Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48250
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾國芳(Kuo-Fang Chung)
dc.contributor.authorYung-Shin Tsaien
dc.contributor.author蔡永信zh_TW
dc.date.accessioned2021-06-15T06:50:11Z-
dc.date.available2014-02-25
dc.date.copyright2011-02-25
dc.date.issued2011
dc.date.submitted2011-02-17
dc.identifier.citation中央氣象局網站。2010–2006。統計資料:氣候統計—每月氣象資料。<http://www.cwb.gov.tw>
王秀華、林曉洪 1995。臺灣檫樹木材之超微結構。中華林學季刊 28: 101–115。
李遠欽、彭茂雄 1979。臺灣檫樹嫁接試驗之初步報告。臺灣林業 5 (10): 47–49。
余相清、林春雄 1982。臺灣檫樹扦插工作報告。臺灣林業 8 (10): 20–21。
呂福原、歐辰雄、廖秋成 1982。臺灣檫樹繁殖方法之研究。中華林學季刊 15: 73–86。
呂勝由1996。臺灣稀有及瀕危植物之分級 彩色圖鑑 (I)。行政院農業委員會。
吳宜穗 2004。棲蘭山區臺灣檫樹小尺度族群空間遺傳結構分析。國立臺灣大學
森林學研究所碩士論文。
吳森博 2005。宜蘭太平山地區淋殿化土之特性化育與分類。國立臺灣大學農業
化學研究所博士論文。
何坤益、蔡忠誠、呂福原 2010。應用 ISSR 分子標誌研究台灣檫樹族群之遺傳
變異。臺灣生物多樣性研究 12: 407–417。
林阿杉、林春雄 1979。臺灣檫樹扦插試驗初步情況。臺灣林業 5 (2): 30–32。
林讚標 1992。突破臺灣檫樹種苗培育之瓶頸。臺灣林業 18 (1): 14–16。
林靖惠、關秉宗、林世宗、俞邱豐 2003。棲蘭山臺灣檫樹繁殖枝條葉部性狀之
研究。國立臺灣大學生物資源暨農學院實驗林研究報告 17(1): 25–32。
胡青野、顧懿仁 1980。臺灣檫樹果實及種子之觀察報告。臺灣林業 6(5): 29–31。
郭寶章 1989。臺灣育林問題評述 (ㄧ) 臺灣檫樹之培育與價值。現代育林 5 (1)
:17–19。
徐堉峰、陳建志、楊平世 1986。臺灣特產種蝶類之綜述。國立臺灣大學農學院
研究報告 26(1): 55–69。
許博行、顏江河 2001。觀霧臺灣檫樹種子庫調查。行政院農業委員會林務局新
竹林區管理處。
許博行 2002。臺灣檫樹種子庫天然更新調查。行政院農業委員會林務局新竹林
區管理處。
許博行 2003。臺灣檫樹種子庫天然更新調查 (三)。行政院農業委員會林務局新竹林區管理處。
許博行、徐堉峰 2005。臺灣檫樹天然更新與寬尾鳳蝶復育之研究。行政院農業
委員會林務局新竹林區管理處。
楊政川、蔡錦瑩、鍾振德、陳振榮 2000。臺灣檫樹莖梢培養及單芽節培養之叢
生枝增生與小植株建立。臺灣林業科學 15: 31–30。
楊蒼叡、許博行 2010。台灣檫樹 (Sassafras randaiense) 林份林床種苗萌發之研究。林業研究季刊 32: 39–50。
劉棠瑞 1960。臺灣木本植物圖誌 卷上。國立臺灣大學農學院。
劉業經 1970。臺灣重要樹木彩色圖誌。國立中興大學。
劉棠瑞、廖日京 1980。樹木學 上。臺灣商務印書館股份有限公司。
廖日京 1987。臺灣樟科植物學名綜談 (II)。中華林學季刊 20: 73–77。
劉業經、呂福原、歐辰雄 1994。臺灣樹木誌。國立中興大學農學院出版委員會。
應紹舜 1985。臺灣產樟科植物之訂正。國立臺灣大學農學院研究報告
25: 83–117。
顧懿仁 1977。生長快速經濟價值高之臺灣檫樹 (一)。臺灣林業 3(11): 21–25。
Aguilar, R., M. Quesada, L. Ashworth, Y. Herrerias–Diego, and J. Lobo. 2008. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molecular Ecology 17:5177–5188.
