請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48264
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱子豪 | |
dc.contributor.author | Yi-Shiang Shiu | en |
dc.contributor.author | 徐逸祥 | zh_TW |
dc.date.accessioned | 2021-06-15T06:50:37Z | - |
dc.date.available | 2013-08-23 | |
dc.date.copyright | 2011-08-23 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-18 | |
dc.identifier.citation | 中央大學太空與遙測中心 (2005) SPOT影像接收統計。
內政部國土測繪中心 (2008) 國土利用調查成果資訊網http://lui.nlsc.gov.tw/LUWeb/. [2008, December 10] 內政部營建署 (2008) 國土監測計畫http://www.cpami.gov.tw/chinese/index.php?option=com_content&view=article&id=688&Itemid=76. [2008, December 10] 行政院國家科學委員會精密儀器發展中心http://www.pidc.gov.tw/Publication/Newsletter/no59/p02.html. [2003, December 8] 朱健銘 (2000) 土地利用空間型態之研究,國立臺灣大學地理環境資源學研究所碩士論文。 李麗芬 (1995) HIS色彩空間影像應用於分類之研究,國立交通大學土木工程研究所碩士論文。 何珮艷 (2003) 輻射同態化對SPOT衛星影像用於變遷偵測影響之研究─以合歡山地區為例,國立中興大學森林學系碩士論文。 徐逸祥 (2006) 遙測影像之雲層偵測及干擾去除,國立臺灣大學地理環境資源學研究所碩士論文。 徐逸祥、朱子豪、劉英毓 (2006) 衛星影像的雲霧偵測及干擾去除,國土資源遙感期刊,3:23-28。 張立雨、陳繼藩、陳哲俊、林欣穎 (2007) 應用影像分割技術與碎形理論於福衛二號Quick-Look影像之雲覆蓋萃取,航測及遙測學刊,12 (3):273-281。 黃星奕、吳守一、方如明、蔡健榮 (2000) 電腦視覺在大米胚芽識別中的應用,農業機械學報,31(1):62-65。 黃英婷 (2000) 影像鑲嵌自動化之研究,國立中興大學土木工程學研究所碩士論文。 曾筱婷 (2004) 以多時段的 SPOT 衛星影像做雲層自動去除,國立中央大學資訊工程研究所碩士論文。 葉精國 (2005) 自動化衛星影像雲及雲陰影遮蔽區偵測及修正之研究,國立中興大學土木工程學研究所碩士論文。 劉致亨 (2009) 合理化雲模型t值分析於薄雲覆蓋區影像恢復之研究,逢甲大學土木及水利工程博士學位學程博士論文。 蔡博閎 (2009) 衛星影像雲層遮蔽區域之移除與填補演算法,國立成功大學測量及空間資訊學系碩士論文。 賴格英、劉春燕、辜曉青 (2003) 基於ERDAS IMAGINE 的遙感圖像去雲方法。 Gonzalez, R. C. and Woods, R. E. (1992) 數位影像處理 (Digital Image Processing) 1993;吳成柯、戴善榮、程湘君、雲立實譯,臺北:儒林圖書有限公司。 ERDAS (2003) ERDAS Field Guide. 7th ed., Atlanta: Leica Geosystems GIS & Mapping, LLC. Ahmad, A. and Hashim, M. (2002) Determination of haze using NOAA-14 AVHRR satellite data, MACRES bulletin: 15-27. Bankert, R. L. and Aha, D. W. (1996) Improvement to a neural network cloud classifier, Journal of Applied meteorology, 35: 2036-2039. Bantges, R. J., Russell, J. E. and Haigh, J. D. (1999) Cirrus cloud top-of-atmosphere radiance spectra in the thermal infrared, Journal of Quantitative Spectroscopy and Radiative Transfer, 63: 487-498. Baum, B. A., Tovinkere, V., Titlow, J. and Welch, H. R. M. (1997) Automated cloud classification of global AVHRR data using a fuzzy logic approach, Journal of Applied Meteorology, 36: 1519-1540. Beauchemin, M. and Fung, K. B. (1999) Intensity-hue-saturation colour display transform for hyperspectral data, the Fourth International Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing. Berendes, T. A., Berendes, D. A., Welch, R. M., Dutton, E. G., Uttal, T. and Clothiaux, E. E. (2004). Cloud cover comparisons of the MODIS daytime cloud mask with surface instruments at the North Slope of Alaska ARM site, IEEE Transactions on Geoscience and Remote Sensing, 42(11), 2584−2593. Bsaibes, A., Courault, D., Baret, F., Weiss, M., Olioso, A., Jacob, F., Hagolle, O., Marloie, O., Bertrand, N., Desfond, V. and Kzemipour, F. (2009) Albedo and LAI estimates from FORMOSAT-2 data for crop monitoring, Remote Sensing of Environment, 113: 716-729. Buchanan, M. D. (1979) Effective utilization of color in multidimensional data presentation, Proceedings