請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48279完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林坤佑(Kun-You Lin) | |
| dc.contributor.author | Guan-Jie Huang | en |
| dc.contributor.author | 黃冠傑 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:51:06Z | - |
| dc.date.available | 2014-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-15 | |
| dc.identifier.citation | [1] “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems,” FCC, Washington, DC, ET Docket 98-153, Feb 14. 2002.
[2] IEEE P802.15-05-0596-01-003c.pdf. [3] Olivier Dupuis, Xiao Sun, Geert Carchon, Philippe Soussan, Mattias Ferndahl, Stefaan Decoutere, and Walter De Raedt, “24 GHz LNA in 90nm RF-CMOS with High-Q above-IC inductors,” in Proc. Eur. Solid-State Circuit Conf., Sept. 2005, pp. 89–92. [4] Jin-Fu Yeh, Chu-Yun Yang, Hsin-Chih Kuo, and Huey-Ru Chuang, “A 24-GHz transformer-based single-in differential -out CMOS low-noise amplifier,” in IEEE RFIC Symp. Dig., June 2009, pp. 299–302. [5] A. Sayag, S. Levin, D. Regev, D. Zfira, S. Shapira, D. Goren, and D. Ritter, “One stage 24 GHz LNA with 6.4dB gain and 2.8 dB NF using 0.18 μm CMOS technology and slow wave transmission lines,” in IEEE COMCAS, May 2008, pp. 1–10. [6] Jeng-Han Tsai, Wei-Chien Chen, To-Po Wang, Tian-Wei Huang, and Huei Wang, “A miniature Q-band low noise amplifier using 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 327–329, June 2006. [7] M. Anowar Masud, Herbert Zirath, Mattias Ferndahl, and Hans-Olof Vickes, “90 nm CMOS MMIC amplifier,” in IEEE RFIC Symp. Dig., June 2004, pp. 201–204. [8] Shih-Chieh Shin, Ming-Da Tsai, Ren-Chieh Liu, Kun-You Lin, and Huei Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448–450, July 2005. [9] Antonio Liscidini1, Cesare Ghezzi1, Emanuele Depaoli, Guido Albasini, Ivan Bietti, and Rinaldo Castello, “Common gate transformer feedback LNA in a high IIP3 current mode RF CMOS front-end,” in Proc. IEEE CICC, Sep. 2006, pp. 25–28. [10] Kuo-Jung Sun, Zuo-Min Tsai, Kun-You Lin, and Huei Wang, “A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1554–1560, Apr. 2006. [11] Hisao Shigematsu, Tatsuya Hirose, Forrest Brewer, and Mark Rodwell, “Millimeter -wave CMOS circuit design,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 472–477, Feb. 2005. [12] F. Ellinger, “26 - 42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522–528, Mar. 2004. [13] Chinh H. Doan, Sohrab Emami, Ali M. Niknejad, and Robert W. Brodersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144–155, Jan. 2005. [14] Chieh-Min Lo, Chin-Shen Lin, and Huei Wang, “A miniature V-band 3-stage cascode LNA in 0.13μm CMOS,” in ISSCC Dig. Tech. papers, pp. 402–403, Feb. 2006. [15] Kuo-Jung Sun, Zuo-Min Tsai, Kun-You Lin, and Huei Wang, “A 10.8-GHz CMOS low-noise amplifier using parallel-resonant inductor,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1795–1798. [16] Mikko Varonen, Mikko Karkkainen, Mikko Kantanen, and Kari A. I. Halonen, “Millimeter-wave integrated circuits in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 1991–2002, Sep. 2008. [17] Mihai A.T. Sanduleanu1, Gang Zhang, and John R. Long, “31-34GHz low noise amplifier with on-chip microstrip lines and inter-stage matching in 90-nm baseline CMOS,” in IEEE RFIC Symp. Dig., June 2006. [18] Hsieh-Hung Hsieh, and Liang-Hung Lu, “A 40-GHz Low-Noise Amplifier With a Positive-Feedback Network in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1895–1902, Aug. 2009. [19] Bo-Jr Huang, Huei Wang, and Kun-You Lin, “A miniature Q-band low noise amplifier using 0.13-μm CMOS technology,” IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 677–680. [20] Bo-Jr Huang, Kun-You Lin, and Huei Wang, “A Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3049–3059, Dec. 2009. [21] Hsien-Yuan Liao, Keko-Chun Liang, and Hwann-Kaeo Chiou, “A Compact and Low Power Consumption K-band Differential Low Noise Amplifier Design Using Transformer Feedback Technique,” in