Amos, W. and J. Harwood. 1998. Factors affecting levels of genetic diversity in natural populations. Philosophical Transactions of the Royal Society of London Series B–Biological Sciences 353:177–186.
Angiosperm Phylogeny Group 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105–121
Arroyo, J. M., C. Rigueiro, R. Rodriguez, A. Hampe, A. Valido, F. Rodriguez–Sanchez, and P. Jordano. 2010. Isolation and characterization of 20 microsatellite loci for Laurel species (Laurus, Lauraceae). American Journal of Botany 97:E26–E30.
Asuka, Y., N. Tomaru, N. Nisimura, Y. Tsumura, and S. Yamamoto. 2004. Heterogeneous genetic structure in a Fagus crenata population in an old–growth beech forest revealed by microsatellite markers. Molecular Ecology 13:1241–1250.
Barrett, S. C. H. 2002. The evolution of plant sexual diversity. Nature Reviews Genetics 3:274–284.
Barrett, S. C. H. 2003. Mating strategies in flowering plants: the outcrossing–selfing paradigm and beyond. Philosophical Transactions of the Royal Society of London Series B–Biological Sciences 358:991–1004.
Bertin, R. I. 1993. Incidence of monoecy and dichogamy in relation to self–fertilization in angiosperms. American Journal of Botany 80:557–560.
Bertin, R. I. and C. M. Newman. 1993. Dichogamy in angiosperms. Botanical Review 59:112–152.
Bhardwaj, M. and C. G. Eckert. 2001. Functional analysis of synchronous dichogamy in flowering rush, Butomus umbellatus (Butomaceae). American Journal of Botany 88:2204–2213.
Bittencourt, J. V. M. and A. M. Sebbenn. 2007. Patterns of pollen and seed dispersal in a small, fragmented population of the wind–pollinated tree Araucaria angustifolia in southern Brazil. Heredity 99:580–591.
Chang, C. E. 1976. Lauraceae. Pp. 406–468 in H. L. Li, T.–S. Liu, T. C. Huang, T. Koyama & C. E. DeVol (editors), Flora of Taiwan, Vol. 2. Epoch Publishing Co., Taipei.
Chaw, S.–M. 1992. Pollination, breeding syndromes, and systematics of Trochodendron aralioides Sieb. & Zucc. (Trochodendraceae), a relictual species in eastern Asia. Pp 63–77 in Phytogeography and Botanical Inventory of Taiwan (C.–I. Peng, editors) Institute of Botany, Academia Sinica, Taipei.
Chen, M. H., and P. J. Wang. 1985. Somatic embryogenesis and plant regeneration on
Sassafras randaiense (Hay.) Redh. Botanical Bulletin of Academia Sinica 26: 1–12.
Chung, K. F., H. van der Werff, and C. I. Peng. 2010. Observations on the floral
morphology of Sassafras randaiense (Lauraceae). Annals of the Missouri Botanical Garden 97:1–10.
Dan, T., Y. Mitsui, H. Ikeda, Y. Isagi, and H. Setoguchi. 2009. Isolation and characterization of microsatellite loci in Shortia rotundifolia (Diapensiaceae), an endangered relict plant on the Ryukyu Islands and Taiwan. Conservation Genetics 10:507–509.
Echt, C. S., D. Deemer, T. Kubisiak, and C. D. Nelson. 2006. Microsatellites for Lindera species. Molecular Ecology Notes 6:1171–1173.
Edwards, M. J. and R. A. Niesenbaum. 2007. Eleven polymorphic microsatellite loci in Lindera benzoin, Lauraceae. Molecular Ecology Notes 7:1302–1304.
Endress, P. K. 1987. The Chloranthaceae reproductive structures and phylogenetic position. Botanische Jahrbuecher fuer Systematik Pflanzengeschichte und Pflanzengeographie 109:153–226.
Endress, P. K. 2010. The evolution of floral biology in basal angiosperms. Philosophical Transactions of the Royal Society B–Biological Sciences 365:411–421.
Escudero, A., J. M. Iriondo, and M. E. Torres. 2003. Spatial analysis of genetic diversity as a tool for plant conservation. Biological Conservation 113:351–365.
Faircloth, B. C. 2008. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus–specific primer design. Molecular Ecology Resources 8:92–94.
Glenn, T.C. and N.A. Schable. 2005. Isolating microsatellite DNA loci. Methods in
Enzymology 395:202–222.
