請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4826
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林琬琬(Wan-Wan Lin) | |
dc.contributor.author | Mei-Ying Chang | en |
dc.contributor.author | 張美瑩 | zh_TW |
dc.date.accessioned | 2021-05-14T17:48:10Z | - |
dc.date.available | 2016-03-12 | |
dc.date.available | 2021-05-14T17:48:10Z | - |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-10 | |
dc.identifier.citation | Abram CL, Lowell CA (2007) Convergence of immunoreceptor and integrin signaling. Immunol Rev 218: 29-44.
Alba G, El Bekay R, Alvarez-Maqueda M, Chacon P, Vega A, Monteseirin J, Santa Maria C, Pintado E, Bedoya FJ, Bartrons R, Sobrino F. (2004). Stimulators of AMP-activated protein kinase inhibit the respiratory burst in human neutrophils. FEBS Lett 573:219-25. Athanassios Dovas, Dianne Cox (2011). Signaling networks regulating leukocyte podosome dynamics and function. Cell Signal. 23(8): 1225–1234. Bai A, Ma AG, Yong M, Weiss CR, Ma Y, et al. (2010). AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem Pharmacol 80: 1708-1717. Berton G, Mocsai A, Lowell CA (2005). Src and Syk kinases: key regulators of phagocytic cell activation. Trends Immunol 26: 208-214. Bess E, Fisslthaler B, Fromel T, Fleming I (2011). Nitric oxide-induced activation of the AMP-activated protein kinase alpha2 subunit attenuates IkappaB kinase activity and inflammatory responses in endothelial cells. PLoS One 6: e20848. Besson A, Davy A, Robbins SM, Yong VW (2001). Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. Oncogene 20: 7398-7407. Bijli KM, Fazal F, Minhajuddin M, Rahman A (2008). Activation of Syk by protein kinase C-delta regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via tyrosine phosphorylation of RelA/p65. J Biol Chem 283: 14674-14684. Borowski P, Heiland M, Kornetzky L, Medem S, Laufs R (1998). Purification of catalytic domain of rat spleen p72syk kinase and its phosphorylation and activation by protein kinase C. Biochem J 331 ( Pt 2): 649-657. Bryant C, Fitzgerald KA. (2009). Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 19:455-464. Capano M, Crompton M. (2006). Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochem J 395:57-64. Carling D. (2004). The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 29:18-24. Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, et al. (2007). Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 27: 2627-2633. Chandrasekar B, Boylston WH, Venkatachalam K, Webster NJ, Prabhu SD, et al. (2008). Adiponectin blocks interleukin-18-mediated endothelial cell death via APPL1-dependent AMP-activated protein kinase (AMPK) activation and IKK/NF-kappaB/PTEN suppression. J Biol Chem 283: 24889-24898. Chang MY, Ho FM, Wang JS, Kang HC, Chang Y, et al. (2010). AICAR induces cyclooxygenase-2 expression through AMP-activated protein kinase-transforming growth factor-beta-activated kinase 1-p38 mitogen-activated protein kinase signaling pathway. Biochem Pharmacol 80: 1210-1220. Chen JC, Huang KC, Wingerd B, Wu WT, Lin WW. (2004). HMG-CoA reductase inhibitors induce COX-2 gene expression in murine macrophages: role of MAPK cascades and promoter elements for CREB and C/EBPbeta. Exp Cell Res 301:305-19. Dheepika Weerasinghe, Kevin P. McHugh, Frederick P. Ross, Eric J. Brown, Roland H. Gisler, and Beat A. Imhof. (1998). A role for the αvβ3 integrin in the transmigration of monocytes. J Cell Biol. 27;142(2):595-607. Du JH, Xu N, Song Y, Xu M, Lu ZZ, Han C, Zhang YY. (2005). AICAR stimulates IL-6 production via p38 MAPK in cardiac fibroblasts in adult mice: a possible role for AMPK. Biochem Biophys Res Commun 337:1139-44. Englesbe MJ, Deou J, Bourns BD, Clowes AW, Daum G. (2004). Interleukin-1beta inhibits PDGF-BB-induced migration by cooperating with PDGF-BB to induce cyclooxygenase-2 expression in baboon aortic smooth muscle cells. J Vasc Surg. 39:1091-6. Ewart MA, Kohlhaas CF, Salt IP (2008). Inhibition of tumor necrosis factor alpha-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase. Arterioscler Thromb Vasc Biol 28: 2255-2257. Fisslthaler B, Fleming I (2009). Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105: 114-127. Gaskin FS, Kamada K, Yusof M, Korthuis RJ. (2007). 5'-AMP-activated protein kinase activation prevents postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol. 292(1):H326-32. Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J. (2002). MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295:1291-4. Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I. (2004). 5-aminoimidazole -4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J Neurosci 24:479-87. Hallows KR, Fitch AC, Richardson CA, Reynolds PR, Clancy JP, Dagher PC, Witters LA, Kolls JK, Pilewski JM. (2006). Up-regulation of AMP-activated kinase by dysfunctional cystic fibrosis transmembrane conductance regulator in cystic fibrosis airway epithelial cells mitigates excessive inflammation. J Biol Chem 281:4231-41. Han JH, Ahn YH, Choi KY, Hong SH. (2009). Involvement of AMP-activated protein kinase and p38 mitogen-activated protein kinase in 8-Cl-cAMP-induced growth inhibition. J Cell Physiol 218:104-12. Hardie DG, Carling D, Carlson M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821-55. Hardie DG, Carling D. (1997). The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem 246:259-73. Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M. (2009). TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677-85. Ho RC, Fujii N, Witters LA, Hirshman MF, Goodyear LJ. (2007). Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle. Biochem Biophys Res Commun 362:354-9. Hou CH, Tan TW, Tang CH. (2008). AMP-activated protein kinase is involved in COX-2 expression in response to ultrasound in cultured osteoblasts. Cell Signal 20:978-88. Hsu YC, Meng X, Ou L, Ip MM. (2010). Activation of the AMP-activated protein kinase-p38 MAP kinase pathway mediates apoptosis induced by conjugated linoleic acid in p53-mutant mouse mammary tumor cells. Cell Signal 22:590-9. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, et al. (2005). The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280: 29060–29066. Hwang JT, Kim YM, Surh YJ, Baik HW, Lee SK, Ha J, Park OJ. (2006). Selenium regulates cyclooxygenase-2 and extracellular signal-regulated kinase signaling pathways by activating AMP-activated protein kinase in colon cancer cells. Cancer Res 66:10057-63. Hai CM, Gu Z (2006). Caldesmon phosphorylation in actin cytoskeletal remodeling. Eur J Cell Biol 85: 305-309. Hardie DG (2004). The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 117: 5479-5487. Huang NL, Chiang SH, Hsueh CH, Liang YJ, Chen YJ, et al. (2009). Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int J Cardiol 134: 169-175. Jacquet S, Zarrinpashneh E, Chavey A, Ginion A, Leclerc I, Viollet B, Rutter GA, Bertrand L, Marber MS. (2007). The relationship between p38 mitogen-activated protein kinase and AMP-activated protein kinase during myocardial ischemia. Cardiovasc Res 76:465-72. Janeway, C. A., Jr, P. Travers, M. Walport, M. Shlomchik. (2001). Innate Immunity. Immunobiology: The Immune System in Health & Disease 5th ed. Garland Publishing, New York. Jaswal JS, Gandhi M, Finegan BA, Dyck JR, Clanachan AS. (2007). p38 mitogen-activated protein kinase mediates adenosine-induced alterations in myocardial glucose utilization via 5'-AMP-activated protein kinase. Am J Physiol Heart Circ Physiol 292:H1978-85. Jeong HW, Hsu KC, Lee JW, Ham M, Huh JY, Shin HJ, Kim WS, Kim JB. (2009). Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab 296:E955-64. Jhun BS, Jin Q, Oh YT, Kim SS, Kong Y, Cho YH, Ha J, Baik HH, Kang I. (2004). 