of the Society of Photo-Optical Engineers, 199:9-19. Chavez, P. S. (1975) Atmospheric, solar, and MTF corrections for ERTS digital imagery, Proceedings of the American Society of Photogrammetry Fall Technical Meeting, Phoenix, Arizona, p.69. Chavez, P. S. (1989) Radiometric calibration of Landsat Thematic Mapper multispectral images, Photogrammetric Engineering and Remote Sensing, 55(9):1285-1294. Chander, G. and Markham, B. (2003) Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges, Geoscience and Remote Sensing, IEEE Transactions on, 41: 2674-2677. Chen, P.Y., Srinivasan, R., Fedosejevs, G. and Narasimhan, B. (2002) An automated cloud detection method for daily NOAA-14 AVHRR data for Texas. USA. International Journal of Remote Sensing, 23(15): 2939-2950. Choia, H. and Bindschadler, R. (2004) Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision, Remote Sensing of Environment, 91:237–242. Cihlar, J., Howarth, J. (1994) Detection and removal of cloud contamination from AVHRR images, IEEE Transactions on Geoscience Remote Sensing, 32(3), 583-589. Conrac Corp., Conrac Division. (1980) Raster Graphics Handbook, Covina, California:Conrac Corp. Crist, E. P. and Kauth, R. J. (1986) The Tasseled Cap De-Mystified, Photogrammetric Engineering and Remote Sensing, 52 (1): 81-86. Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., Buermann, W., Alexeyev, V. and Hughes, M. K. (2003) Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks, Remote Sensing of Environment, 84: 393-410. Doraiswamy, P. C., Hatfield, J. L., Jackson, T. J., Akhmedov, B., Prueger, J. and Stern, A. (2004) Crop condition and yield simulations using Landsat and MODIS, Remote Sensing of Environment, 92: 548-559. Du, Y., Guindon, B. and Gihlar J. (2002) Haze detection and removal in high resolution satellite image with wavelet analysis, IEEE Transactions on Geoscience and Remote Sensing, 40 (1): 210-217. Gao, B. C. and Li, R. R. (2000) Quantitative improvement in the estimates of NDVI values from remotely sensed data by correcting thin cirrus scattering effects, Remote Sensing of Environment, 74:494-502. Geosystems (2005) GEOSYSTEMS GmbH - The ATCOR – FAQs http://www.geosystems.de/atcor/faqs/index.html [2005, April 8] Goodchild, M. F. (2003) Geographic information science and systems for environmental management, Annual Review of Environment and Resources, 28:493-519. Han, K. S., Champeaux, J. L. and Roujean, J. L. (2004) A land cover classification product over France at 1 km resolution using SPOT4/VEGETATION data, Remote Sensing of Environment, 92:52-66. Hall, F. G., Strebel, D. E., Nickeson, J. E. and Goetz, S. J. (1991) Radiometric rectification: Toward a common radiometric response among multidate, multisensor images, Remote Sensing of Environment, 35: 11-27. Irish, R. R., Barker, J. L., Goward, S. N. and Arvidson, T. (2006) Characterization of the Landsat-7 ETM_Automated Cloud-Cover Assessment (ACCA) Algorithm, Photogrammetric Engineering & Remote Sensing, 72: 1179-1188. Jensen, J. R. (1996) Introductory Digital Image Processing: A Remote Sensing Perspective, Englewood Cliffs, New Jersey: Prentice-Hall. Kaufman, Y. J. and Tanre, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS, IEEE Transactions on Geoscience and Remote Sensing, 30: 261-270. Lavreau, J. (1991) De-hazing Landsat Thematic Mapper images, Photogrammetric Engineering and Remote Sensing, 57 (10): 1297-1302. Le Hegarat-Mascle, S. and Andre, C. (2009) Use of Markov random fields for automatic cloud/shadow detection on high resolution optical images, ISPRS Journal of Photogrammetry and Remote Sensing, 64: 351-366. Lillesand, T. M. and Kiefer, R. W. (2000) Remote sensing and image interpretation. 4th ed., New York: John Wiley & Sons. Mannozzi, L., Giuseppe, F. D. and Rizzi, R. (1999) Cirrus cloud optical properties in far infrared, Physics and Chemistry of the Earth (B), 24 (3): 269-273. Moro, G. D. and Halounova, L. (2007) Haze removal for high-resolution satellite data: a case study, International Journal of Remote Sensing, 28: 2187-2205. National Aeronautics and Space Administration (2008) ISCCP overview. http://isccp.giss.nasa.gov/. [2011, April 12] Olsson, H. (1993) Regression functions for multitemporal relative calibration of thematic mapper data over boreal forest, Remote sensing of Environment, 46: 89-102. Otsu, N. (1979). A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9: 62-66. Palm, C., Keysers, D., Lehmann, T. and Spitzer, K. (2000) Gabor filtering of complex hue/saturation images for color texture classification, Proceedings of 3rd International Conference on Computer Vision, Pattern Recognition and Image Processing. Peterson, D., Whistler, J., Bishop, C., Egbert, S. and Martinko, E. (2009) The Kansas next-generation land use/land cover mapping initiative, ASPRS 2009 Annual Conference, Baltimore, Maryland. Richter, R. (1995) A spatially-adaptive fast atmospheric correction algorithm, International Journal of Remote Sensing, 11 (1): 159-166. Richter, R. (1996) Atmospheric correction of satellite data with haze removal including a haze/clear transition region, Computers and Geosciences, 22 (6): 675-681. Richter, R. (1997) Correction of atmospheric and topographic effects for high spatial resolution satellite imagery, International Journal of Remote Sensing, 18 (5): 1099-1111. Richter, R. (2005) Atmospheric/topographic correction for satellite imagery (ATCOR-2/3 user guide, version 6.1), Germany: German Aerospace Center. Rowan, L. C., Wetlaufer, P. H., Goetz, A. F. H., Billingsley, F. C. and Stewart, J. H. (1974) Discrimination of rock types and detection of hydrothermally altered areas in South-Central Nevada by the use of computer-enhanced ERTS images, U.S. Geological Survey Professional Paper, 883: 35. Schott, J. R., Salvaggio, C. and Volchok, W. J. (1988) Radiometric scene normalization using pseudoinvariant feature, Remote Sensing of Environment, 26: 1-16. Spangl, R., Riese, M., Eidmann, G., Offermannl, D. and Wang, P. H. (2001) A detection method for cirrus clouds using CRISTA 1 and 2 measurements, Advances in Space Research, 27 (10): 1629-1634. Stowe, L. L. (1984). Evaluation of NIMBUS-7 THIR CLE and air-force 3-dimensional nephanalysis estimates of cloud amount, Journal of Geophysical Research, 