Gottsberger, G. 1989a. Beetle pollination and flowering rhythm of Annona spp (Annonaceae) in Brazil. Plant Systematics and Evolution 167:165–187.
Gottsberger, G. 1989b. Comments on flower evolution and beetle pollination in the genera Annona and Rollinia (Annonaceae). Plant Systematics and Evolution 167:189–194.
Guan, B. T., W. C. Kuo, S. T. Lin, and C. F. Yu. 2006. Short–distance dispersal of intact Taiwan sassafras fruits in a temperate montane rain forest of northeastern Taiwan. Botanical Studies 47:427–434.
Huang, T. C. 1972. Pollen Flora of Taiwan. National Taiwan University Botany Department Press.
Huang, C. C., T. Y. Chiang, and T. W. Hsu. 2008a. Isolation and characterization of microsatellite loci in Taxus sumatrana (Taxaceae) using PCR–based isolation of microsatellite arrays (PIMA). Conservation Genetics 9:471–473.
Huang, C. C., K. H. Hung, T. W. Hsu, K. H. Wang, C. Y. Lin, and T. Y. Chiang. 2008b. Isolation and characterization of 11 polymorphic microsatellite loci from Fatsia polycarpa (Araliaceae), an element of evergreen forests in Taiwan. Conservation Genetics 9:1333–1335.
Hung, C. Y., Y. Y. Chen, T. W. Hsu, T. J. Huang, and T. Y. Chiang. 2008a. Isolation and characterization of 12 microsatellite loci from Suzukia shikikunensis (Lamiaceae), a genus endemic to Taiwan and Ryukyus. Conservation Genetics 9:1337–1339.
Hung, C. Y., K. H. Wang, C. C. Huang, X. Gong, X. J. Ge, and T. Y. Chiang. 2008b. Isolation and characterization of 11 microsatellite loci from Camellia sinensis in Taiwan using PCR–based isolation of microsatellite arrays (PIMA). Conservation Genetics 9:779–781.
IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4. <www.iucnredlist.org>. [last access on 14 January 2011]
Kamikoti S. 1933. Neue und kritische Lauraceen aus Taiwan I. Annual Report of
the Taihoku Botanic Garden. 3:77–78.
Kanehira, R. 1936. Formosan Trees Indigenous to the Islands, 2nd ed. Department of Forestry, Government Research Institute, Taihoku.
Kubitzki, K. and H. Kurz. 1984. Synchronized dichogamy and dioecy in neotropical Lauraceae. Plant Systematics and Evolution 147:253–266.
Kuras, A., M. Korbin, and E. Zurawicz. 2004. Comparison of suitability of RAPD and ISSR techniques for determination of strawberry (Fragaria xananassa Duch.) relationship. Plant Cell Tissue and Organ Culture 79:189–193.
Lai, I. L., S.–C. Chang, P.–H. Lin, C.–H. Chou, and J.–T. Wu. 2006. Climatic characteristics of the subtropical mountainous cloud forest at the Yuanyang Lake long–term ecological research site, Taiwan. Taiwania 51:317–329.
Lee, Y. J., S. Y. Hwang, K. C. Ho, and T. P. Lin. 2006. Source populations of Quercus glauca in the last glacial age in Taiwan revealed by nuclear microsatellite markers. Journal of Heredity 97:261–269.
Lemes, M. R., D. Grattapaglia, J. Grogan, J. Proctor, and R. Gribel. 2007. Flexible mating system in a logged population of Swietenia macrophylla King (Meliaceae): implications for the management of a threatened neotropical tree species. Plant Ecology 192:169–179.
Li, Q. J., Z. F. Xu, W. J. Kress, Y. M. Xia, L. Zhang, X. B. Deng, J. Y. Gao, and Z. L. Bai. 2001. Flexible style that encourages outcrossing. Nature 410:432–432.
Liao, J. C. 1996. Lauraceae. Pp. 433–499 in Editorial Committee of the Flora of
Taiwan (editor), Flora of Taiwan, 2nd ed., Vol. 2. Editorial Committee of the Flora of Taiwan, Taipei.
Lloyd, D. G. and C. J. Webb. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperm. 1. Dichogamy. New Zealand Journal of Botany 24:135–162.
Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant population. Annual Review of Ecology and Systematics 15:65–95.
Luo, S. X., D. X. Zhang, and S. S. Renner. 2007. Duodichogamy and androdioecy in the Chinese Phyllanthaceae Bridelia tomentosa. American Journal of Botany 94:260–265.