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide -induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Biochem Biophys Res Commun318:372-80. Jung JE, Lee J, Ha J, Kim SS, Cho YH, Baik HH, Kang I. (2004). 5-Aminoimidazole -4-carboxamide-ribonucleoside enhances oxidative stress-induced apoptosis through activation of nuclear factor-kappaB in mouse Neuro 2a neuroblastoma cells. Neurosci Lett 354:197-200. Jhun BS, Jin Q, Oh YT, Kim SS, Kong Y, et al. (2004) 5-Aminoimidazole -4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Biochem Biophys Res Commun 318: 372-380. Kawakami Y, Kitaura J, Yao L, McHenry RW, Newton AC, et al. (2003). A Ras activation pathway dependent on Syk phosphorylation of protein kinase C. Proc Natl Acad Sci U S A 100: 9470-9475. Kelley LC, Hayes KE, Ammer AG, Martin KH, Weed SA (2010). Cortactin phosphorylated by ERK1/2 localizes to sites of dynamic actin regulation and is required for carcinoma lamellipodia persistence. PLoS One 5: e13847. Kerrigan AM, Brown GD (2011). Syk-coupled C-type lectins in immunity. Trends Immunol 32: 151-156. Kuo CL, Ho FM, Chang MY, Prakash E, Lin WW (2008). Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 5-aminoimidazole-4-carboxamide riboside is independent of AMP-activated protein kinase. J Cell Biochem 103: 931-940. Kurihara Y, Nakahara T, Furue M (2011). alphaVbeta3-integrin expression through ERK activation mediates cell attachment and is necessary for production of tumor necrosis factor alpha in monocytic THP-1 cells stimulated by phorbol myristate acetate. Cell Immunol. 270: 25-31. Lee YM, Lee JO, Jung JH, Kim JH, Park SH, Park JM, Kim EK, Suh PG, Kim HS. (2008). Retinoic acid leads to cytoskeletal rearrangement through AMPK-Rac1 and stimulates glucose uptake through AMPK-p38 MAPK in skeletal muscle cells. J Biol Chem 283:33969-74. Li J, Miller EJ, Ninomiya-Tsuji J, Russell RR, Young LH. (2005). AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. Circ Res 97:872-9. Lopez JM, Santidrian AF, Campas C, Gil J. (2003). 5-Aminoimidazole -4-carboxamide riboside induces apoptosis in Jurkat cells, but the AMP-activated protein kinase is not involved. Biochem J 370:1027-32. Mark A. Williams and Joseph S. Solomkin. (1999). Integrin-mediated signaling in human neutrophil functioning. J. Leukoc. Biol. 65: 725–736. Md. Monowar Aziz, Shunji Ishihara, Yoshiyuki Mishima, Naoki Oshima, Ichiro Moriyama, Takafumi Yuki, Yasunori Kadowaki, Mohammad Azharul Karim Rumi, Yuji Amano and Yoshikazu Kinoshita. (2009). MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin-dependent αvβ3 integrin signaling. J. Immuno, 182: 7222–7232. Mocsai A, Ruland J, Tybulewicz VL (2010). The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10: 387-402. Murdoch C, Tazzyman S, Webster S, Lewis CE (2007). Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol 178: 7405-7411. Myerburg MM, King JD, Jr., Oyster NM, Fitch AC, Magill A, et al. (2010). AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 42: 676-684. Miletic AV, Graham DB, Montgrain V, Fujikawa K, Kloeppel T, Brim K, Weaver B, Schreiber R, Xavier R, Swat W. (2007). Vav proteins control MyD88-dependent oxidative burst. Blood. 109:3360-8. Mitchell JA, Warner TD. (2006). COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs. Nat Rev Drug Discov. Jan;5(1):75-86. Momcilovic M, Hong SP, Carlson M. (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281:25336-43. Monick MM, Robeff PK, Butler NS, Flaherty DM, Carter AB, Peterson MW, Hunninghake GW. (2002). Phosphatidylinositol 3-kinase activity negatively regulates stability of cyclooxygenase 2 mRNA. J Biol Chem. 277:32992-3000. Myerburg MM, King Jr JD, Oyster NM, Fitch AC, Magill A, Baty CJ, Watkins SC, Kolls JK, Pilewski JM, Hallows KR. (2010). AMPK agonists ameliorate sodium and fluid transport and inflammation in CF airway epithelial cells. Am J Respir Cell Mol Biol. Am J Respir Cell Mol Biol. 42(6):676-84. Paul F. Bradfield, Christoph Scheiermann, Sussan Nourshargh, Christiane Ody, Francis W. Luscinskas, G. Ed Rainger, Gerard B. Nash, Marijana Miljkovic-Licina, Michel Aurrand-Lions, and Beat A. Imhof (2007). JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood 110:7 2545–2555. Park IJ, Hwang JT, Kim YM, Ha J, Park OJ. (2006). Differential modulation of AMPK signaling pathways by low or high levels of exogenous reactive oxygen species in colon cancer cells. Ann N Y Acad Sci 1091:102-9. Park YS, Kim J, Misonou Y, Takamiya R, Takahashi M, Freeman MR, Taniguchi N. (2007). Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase. Arterioscler Thromb Vasc Biol. 27:1319-25. Peairs A, Radjavi A, Davis S, Li L, Ahmed A, Giri S, Reilly CM. (2009). Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clin Exp Immunol 156:542-51. Pilon G, Dallaire P, Marette A. (2004). Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: A new mechanism of action of insulin-sensitizing drugs. J Biol Chem 279:20767-74. Prasad R, Giri S, Nath N, Singh I, Singh AK (2006). 5-aminoimidazole -4-carboxamide-1-beta-4-ribofuranoside attenuates experimental autoimmune encephalomyelitis via modulation of endothelial-monocyte interaction. J Neurosci Res 84: 614-625. Pula G, Crosby D, Baker J, Poole AW (2005). Functional interaction of protein kinase Calpha with the tyrosine kinases Syk and Src in human platelets. J Biol Chem 280: 7194-7205. Pullikuth AK, Catling AD (2010). Extracellular signal-regulated kinase promotes Rho-dependent focal adhesion formation by suppressing p190A RhoGAP. Mol Cell Biol 30: 3233-3248. Sakurai H, Miyoshi H, Mizukami J, Sugita T. (2000). Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett 474:141-5. Salminen A, Hyttinen JM, Kaarniranta K (2011). AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J. Mol. Med. 89:667-76. Schwende H, Fitzke E, Ambs P, Dieter P (1996). Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol 59: 555-561. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. (1996). TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 272:1179-82. Steinberg GR, Kemp BE (2009). AMPK in Health and Disease. Physiol Rev 89: 1025-1078. Tang CH, Chiu YC, Tan TW, Yang RS, Fu WM (2007). Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J Immunol 179: 5483-5492. Taniguchi T, Kobayashi T, Kondo J, Takahashi K, Nakamura H, et al. (1991). Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J Biol Chem 266: 15790-15796. Tatsuo Kinashi (2005). Intracellular signalling controlling integrin activation in lymphocytes. Nature Rev Immuno. 5: 546-559. Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100: 328-341. Tsai JS, Chen CY, Chen YL, Chuang LM (2010). Rosiglitazone inhibits monocyte/macrophage adhesion through de novo adiponectin production in human monocytes. J Cell Biochem 110: 1410-1419. Wang YH, Yan ZQ, Shen BR, Zhang L, Zhang P, et al. (2009). Vascular smooth muscle cells promote endothelial cell adhesion via microtubule dynamics and activation of paxillin and the extracellular signal-regulated kinase (ERK) pathway in a co-culture system. Eur J Cell Biol 88: 701-709. Weekes J, Ball KL, Caudwell FB, Hardie DG (1993). Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides. FEBS Lett 334: 335-339. Wei CY, Chou YH, Ho FM, Hsieh SL, Lin WW. (2006). Signaling pathways of LIGHT induced macrophage migration and vascular smooth muscle cell proliferation. J Cell Physiol 209:735-43. Xie Z, Dong Y, Scholz R, Neumann D, Zou MH (2008) Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells. Circulation 117: 952-962. Xi X, Han J, Zhang JZ. (2001). Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase. J Biol Chem 276:41029-34. Yang CR, Hsieh SL, Ho FM, Lin WW. (2005). Decoy receptor 3 increases monocyte adhesion to endothelial cells via NF-kappa B-dependent up-regulation of intercellular adhesion molecule-1, VCAM-1, and IL-8 expression. J Immunol 174:1647-56. Yiqun Wang, Yu Huang, Karen S.L. Lam, Yiming Li, Wing Tak Wong, Hongying Ye,Chi-Wai Lau, Paul M. Vanhoutte, and Aimin Xu. (2009). Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase Cardio Res 82, 484–492. Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. (2006). Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55:2562-70. Zarbock A, Ley K (2011). Protein tyrosine kinases in neutrophil activation and recruitment. Arch Biochem Biophys 510: 112-119. Zhang BB, Zhou G, Li C. (2009). AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407-16. Zhao X, Zmijewski JW, Lorne E, Liu G, Park YJ, Tsuruta Y, Abraham E. (2008). Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:L497-504. Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA. (2002). Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem 277:32552-7. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4826 | - |
dc.description.abstract | AMPK是一個調節能量恆定的關鍵訊息分子,它也呈現了雙向調控發炎反應的功能,但它造成發炎的作用機制仍然不是很清楚。我們利用生化的技術將AICAR當成是AMPK的活化劑來更進一步闡述它在動脈血管平滑肌(VSMCs)、老鼠巨噬細胞(J774)和人類臍帶平滑肌(HUVECs)中分子間的交互作用。我們在幾種細胞測試中發現AICAR會誘導COX-2的表現。這個作用是藉由COX-2基因轉錄而來,而這個現象會被AMPK抑制劑:compound C和5’-iodotubercidin所移除。初步推測了AMPK在誘導COX-2的作用上所扮演的角色。在藥理學上和生化學上的研究證實,在這三種細胞中COX-2的產生,p38 MAPK的活化是位於AMPK的下游。進一步地,我們也發現TAK1會和AMPKα2產生交互作用,而且這二個分子彼此之間是需要各自的kinase區域來進行交互作用。更進一步的實驗結果顯示,在體內或體外實驗中,TAK1的磷酸化現象推測了其活化的階段會加強AMPK活化作用。我們的實驗結果首次證實TAK1在AMPK訊息軸上的重要地位,如此的交互作用賦予了AMPK在調節細胞能量的功能之外,又多了另一條路徑。在許多的細胞中,經由一個下游p38 MAPK的訊息路徑,再透過AMPK使得TAK1活化而致使COX-2基因的表現。
PKC在單核球貼附作用扮演了很重要的角色,目前對於PKC所傳遞細胞貼附作用的機制仍然不是很清楚。在這個研究中,我們探討了PMA所引起人類單核球貼附作用的訊息網路。我們利用藥理學上的抑制劑,其結果顯示AMPK、Syk、Src和ERK參與了PKC所傳遞的人類單核球貼附到培養盤的過程。生化學上的分析更加確定PMA活化了這些激酶的能力以及AMPK-Syk-Src這條訊息路徑參與其中。在PMA的刺激之下,AMPK和Syk兩個蛋白質直接進行交互作用;AMPK是需要kinase區域,而Syk則是需要linker region的區域。值得注意的是,我們鑑別出一個AMPK新的下游目標,而且AICAR可以誘導Syk在Ser 178的位置磷酸化並使其活化。然而,即使在AICAR刺激之下或是藉由蛋白質過量的表現,AMPK的單獨活化仍不足以使單核球產生貼附的作用。因此,在我們更進一步的研究中顯示:PKC所傳遞ERK這一條路徑(不經由AMPK活化的路徑)也參與了細胞的貼附作用。此外,在PMA誘導人類單核球和人類初級單核球貼附到內皮細胞是需要AMPK、Syk、Src和ERK的訊息。總而言之,我們推測有兩條路徑參與PMA所傳遞的單核球貼附作用。首先,PKC可以藉由活化LKB1/AMPK而使Syk磷酸化和活化,進而使Src與FAK活化。另外,PKC所傳遞ERK活化的路徑也呈現共同促使細胞骨架重新組合與細胞貼附作用。這是我們第一次證實Syk是一個AMPK新穎的受質,同時也闡述AMPK除了擁有能量恆定的功能外,在單核球貼附作用上也扮演了亮眼的角色。 | zh_TW |
dc.description.abstract | AMP-activated protein kinase (AMPK), a critical signaling molecule for regulating energy homeostasis, might bi-directionally regulate inflammation, and its action mechanism leading to inflammation is not fully understood. We utilized 5-aminoimidazole-4-carboxamide riboside (AICAR) as a pharmacological activator of AMPK to unveil the effects of and signaling cascades mediated by AMPK on cyclooxygenase (COX)-2 gene expression in rat aortic vascular smooth muscle cells (VSMCs), murine macrophage cell line (J774), and human umbilical vein endothelial cells (HUVECs). Biochemical approaches were further conducted to elucidate interactions among signaling molecules. We found that AICAR could induce COX-2 protein expression in the cell types tested. This event was mediated by COX-2 gene transcription, and abrogated by compound C and 5’-iodotubercidin, suggesting the essential role of AMPK in COX-2 induction. Pharmacological and biochemical studies indicated that p38 mitogen activated protein kinase (MAPK) activation is the common downstream signal of AMPK in COX-2 expression in all three cell types. Furthermore, we also found that TAK1 is associated with AMPKα2, and this binding requires an interaction between the kinase domains of both molecules. Notably data of TAK1 phosphorylation indicate that the activating state is enhanced upon AMPK activation in vivo and in vitro. Our data for the first time prove a pivotal role of TAK1 in the AMPK signaling axis. Such interaction gives AMPK an additional pathway for regulating cellular functions. Via a downstream p38 MAPK signaling cascade, AMPK-dependent TAK1 activation leads to the expression of the inflammatory COX-2 gene in various cell types.