89: 5370−5380. Tan, K., Piao, S., Peng, C. and Fang, J. (2007) Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999, Forest Ecology and Management, 240, 114-121. Tseng, D. C. and Chang, C. H. (1994) Color segmentation using UCS perceptual attributes, Proceedings of the National Science Council, Part A: Physical Science and Engineering, 18 (3): 305-314. Tseng, D. C., Tseng, H. T. and Chien, C. L. (2008) Automatic cloud removal from multi-temporal SPOT images, Applied Mathematics and Computation, 205: 584-600. Vincent, R. K. (1973) Spectral ratio imaging methods for geological remote sensing from aircraft and satellites, Proceedings of the American Society of Photogrammetry, Management and Utilization of Remote Sensing Data Conference, Sioux Falls, South Dakota, pp.377-397. Wang, Y. P., Chang, K. W., Chen, R. K., Lo, J. C. and Shen, Y. (2010) Large-area rice yield forecasting using satellite imageries, International Journal of Applied Earth Observation and Geoinformation, 12: 27-35. Wang, Z., Jin, J., Liang, J., Yan, K. and Peng, Q. (2005) A new cloud removal algorithm for multi-spectral images, Proceedings of SPIE, 6043: 60430W-1-60430W-11. Yang, Y., Di Girolamo, L., and Mazzoni, D. (2007) Selection of the automated thresholding algorithm for the Multi-angle Imaging SpectroRadiometer Radiometric Camera-by-Camera Cloud Mask over land, Remote Sensing of Environment, 107: 159-171. Zhang, Y., Guindon, B. and Cihlar, J. (2002) An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images, Remote Sensing of Environment, 82:173-187. Zhong, H., Shi, R., Liu, C., Gao, W. and Qu, P. (2010) Thin cloud removal of MODIS imagery based on AERONET data, Proceedings of SPIE - The International Society for Optical Engineering, 7809. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48264 | - |
dc.description.abstract | 在利用光學式衛星影像進行土地利用判釋或農作物產量估測時,雲層覆蓋是無法避免的干擾之一。以往研究的瓶頸在於多數去雲流程皆需要另外的無雲參考區域或是多時期影像,然而真實世界中,這些參考資訊可能難以取得;再者,對於去雲結果的優劣,通常是以質化而非量化的方式來進行視覺化評估,因此欠缺客觀性;最重要的是,去雲過程通常也會破壞原本的地物資訊,然而去雲後影像能否用來進行自動化地物判釋也欠缺探討。
為解決以上瓶頸,降低雲層的影響並提升地物判釋的正確性,就單時期具有厚雲層的影像而言,本研究以標準差延伸加強 (standard deviation stretch enhancement) 進行影像處理,再以區域增長 (region growing) 之方式偵測並切除無法還原地物資訊的厚雲層。單時期具有薄雲的影像則以傅利葉 (Fourier) 分析建立薄雲的數學模式,再以此模型薄雲並還原薄雲底下的地物光譜資訊,雖然傅利葉分析的方法在模式建立階段仍需兩時期影像,但建立後的模式在對其它影像進行去雲處理時則僅需單時期資訊。而去雲結果的量化評估,厚雲方面以專家法評估偵測去除的範圍準確性,薄雲方面則以影像分類法以及常態化差異植被指數 (normalized difference vegetation index, NDVI) 評估雲下地物資訊還原的程度以及非雲下地物資訊的被破壞程度。 本研究證明了僅以綠、紅、近紅外波段且沒有無雲參考區或參考影像時,對於厚雲偵測來說資訊量是足夠的,在不同特性的研究區,整體精度皆可達到90%以上。而對薄雲去除而言,三個波段在視覺上能達到一些改善的效果,對於地物光譜資訊還原方面,就全幅影像來探討,薄雲過濾器提升了約4%的分類精度,而就各分區來探討,過濾器對雲區的分類精度提升最多,達到了6%,無雲無影區亦有少許提升,影區的分類精度則反而下降,雖然薄雲過濾器無法全面提升影像各區之分類精度,然而其去雲的功效已有發揮。而薄雲過濾器也減輕了薄雲對NDVI值的影響,使其接近無雲狀態下的地物光譜資訊。總體來看,薄雲過濾器對影像分類以及NDVI值的改善程度而言在統計上有達到顯著性 (p < 0.01)。本研究之成果可應用在土地利用判釋和農作物產量估測中的影像前處理程序,除能減少人工判釋和去除雲層的人力,也可增加衛星影像的利用度。 | zh_TW |
dc.description.abstract | Cloud cover is an inevitable interference when mapping land use/cover with optical satellite imagery. In this study, we apply region growing processing to delineate unrecoverable thick cloud and use Fourier analysis to recover ground information from hazy areas with single temporal imagery.