Proc. Asia-Pacific Microwave Conference, Dec. 2007, pp. 11–14. [22] Kyung-Wan Yu, Yin-Lung Lu, Da-Chiang Chang, Victor Liang, and M. Frank Chang, “K-band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, June 2004. [23] Ehsan Adabi, Babak Heydari, Mounir Bohsali, and Ali M. Niknejad, “30 GHz CMOS Low Noise Amplifier,” in IEEE RFIC Symp. Dig., June 2007, pp. 625–628. [24] Yu-Lin Wei, Shawn S. H. Hsu, and Jun-De Jin, “A Low-Power Low-Noise Amplifier for K-Band Applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116–118, Feb. 2009. [25] Wei-Han Cho, Hsu, and S.S.H., “An Ultra-Low-Power 24 GHz Low-Noise Amplifier Using 0.13-μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 12, pp. 681–683, Dec. 2010. [26] David K. Cheng, Field and Wave Electromagnetics. Addison-Wesley, 1989, ch. 10. [27] C. K. Pao, G. L. Lan, C. S. Wu, A. Igawa, M. Hu, J. C. Chen, and Y. C. Shih, “V-band high-efficiency monolithic pseudomorphic HEMT power amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 2, no. 10, pp. 394–396, Oct. 1992. [28] R. E. Kasody, G. S. Dow, A. K. Sharma, M. V. Aust, D. Yamauchi, R. Lai, M. Biedenbender, K. L. Tan, and B. R. Allen, “A high efficiency V-band monolithic HEMT power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 4, no. 9, pp. 303–304, Sept. 1994. [29] Arvind K. Sharma, Gerald P. Onak, Richard Lai, and Kin L. Tan, “A V-band high-efficiency pseudomorphic HEMT monolithic power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2603–2609, Dec. 1994. [30] Shin Chaki, Hirotaka Amasuga, Seiki Goto, Ko Kanaya, Yoshitsugu Yamamoto, Tomoki Oku, and Takahide Ishikawa, “A V-band high power and high gain amplifier MMIC using GaAs PHEMT technology,” in IEEE Compound Semicond. Integr. Circuits Symp. (CSICS), Monterey, CA, Oct. 2008, pp. 1–4. [31] Michael V. Aust, Arvind K. Sharma, Owen Fordham, Ronald Grundbacher, Richard To, Roger S. Tsai, and Richard Lai, “A 2.8-W Q-band high-efficiency power amplifier,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2241–2247, Oct. 2006. [32] O. S. Andy Tang, K. H. George Duh, S. M. Joseph Liu, Phillip M. Smith, William F. Kopp, Thomas J. Rogers, and David J. Pritchard, “Design of high-power, high-efficiency 60-GHz MMICs using an improved nonlinear PHEMT model,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp. 1326–1333, Sept. 1997. [33] W. R. Deal, X. B. Mei, V. Radisic, B. Bayuk, A. Fung, W. Yoshida, P. H. Liu, J. Uyeda, L. Samoska, T. Gaier, and R. Lai, “A balanced sub-millimeter wave power amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 399–402. [34] Chang, Woo Jin, Lim Jong Won, Ahn Ho Kyun, Kim Haecheon, and Yu Hyun Kyu, “60 GHz Amplifier MMICs and Module for 60 GHz WPAN System,” in Radio and Wireless Symposium, pp. 377 - 380, Jan. 2007. [35] Karnfelt C., Kozhuharov R., Zirath H., and Angelov I., “High-Purity 60-GHz-Band Single-Chip x8 Multipliers in pHEMT and mHEMT Technology,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 6, pp. 2887 – 2898, June. 2006. [36] Gunnarsson S. E., Karnfelt C., Zirath, H., Kozhuharov R, Kuylenstierna D., Fager C., and Alping, A., “Single-Chip 60 GHz Transmitter and Receiver MMICs in a GaAs mHEMT Technology,” in Microwave Symposium Digest, 2006. IEEE MTT-S International, June. 2006, pp. 801 – 804. [37] Hong-Yeh Chang, Huei Wang, Yu M., and Yonghui Shu, “A 77-GHz MMIC Power Amplifier for Automotive Radar Applications,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 4, pp. 143 – 145, Apr. 2003. [38] Min Han, Sung-Woon Moon, Seok-Gyu Choi, Tae-Jong Baek, Byeung-Ok Lim, Dan An, Mi-ra Kim, Sam-Dong Kim, and Jin-Koo Rhee, “V-band CPW Balanced Medium Power Amplifier for 60 GHz Wireless LAN application,” in IEEE Asia-Pacific Conference Proceedings, vol. 2, Dec. 2005, pp. 4 – 7. [39] Gunnarsson S. E., Karnfelt C., Zirath H., Kozhuharov R, Kuylenstierna D., Alping A, and Fager C., “Highly Integrated 60 GHz Transmitter and Receiver MMICs in a GaAs pHEMT Technology,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2174 – 2186, Nov. 2005 [40] Guillermo Gonzalez, Microwave Transistor Amplifiers – Analysis and Design, 2nd ed., Prentice Hall, 1996. [41] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001, Chapter 7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48279 | - |
