, checksum: e6e878cede63e7d56998d7959053c3be (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書---------------------------------------------------------------i
誌謝---------------------------------------------------------------------------------ii 中文摘要---------------------------------------------------------------------------iii 英文摘要---------------------------------------------------------------------------iv Abbreviations-------------------------------------------------------------------------------V 1. Introduction-----------------------------------------------------------------------------1 1.1. Small GTPase of Ras Superfamily----------------------------------------------1 1.2. ADP-Ribosylation Factors (Arf) family----------------------------------------2 1.3. ARL4 family protein--------------------------------------------------------------4 1.4. Cell adhesion and tissue morphogenesis----------------------------------------5 1.5. Adherens junctions-----------------------------------------------------------------6 1.6. Alpha-catenin-----------------------------------------------------------------------7 2. Materials and methods------------------------------------------------------------------9 2.1. Antibodies---------------------------------------------------------------------------9 2.2. Cell Culture and Transfection-----------------------------------------------------9 2.3. Reverse transcriptase PCR (RT-PCR) ------------------------------------------10 2.4. Immunoblotting--------------------------------------------------------------------10 2.5. Immunofluorescence microscopy------------------------------------------------11 2.6. GST pull down assay---------------------------------------------------------------11 2.7. Subcellular Fractionation----------------------------------------------------------12 2.8. Aggregation assay-------------------------------------------------------------------12 2.9. Three-dimensional Cultures--------------------------------------------------------12 2.10. Immunofluorescence of three-dimensional cysts------------------------------13 3. Results-----------------------------------------------------------------------------------15 3.1. Expression of ARL4D mutants in Tet-off system----------------------------15 3.2. The expression of ARL4D in Tet-off system is in a dosage-dependent and time dependent manner------------------------------------------------------------15 3.3.α-catenin can directly interact with ARL4D in a nucleotide dependent manner-------------------------------------------------------------------------------16 3.4. Subcellular localization of ARL4D and α-catenin in MDCK cells---------17 3.5. Overexpression of ARL4DQ80L weakens cell-cell adhesion---------------17 3.6. Down regulation of ARL4D enhanced cell aggregation ---------------------18 3.7. Accumulation of intracellular E-cadherin in MDCK cell overexpressing ARL4DQ80L------------------------------------------------------------------------19 3.8. Subcellular fractionation of ARL4DQ80L expressing MDCK cells---------20 3.9. The role of ARL4D in three dimensional cyst models-------------------------20 4. Discussion---------------------------------------------------------------------------------22 5. Figure--------------------------------------------------------------------------------------26 Figure 1. Inducible expression of ARL4DQ80L and ARL4DT35N in MDCK cells Figure 2. The expression of ARL4D mutant is dosage dependent Figure 3. The expression of ARL4D mutant is in a time-dependent manner Figure 4. ARL4DQ80L and α-catenin both localize at plasma membrane Figure 5.α-catenin (a.a.266-657 can preferentially interaction with ARL4DQ80L in vitro Figure 6. Overexpression of ARL4DQ80L weakens cell-cell adhesion Figure 7. Check the ARL4D shRNA knockdown efficiency at mRNA and protein level Figure 8. ARL4D is required for diminishment the aggregation ability of MDCK cells in a cell aggregation assay Figure 9. E-cadherin accumulates in intracellular compartments of MDCK cells overexpressing ARL4DQ80L in low density MDCK cells. Figure 10. ARL4DQ80L overexpression induces the accumulation of intracellular E-cadherin in high density MDCK cells on coverslips Figure 11. Subcellular fractionation of ARLQ80L#3-2 cells Figure 12. Establishment of three dimensional cysts in MDCK cells Figure 13. X-Z section of MDCK cysts Figure 14. The phenotype of ARL4DQ80L#3-2 stable cells in three dimensional cultures 6. Supplementary Figures-------------------------------------------------------------------40 7. Table----------------------------------------------------------------------------------------43 8. Reference-----------------------------------------------------------------------------------44 | |
| dc.language.iso | en | |
| dc.subject | 細胞黏附 | zh_TW |
| dc.subject | 腺嘌呤核苷 | zh_TW |
| dc.subject | 二磷酸核醣化因子相似蛋白 | zh_TW |
| dc.subject | α-catenin | en |
| dc.subject | E-cadherin | en |
| dc.subject | adhesion | en |
| dc.subject | adherens junction | en |
| dc.subject | ARL4D | en |
| dc.title | 探討腺嘌呤核苷二磷酸核糖化相似因子ARL4D在犬腎上皮細胞之特性 | zh_TW |
| dc.title | Functional characterization of human ARF-like proteins, ARL4D in MDCK cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周祖述,嚴仲陽,吳君泰 | |
| dc.subject.keyword | 腺嘌呤核苷,二磷酸核醣化因子相似蛋白,細胞黏附, | zh_TW |
| dc.subject.keyword | ARL4D,α-catenin,adherens junction,adhesion,E-cadherin, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