Navarro, L. 1997. Is the dichogamy of Salvia verbenaca (Lamiaceae) an effective barrier to self–fertilization? Plant Systematics and Evolution 207:111–117.
Nei, M., T. Maruyama, and R. Chakraborty. 1975. Bottleneck effect and genetic variability in populations. Evolution 29:1–10.
Nie, Z. L., J. Wen, and H. Sun. 2007. Phylogeny and biogeography of Sassafras (Lauraceae) disjunct between eastern Asia and eastern North America. Plant Systematics and Evolution 267:191–203.
Powell, W., G. C. Machray, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1:215–222.
Ramsay, L., M. Macaulay, S. D. Ivanissevich, K. MacLean, L. Cardle, J. Fuller, K. J. Edwards, S. Tuvesson, M. Morgante, A. Massari, E. Maestri, N. Marmiroli, T. Sjakste, M. Ganal, W. Powell, and R. Waugh. 2000. A simple sequence repeat–based linkage map of barley. Genetics 156:1997–2005.
Raymond M. and Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity. 86:248–249
Reddy, M. P., N. Sarla, and E. A. Siddiq. 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9–17.
Rehder, A. 1920. The American and Asiatic species of Sassafras. Journal of the Arnold Arboretum 1:242–245.
Rohwer, J. G. 1993. Lauraceae. Pp. 366–391 in K. Kubitzki, J. G. Rohwer & V.
Bittrich (editors), The Families and Genera of Vascular Plants, Vol. 2:
Flowering Plants. Dicotyledons—Magnoliid, Hamamelid, and Caryophyllid
Families. Springer–Verlag, Berlin.
Routley, M. B. and B. C. Husband. 2003. The effect of protandry on siring success in Chamerion angustifolium (Onagraceae) with different inflorescence sizes. Evolution 57:240–248.
Routley, M. B., R. I. Bertin, and B. C. Husband. 2004. Correlated evolution of dichogamy and self–incompatibility: A phylogenetic perspective. International Journal of Plant Sciences 165:983–993.
Sargent, R. D., M. A. Mandegar, and S. P. Otto. 2006. A model of the evolution of dichogamy incorporating sex–ratio selection, anther–stigma interference, and inbreeding depression. Evolution 60:934–944.
Sato, T., Y. Isagi, H. Sakio, K. Osumi, and S. Goto. 2006. Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis. Heredity 96:79–84.
Semagn, K., A. Bjornstad, and M. N. Ndjiondjop. 2006. An overview of molecular marker methods for plants. African Journal of Biotechnology 5:2540–2568.
Simes, R. J. 1986. An improved bonferroni procedure for multiple tests of significance. Biometrika 73:751–754.
Snow, A. A. and K. F. Grove. 1995. Protandry, a neuter phase, and unisexual umbels in a hermaphroditic, neotropical vine (Bomarea acutifolia, Alstroemeriaceae). American Journal of Botany 82:741–744.
Spigler, R. B., J. L. Hamrick, and S.–M. Chang. 2010. Increased inbreeding but not homozygosity in small populations of Sabatia angularis (Gentianaceae). Plant Systematics and Evolution 284:131–140.
Stout, A. 1927. The flower behavior of avocados. New York Botanical Garden.
Streiff, R., T. Labbe, R. Bacilieri, H. Steinkellner, J. Glossl, and A. Kremer. 1998. Within–population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology 7:317–328.
Templeton, A. R. 2006. Population Genetics and Microevolutionary Theory. John Wiley & Sons, Hoboken, New Jersey.
Templeton, A. R., E. Routman, and C. A. Phillips. 1995. Separating population structure from population history: A cladistic–analysis of the geographical distribution of mitochondrial–DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140:767–782.
Thien, L. B., H. Azuma, and S. Kawano. 2000. New perspectives on the pollination biology of basal angiosperms. International Journal of Plant Sciences 161:S225–S235.
Thien, L. B., P. Bernhardt, M. S. Devall, Z. D. Chen, Y. B. Luo, J. H. Fan, L. C. Yuan, and J. H. Williams. 2009. Pollination biology of basal angiosperms (ANITA grade). American Journal of Botany 96:166–182.
Tsuneki, S., K. Mori, S. Kaneko, Y. Isagi, N. Murakami, and H. Kato. 2009. Identification and characterization of eight microsatellite loci in Machilus pseudokobu (Lauraceae), an endemic species of the Bonin Islands. Conservation Genetics 10:2009–2011.