| dc.description.abstract | 隨著通訊技術和晶片研製技術的演進,無線傳輸、高速傳輸成為發展的趨勢,24 GHz頻段汽車防撞雷達系統具備成本低廉、可全天候使用的優點。另一方面,由於60 GHz頻段是用於無線個人區域網路(WPAN)的免授權頻段,具備安全、有效率之短距傳輸功能,因而成為發展的重心。
在本論文中,我們設計並實現了一個利用互補式金氧半場效電晶體設計之K頻段之增益提高低雜訊放大器與一個利用高速電子遷移率電晶體設計之V頻段之疊接組態平衡式功率放大器。此論文分成三個部分,第一部分介紹了低雜訊放大器的基本原理。 第二部分設計並實現K頻段之增益提高低雜訊放大器。在無線通訊接收前端電路中,低雜訊放大器將天線接收到的微弱訊號以最低的雜訊貢獻加以放大。此放大器是使用0.18-μm CMOS製程製作,使用薄膜微帶線(Thin-film microstrip lines, TFMS lines)與集總(Lumped)元件進行匹配。此電路的量測結果與模擬結果相差較大。在24 GHz,達到增益為13.8 dB、雜訊指數為6.0 dB,消耗11.9 mW功率,晶片面積為0.36平方毫米。由於量測與模擬有較大的差異,本論文將修正模擬錯誤的部分並予以重新設計。 第三部分設計並實現V頻段的平衡式疊接組態功率放大器,在無線通訊接收前端電路中,功率放大器將訊號以高功率傳送至天線,並將訊號發射出去。此放大器是使用0.15-μm GaAs pHEMT的製程製作,因為在V頻段製作疊接組態放大器會有很嚴重的振盪的問題,使用共面波導傳輸線取代一般的微帶線以進行匹配,可防止一些在使用微帶線製作時才會產生的寄生效應,並且改善佈局方法,再度減少寄生效應,使得電路更趨於穩定。在V頻段,達到最高之增益為10.8-dB、最高輸出功率為23.4 dBm,消耗1542 mW功率,晶片面積為4平方毫米。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:51:06Z (GMT). No. of bitstreams: 1 ntu-100-R97942070-1.pdf: 11933986 bytes, checksum: 8fdd94cbce6e29f2d9c519bb3ef1b307 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 2 中文摘要 4 ABSTRACT 6 CONTENTS i LIST OF FIGURES iv LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.2.1 K-band low noise amplifier 3 1.2.2 V-band power amplifier 4 1.3 Contributions 5 1.4 Thesis Organization 6 Chapter 2 Fundamentals of Low Noise Amplifier 7 2.1 Introduction 7 2.2 Gain [40] 7 2.3 Noise 11 Chapter 3 A 22-29 GHz Gain Boosting Low Noise Amplifier 15 3.1 Introduction 15 3.2 LNA Topologies 18 3.2.1 Introduction 18 3.2.2 Topology comparison 19 3.3 Circuit Design 34 3.3.1 Device selection 35 3.3.2 Comparison of common-source, cascode, and gain-boosting configurations 58 3.3.3 Matching network of cross connection of transistors 65 3.3.4 Matching network of the gain boosting LNA 68 3.3.5 Design of bypass capacitors and DC block capacitors 69 3.4 Simulation Results 77 3.4.1 Small-Signal S-Parameter, Noise Figure and Stability Factor 78 3.4.2 Power performance 80 3.4.3 Inter-stage stability analysis 82 3.4.4 Intersection stability 84 3.4.5 Feedback loop stability 85 3.4.6 Layout 86 3.5 Measurement Results 87 3.6 Discussion and Summary 94 3.6.1 Debug 94 3.6.2 Redesign 98 3.6.3 Summary 105 Chapter 4 A V-band Cascode Balance Power Amplifier Using 0.15-μm GaAs pHEMT Process 107 4.1 GCPW Transmission Line in 0.15-μm GaAs pHEMT Process 109 4.2 Circuit Design 113 4.2.1 Device selection 114 4.2.2 Improvement of stability 122 4.3 Simulation Results 148 4.4 Measurement Results 155 4.4.1 S-parameters 156 4.4.2 Power performance 159 4.5 Summary 163 Chapter 5 Conclusions 165 REFERENCE 166 | |
| dc.language.iso | en | |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 無線個人區域網路(WPAN) | zh_TW |
| dc.subject | 金氧半場效電晶體 | zh_TW |
| dc.subject | 高速電子遷移率電晶體 | zh_TW |
| dc.subject | 低雜訊放大器 | zh_TW |
| dc.subject | power amplifier | en |
| dc.subject | Wireless personal area network (WPAN) | en |
| dc.subject | CMOS | en |
| dc.subject | HEMT | en |
| dc.subject | low noise amplifier | en |
| dc.title | 互補式金氧半場效電晶體K頻段增益提高低雜訊放大器與高速電子遷移率電晶體V頻段疊接組態平衡式功率放大器之研製 | zh_TW |
| dc.title | Design of K-Band CMOS Gain Boosting Low Noise Amplifier and V-Band GaAs pHEMT Cascode Balance Power Amplifier | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張鴻埜(Hong-Yeh Chang),馬自莊(Tzyh-Ghuang Ma),蔡政翰(Jeng-Han Tsai),蔡作敏(Zuo-Min Tsai) | |
| dc.subject.keyword | 無線個人區域網路(WPAN),金氧半場效電晶體,高速電子遷移率電晶體,低雜訊放大器,功率放大器, | zh_TW |
| dc.subject.keyword | Wireless personal area network (WPAN),CMOS,HEMT,low noise amplifier,power amplifier, | en |
| dc.relation.page | 171 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-02-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 11.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