PKC plays a pivotal role in mediating monocyte adhesion; however, the underlying mechanisms of PKC-mediated cell adhesion are still unclear. In this study, we elucidated the signaling network of phorbol ester PMA-stimulated human monocyte adhesion. Our results with pharmacological inhibitors suggested the involvement of AMPK, Syk, Src and ERK in PKC-dependent adhesion of THP-1 monocytes to culture plates. Biochemical analysis further confirmed the ability of PMA to activate these kinases, as well as the involvement of AMPK-Syk-Src signaling in this event. Direct protein interaction between AMPK and Syk, which requires the kinase domain of AMPK and linker region of Syk, was observed following PMA stimulation. Notably, we identified Syk as a novel downstream target of AMPK; AICAR can induce Syk phosphorylation at Ser178 and activation of this kinase. However, activation of AMPK alone, either by stimulation with AICAR or by overexpression, is not sufficient to induce monocyte adhesion. Studies further demonstrated that PKC-mediated ERK signaling independent of AMPK activation is also involved in cell adhesion. Moreover, AMPK, Syk and ERK signaling were also required for PMA to induce THP-1 cell adhesion to endothelial cells as well as to induce adhesion response of human primary monocytes. Taken together, we propose a bifurcated kinase signaling pathway involved in PMA-mediated adhesion of monocytes. PKC can activate LKB1/AMPK, leading to phosphorylation and activation of Syk, and subsequent activation of Src and FAK. In addition, PKC-dependent ERK activation induces a coordinated signal for cytoskeleton rearrangement and cell adhesion. For the first time we demonstrate Syk as a novel substrate target of AMPK, and shed new light on the role of AMPK in monocyte adhesion, in addition to its well identified functions in energy homeostasis. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:48:10Z (GMT). No. of bitstreams: 1 ntu-104-D94443006-1.pdf: 6665437 bytes, checksum: fcd4dccdc3e572aa0c9a41996e711ff1 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Abbreviations…………………………………………………………….3
Abstract…………………………………………………………………..4 Chinese abstract…………………………………………………………..7 Chapter 1 Introduction……………………………………………………………9 Chapter 2 Specific aims…………………………………………………………17 Chapter 3 Materials and Methods…………………………………………….....18 Chapter 4 Results I AICAR induces cyclooxygenase-2 expression through AMP - activated Protein kinase-transforming growth factor-activated kinase 1-p38 mitogen activated protein kinase signaling pathway……………………………………………………………...26 Chapter 5 Results II PKC-dependent human monocyte adhesion requires AMPK and Syk activation……………………………………………………………34 Chapter 6 Discussion…………………………………………………………….45 Chapter 7 Figures………………………………………………………………..54 Chapter 8 References……………………………………………………………83 Chapter 9 Publication……………………………………………………………99 | |
dc.language.iso | en | |
dc.title | AMPK訊息傳遞路徑在發炎反應中所扮演的角色 | zh_TW |
dc.title | Roles of AMP-activated protein kinase signaling axis in inflammation | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 謝世良(Shie-Liang Hsieh),符文美(Wen-Mei Fu),蔡丰喬(Feng-Chiao Tsai),曾賢忠(Shiang-Jong Tzeng) | |
dc.subject.keyword | 發炎反應, | zh_TW |
dc.subject.keyword | AMPK,Syk,AICAR,TAK1,COX2,inflammation, | en |
dc.relation.page | 99 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-02-10 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 6.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。