Wang, K. H., M. J. Wu, T. Y. Chiang, and C. H. Chou. 2009. Isolation and characterization of polymorphic microsatellite DNA makers for Euphrasia nankotaizanensis (Orobanchaceae) and cross amplification in another Euphrasia L. Conservation Genetics 10:1163–1165.
Wells, J. A., M. G. Gardner, and A. J. Lowe. 2007. Development of eight polymorphic microsatellites for an Australasian rainforest tree species, Cryptocarya mackinnoniana (Lauraceae). Molecular Ecology Notes 7:981–983.
Yu, Q., Y. W. Zhang, and Y. H. Guo. 2008. Translation and elucidation of common terms in pollination biology. Journal of Systematics and Evolution 46:96–102. (Chinese, with English abstract)
Zhai, S. N., X. L. Yan, K. Nakamura, M. Mishima, and Y. X. Qiu. 2010. Isolation of compound microsatellite markers for the endangered plant Neolitsea sericea (Lauraceae). American Journal of Botany 97:E139–E141.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48250-
dc.description.abstract特有種的臺灣檫樹為臺灣闊葉一級木,亦為珍貴保育類動物寬尾鳳蝶幼蟲的唯一食草植物,在經濟與生態上都具有重要的地位,但是臺灣檫樹只零星分布在臺灣中海拔山區,數量稀少且族群間相互隔離,被認定為易受害物種,需要人為介入經營保育。臺灣林業界長期以來對臺灣檫樹的研究不曾間斷,但由於臺灣檫樹種子休眠期長、小苗死亡率高,復育工作尚待進一步突破。另一方面,臺灣檫樹的生殖生物學在過去缺乏研究,花部形態沒有一致性的論述,Chung et al. (Ann. Missouri Bot. Gard. 97: 1-10. 2010) 在最近的研究中指出,臺灣檫樹實為雌先熟的兩性花,且可能具有同調雌雄異熟的開花行為。本研究於 2009 年與 2010 年對棲蘭山區及太平山的 4 株臺灣檫樹進行觀察與記錄,追蹤時間包含整個花季,共紀錄花芽 165 枚,並以定時連續攝影的方式拍攝 3 枚不同植株的花芽,記錄花芽從萌發到凋謝的過程。研究發現,臺灣檫樹雖然為雌先熟的雌雄異熟完全花,但是並非原先預期的同調雌雄異熟,而為異調雌雄異熟,臺灣檫樹花芽剛萌發出的花為柱頭溼潤,花藥閉合的雌功能花,但是雌功能花最多維持 4 天,便開始轉為柱頭萎縮、花藥開裂的雄功能花。本研究觀察時間最長為 14 天,8–13 天內都有雌花出現,雄花比例在約 7 天後會快速上升且超越雌花比例,顯示檫樹的柱頭與花粉可以同時存在同一株植物上,本研究清楚地表示檫樹為異調雌雄異熟,並顯示其有同株異花受粉的可能性。影像紀錄不僅記錄了花朵形態,亦捕捉到許多動物在花上活動的畫面,最常出現者為雙翅目昆蟲,夜間另有鱗翅目昆蟲。另一方面,為了進一步探討臺灣檫樹族群的遺傳多樣性與遺傳結構,並探討遺傳多樣性與生殖生物學間的關聯,本研究著手開發篩選臺灣檫樹的多型性微衛星體基因座作為遺傳標記,自臺灣北部採集到的 53 個個體中,開發出 14 組具有多型性的微衛星體序列,其中 8 組顯著偏離哈溫平衡,對偶基因數在 2–7 之間,平均為 4.07。預估異型合子比例 (HE) 在 0.743–0.126 之間,平均值為 0.475,實際異型合子比例 (HO) 在 1.000–0.081 之間,平均值為 0.483。比較臺灣其他維管束植物族群的微衛星體分析結果後,本研究認為臺灣檫樹族群的遺傳多樣性並不高,形成原因可能是因為瓶頸效應或是近親交配所造成。zh_TW
dc.description.abstractSassafras randaiense (Lauraceae), an ecologically and economically important tree noted as the sole host plant of the highly endangered broad-tailed swallowtail butterfly (Agehana maraho), is a rare and vulnerable endemic species with scattered and isolated populations in the mid elevation forest of Taiwan. Although considerable research efforts had been invested to study and conserve this precious species, silviculture of S. randaiense remains challenging due to its low and variable seed production, deep seed dormancy, and high mortality of seedlings. Recently Chung et al. (Ann. Missouri Bot. Gard. 97: 1-10. 2010) reported that S. randaiense is hermaphroditic and protogynous with a possible sexual system of synchronous dichogamy, rejecting previous accounts claiming polygamy for the species. To test the proposition of synchronous dichogamy that may partially explain its unpredictable seed yield, the reproductive biology of S. randaiense was investigated during its flowering seasons in 2009 and 2010. With the aid of three scaffold observatories in Chilanshan and Taipingshan areas, the