Several methodologies across literature successfully solve cloud problems, but most methods require additional cloud-free reference areas or imagery, which may be unavailable in the real world. Moreover, visual methods rather than quantitative methods are used for assessing results, which can be subjective and arbitrary. Most importantly, the feasibility of applying haze-off imagery to image classification is seldom discussed. To overcome the existing limits, expert method is applied to assess the thick cloud delineation and image classification and normalized difference vegetation index (NDVI) is used to evaluate the recovery degree of ground information after the haze-off processing for quantitative verification of the results. This study revises the image enhancement and region growing algorithm to delineate unrecoverable thick cloud. Accuracy assessment shows the overall accuracy of delineation could be 90% above in each study area. For hazy areas, Fourier analysis is used to reduce haze interference and recover ground information. The proposed haze filter increases the overall accuracy of the whole scenes by about 4%. The overall accuracy of hazy areas in the imagery increases the most (by 6%), while that of shadow areas decreased slightly. The influence of haze on NDVI is also reduced with statistical significance (p < 0.01). Both thick cloud and hazy areas processing can be achieved with no cloud-free area or reference imagery required. Future applications include preprocessing of satellite imagery in land use/cover mapping, which can decrease the manpower to interpret and remove cloud areas and increase the usability of the satellite imagery. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:50:37Z (GMT). No. of bitstreams: 1 ntu-100-D95228002-1.pdf: 6674995 bytes, checksum: 365c999cd32c0185e6309d8208670b90 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 IV 英文摘要 VI 第一章 緒論 1 第一節 研究動機 2 第二節 研究目的 7 第二章 文獻回顧 8 第一節 厚薄雲層的定義 8 第二節 空間域中雲層雲影處理及影像鑲嵌 12 第三節 頻率域中雲層的偵測與去除 22 第四節 RGB和HIS彩色模型間之轉換及應用 25 第五節 小結 29 第三章 研究方法 32 第一節 研究對象 32 第二節 研究方法 34 第四章 研究成果與討論 55 第一節 研究素材及工具 55 第二節 影像前處理 58 第三節 厚雲層及雲影處理成果 59 第四節 薄雲偵測及去除成果 65 第五節 去雲系統使用者介面開發 76 第五章 結論與未來研究 77 第一節 結論 77 第二節 未來研究 80 參考文獻 83 附錄 MATLAB程式碼 91 | |
dc.language.iso | zh-TW | |
dc.title | 光學式衛星影像雲層處理之研究 | zh_TW |
dc.title | The Study on Cloud Processing in Optical Satellite Imagery | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林達德,李瑞陽,黃倬英,蔡博文 | |
dc.subject.keyword | 去雲,光學式衛星影像,地物判釋,區域增長,傅利葉分析, | zh_TW |
dc.subject.keyword | cloud removal,land features interpretation,region growing,Fourier analysis, | en |
dc.relation.page | 114 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 6.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。