sexual phases of 165 inflorescence buds of four trees were recorded and tracked for their entire flowering periods. Photographs were also taken at a one hour interval for selected inflorescences to record the changes of sexual phase and flower visitors. Surprisingly, although our observations confirm the protogyny in S. randaiense, flowers within an individual tree did not change their sexual phase synchronously. Instead the bright and flesh white stigma, signifying the female phase of each flower, lasted for less than 4 days and then became brown and wilted, following by the male phase. For each tree, female phase flowers were present for 8 to 13 days, and at the 7th day, portion of male phase flowers exceeded those of female phase. Based on field observations and interval timing shooting, diptera were the most frequent flower visitors, with moths also being recorded by camera during the night time. Our data clearly show that asynchronous dichogamy better characterizes the sexual system of S. randaiense and geitonogamy is possible with an individual tree.
In addition to the study of reproductive biology, polymorphic microsatellite loci were also isolated and characterized. Of the 14 polymorphic microsatellite loci developed, 8 deviate significantly from Hardy-Weinberg equilibrium. The number of alleles range from 2 to 7 and the average number is 4.07 alleles per locus. Expect heterozygosity ranges from 0.743–0.126 and observe heterozygosity is from 1.000–0.081. Compared to microsatellite genetic variation of other vascular plant species in Taiwan, S. randaiense has much lower low genetic diversity, likely resulted from bottleneck effect or inbreeding commonly observed in tree species of small and isolated population size.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:50:11Z (GMT). No. of bitstreams: 1
ntu-100-R97625020-1.pdf: 2595292 bytes, checksum: fd571a4b55da52f36157fc9e503bbb6e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstrct III
縮寫名詞對照表 V
第一章 前言 1
一、臺灣檫樹簡介 1
二、臺灣檫樹生殖生物學的研究現況 2
(一) 花部形態與生殖系統 2
(二) 族群結構與生殖系統 5
三、微衛星體分子標記 7
四、研究目的 8
第二章 研究方法 9
一、臺灣檫樹的花朵之觀察與紀錄 9
(一) 野外觀察 9
(二) 授粉實驗 12
(三) 顯微鏡觀察 12
二、臺灣檫樹的多型性微衛星體基因座之開發與特性分析 13
(一) 樣本採集 13
(二) 萃取 DNA 14
(三) 檢測釣樟屬植物微衛星引子在臺灣檫樹之適用性 15
三、自行篩選臺灣檫樹之微衛星體序列 16
(一) 前置作業 16
(二) 使用磁力與探針選出含有微衛星體的 DNA 片段 17
(三) 選殖與複製 DNA 片段 19
(四) 引子製作 20
(五) 微衛星體基因座核酸片段分析 20
第三章 結果 23
一、臺灣檫樹花的觀察 23
(一) 形態與構造 23
(二) 開花週期 26
(三) 訪花動物紀錄 36
二、授粉實驗 38
三、近緣屬微衛星體基因座引子測試 39
四、臺灣檫樹的微衛星體基因座之篩選 39
第四章 討論 44
一、臺灣檫樹的雌先熟與異調雌雄異熟 44
二、臺灣檫樹可能傳粉動物之觀察 45
三、臺灣檫樹的遺傳多樣性 45
四、未來工作 47
參考文獻 48
附錄一:藥品配方 56
dc.language.isozh-TW
dc.title臺灣檫樹開花行為與微衛星體基因座之特性分析zh_TW
dc.titleObservations of Flower Biology and Characterization of Microsatellite Loci of Sassafras randaienseen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林世宗(Shu-Tzong Lin),林讚標(Tsan-Piao Lin)
dc.subject.keyword臺灣&#27307,樹,交配系統,開花行為,雌雄異熟,微衛星體,zh_TW
dc.subject.keywordSassafras randaiense,mating system,flower biology,dichogamy,microsatellite,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2011-02-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved