Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48244
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃燦輝
dc.contributor.authorCheng-Hsun Chenen
dc.contributor.author陳正勳zh_TW
dc.date.accessioned2021-06-15T06:50:00Z-
dc.date.issued2011
dc.date.submitted2011-02-18
dc.identifier.citationA. Nasseri-Moghaddam, G. Cascante,_, C. Phillips, D.J. Hutchinson, (2007), ' Effects of underground cavities on Rayleigh waves—Field and numerical experiments,' Soil Dynamics and Earthquake Engineering, 27, P 300–313.
A. Amorosi, D.Boldini, (2009), ' Numerical modelling of the transverse dynamic behavior of circular tunnels in clayey soils,' Soil Dynamics and Earthquake Engineering, 29, P 1059–1072.
Asakura, T., Kojima, Y., Matsunaga, T., (2007), 'Damage to mountain tunnels by earthquake and deformation mechanism,' In: Proc. 11th Cong. Int. Soc. Rock Mech. Vol. 2, 819-824.
Barton, N (2002), 'Some new Q-value correlations to assist in site characterisation and tunnel design,' Int. J. Rock Mech. Min. Sci. Vol. 39, P 185-216.
Brandl, J. and Neugebauer, E. (2002), “Turkish motorway network – challenges to tunnel design,” FELSBAU, vol. 20: 24-33.
Chen, C. H., Wang, T. T. Jeng, F. S. and T. H. Huang (2010), “Mechanisms causing seismic damage of tunnels at different depths,” Tunnelling and Underground Space Technology. (submitted)
Dowding, C.H. and Rozen, A., (1978), 'Damage to rock tunnel from earthquake shaking,' Journal of the Geotechnical Engineering Division, No. 2, P 175-191.
Ghasemi, H., Cooper, J. D., Imbsen R., Piskin, H., Inal, F. and Tiras, A. (2000). “The November 1999 Duzce earthquake: Post-earthquake investigation of structures on the TEM,” Publication no. FHWA-RD-00-146.
Hashash, Y. M. A., J. J. Hook, B. Schmidt and K. I. C. Yao, (2001), 'Seismic design and analysis of underground structures,' Tunnelling and Underground Space Technology, Vol 16, P247-293.
IES-AS & CEER-NTU (Institute of Earth Sciences,Academia Sinica & Center of Earthquake Engineering Research National Taiwan University) (1992), Site dependent design spectrum for Taiwan region,IESER 93002.
Koji Uenishi (2002), Mechanical properties of an underground structure with small overburden subjected to vertical disturbance, report of the research center for urban safety and security, Kobe university,vol.6,p35-49.
Krammer, S. L. (1996), Geotechnical Earthquake Engineering, Prentice Hall, New Jersey.
Kuesel, T. R., (1969), 'Earthquake design criteria for subway,' J. Struct. Div., ASCE ST6, P1213-1231.
Kunita M.,Takemata R.,Iai Y.(1994),Restoration of a tunnel damaged by earthquake, Tunnelling and Underground Space Technology, Vol 9, No4, P439~448.
Lars Rosengren(1993), 'Preliminary analysis of the dynamic interaction between Norra Lanken and a Subway Tunnel for Stockholm, Sweden', Tunnelling and Unerground Space Technology, Vol8, No.4, P429~P439.
Merritt, J.L., Monsees, J.E., and Hendron, A.J., 1985, “Seismic design of underground structures,” Proceedings of the 1985 Rapid Excavation Tunneling Conference, Vol. 1, pp. 104-131.
Mow, C. C. and Mente, L. J. (1963), “Dynamatic stress and displacement discontinuities due to plane harmonic shear wave, ” Transactions of the ASME, 598-603.
Pao, Y. H. (1962), “Dynamical stress concentration in an elastic plate, ” Journal of Applied Mechanics, vol. 29, 299-305.
Peck, R.B., Hendron, A.J., Mohraz, B.(1972) , State of the art in soft ground tunneling. In: Proc. Rapid Excav. Tunnel. Conf. American Institute of Mining, Metallurgical and Petroleum Engineers, New York, 259-286.
Penzien, J. (2000), “Seismically induced racking of tunnel linings, ” Earthquake Engineering and structural Dynamics, vol. 29, 683-691.
Power, M., D. Rosidi and J. Kaneshiro, (1998), 'Seismic vulnerability of tunnels-revisited,' In: Proceedings of the North American Tunneling Conference (ed. by Ozedimir, L.), Elsevier, Long Beach, CA, USA.
Sharma, S. and W. R. Judd, (1991), 'Underground opening damage from earthquakes,' Engineering Geology, 30, P263-276.
St.John,C.M.and Zahrah,T.F.(1987), “Aseismic design of underground structure, ” Tunnelling and underground Space Technology, 2(2), 165-197.
Sun-Hoon kim and kwang-Jin Kim(2001). 'Three-dimensional dynamic vesponse of underground openings in saturated rock masses', Earthquake Engineering and Structural Dynamics, Vol30, P765~782.
Von Johann Golser and Daniela Burger, (2001),Tunnelbau im nordanatolischen erdben gebiet,19,nr5,Felsbau.
Wang, J. N (1993),”Seismic design of tunnels - a simple state-of the art design approach,” Parsons Brinckerhoff Inc.
Wang, W. L., T. T. Wang, J. J. Su, C. H. Lin, C. R. Seng and T. H. Huang, (2001), ' Assessment of damages in mountain tunnels due to the Taiwan Chi-Chi Earthquake,' Tunnelling and underground Space Technology, Vol16,P133-150.
Wang, W. L., T. T. Wang, J. J. Su, C. H. Lin, C. R. Seng and T. H. Huang, (2001), ' Assessment of damages in mountain tunnels due to the Taiwan Chi-Chi Earthquake,' Tunnelling and underground Space Technology, Vol16,P133-150.
Wang, Z. Z., Gao, B., Jiang, Y. J. and Yuan, S. (2009), “Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake, ” Sci China Ser E- Tech Sci., 52(2): 546-558.
Yashiro, K., Kojima, Y. and Shimizu, M. (2007), “Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquak, ” Quarterly Report of Railway Technical Research Institute, 48(3): 136-141.
中央氣象局, www.cwb.gov.tw
中華顧問工程司(2000),「921集集大地震地質及地工災害勘查報告」,921集集大地震專輯
公共工程委員會「台灣地區隧道岩體分類暨隧道工程資料庫之建立(一)」(2000)
日本土木學會(1996),「日本隧道工程標準規範及解說[山岳工法篇]」,財團法人中興工程科技研究發展基金會(2001譯)。
日本土木學會隧道工學委員會(2008),新潟県中越沖地震調査特別小委員會報告書,日本土木學會,東京。
王文禮、王泰典(2000),「集集大地震三義壹號鐵路隧道震害因素探討」,中華技術學院慶祝改制週年論文發表研討會,5月11~12日,第279-288頁,台北。
王文禮、王泰典、蘇灼謹、林峻弘、諶家瑞、黃燦輝(2000年10月),「台灣中部岩石隧道之震害與修復」,地工技術,第81期,第5-18頁
台北市政府捷運工程局(1991),「台北都會區大眾捷運系統土木工程設計手冊(CEDM)」,CEML/010/8。
吉川惠也(1979),「鉄道トこネルの震災事例調查」,鐵道技術研究報告,No.1123.
吉隨旺,唐永建,胡德貴(2009),「西川省汶川地震災區幹線公路典型震害特徵分析」,岩石力學與工程學報,28(6),第1250-1260頁。
李育樞、李天斌、王棟、徐華、劉吉,黃草坪2#隧道洞口段減震措施的大型振動臺模型試驗研究,第28卷,第6期,P1128-1136,岩石力學與工程學報(2009)
岡本舜三(1987),(國立台灣大學工學院地震工程研究心編譯),「地震工程學」,科技圖書股份有限公司,台北。
胡耀展(1988),震波空間變異性對結構隨機反應的影響,台灣大學土木工程學研究所碩士論文,台北。
徐明同(1998),「地震工程」,中國工程師學會(再版)。
清水滿、栗粞基彰,加藤正二(2005)「新瀉縣中越地震におけそ鐵道トこネルの被害」,トこネルと地下,第36卷5號,第37~44頁.
陳正勳、王泰典、黃燦輝 (2010),「山嶺隧道受震損害類型與原因之案例研究」,岩石力學與工程學報,第30卷,第1期,第45~57頁。
陳正勳、黃燦輝(2006),「山嶺隧道受震之破壞型態及其機制初探」,第五屆海峽兩岸隧道與地下工程學術與技術研討會論文集,第 A22-1~A22-8頁。
曾大仁,李友恆,張淵明,王怡仁,2007,中寮隧道北口襯砌龜裂及路面下陷之修復與監測,第十二屆大地工程研討會,PC3-05-01~PC3-05-11
曾威量(2001),岩石隧道受集集地震損害分析,台灣大學土木所碩士論文,台北。
朝倉俊弘、志波由紀夫、松岡茂、大矢敏雄、野城一榮(2008),「山岳隧道之地震災害及其發生機制」,岩盤工程研討會論文集,臺北,第20-36頁。
黃茂松、曹傑(2010),「隧道地震回應簡化分析與動力離心試驗驗證」, 岩石力學與工程學報,29(2),第271-280頁。
黃燦輝、何泰源、張吉佐、姚錫齡、常岐德、李宏徹(1999),「震後隧道結構快速診斷手冊之建立與震後隧道結構快速補強手段」,行政院公共工程委員會研究報告,台北。
蔡宜璋(1998年),「半無限域中散射體承受傾斜入射波引起之散射現象」,國立台灣大學土木工程研究所博士論文。
蔣華、蔣樹屏、王曉雯、林義,斷層帶處公路隧道橫斷面抗震分析,第29卷,第1期,P14-P18,隧道建設(2009)
盧志杰,隧道受震反應分析之研究,中央大學土木工程學系博士論文,中壢,2009。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48244-
dc.description.abstract臺灣自1935年新竹-臺中地震即造成鐵路隧道損害案例,1999年921集集大地震亦造成約五十座岩石隧道受震損壞,除洞口段受損外,隧道襯砌亦發生裂縫或損壞,其中以鐵路山線三義壹號隧道與石岡壩引水隧道破壞最為嚴重,分別影響西部鐵路交通運輸及中部地區民生用水。國外如日本、美國、土耳其及中國大陸岩石隧道受震破壞案例亦時有所聞。臺灣地震發生頻繁,岩石隧道總長度已逾八百公里,相較於土壤隧道已有明確可行之耐震分析與設計規範可供依循,岩石隧道不僅受震反應欠缺耐震分析規範,亦無適當考慮岩體工程特性的量化分析方法可以參考,究其原因,主要係目前有關岩石隧道受震損壞類型缺乏系統性探討,受震反應認識未臻完善所致。隧道及地下結構物相關受震課題漸受重視之際,岩石受震破壞機制與影響因素亟待建立分析模式深入探討。
本研究旨在建立適用於岩石隧道受震反應的分析模式。透過國內外震後岩石隧道破壞案例之蒐集,整理隧道受震時損壞類型、部位與型態,藉以探討岩石隧道受震損害力學機制與重要的影響因素;繼而據以建立數值分析模式,經解析解驗證模式的正確性後,應用於隧道實際破壞案例,透過破壞類型與受損部位的解釋,佐證本研究所提數值分析模式的應用性。最後應用所提數值分析模式,探討岩石隧道受震反應的地盤影響因子與工程影響因子兩大部份,以明瞭岩石隧道受震反應、可能的破壞型態及破壞機制,提供岩石隧道耐震分析與設計的參考。
國內外隧道受震破壞案例蒐集與整理得知,襯砌受震破壞型態包括:(1)襯砌遭斷層剪斷破壞、(2)隧道因邊坡坍滑而破壞、(3)襯砌縱向裂縫、(4)襯砌環向裂縫或環向施工縫錯動、(5)襯砌環狀剝落、以及(6)襯砌斜向裂縫與剝落等6種,其中第(1)項係隧道與斷層錯動帶相交引致,第(2)項係隧道疪鄰邊坡破壞引致,而第(3)至(6)項則係隧道所處位置地盤震動過大所致。
透過數值模擬途徑建立分析模式,利用有限元素法進行動態歷時分析,考慮平面應變條件下隧道受震引致的襯砌應力增量,探討岩石隧道受震反應以及襯砌破壞機制。經比較解析解進行驗證後,再應用於探討隧道受震損壞案例的損壞機制與影響因素,確認本研究所提分析模式的應用性。利用數值模擬所得受震引致襯砌應力增量最顯著位置,交叉比對隧道受震損害之裂縫空間分佈獲知:襯砌縱向裂縫主要受地震波中S波垂直或45°或高頻P波垂直入射,引致襯砌軸力與彎矩增加而影響。環向裂縫或環向施工縫錯動則受到水平向傳遞P波造成的張力破壞以及Love波造成襯砌應力增加的影響。環狀剝落與隧道承受地盤較顯著的水平向應力、S波45°入射及交叉或擴挖段引致應力集中有關,而斜向裂縫則係震波造成軟硬互層圍岩的應變差異以及襯砌結構勁度特性所致,併可由受震損害區段因震波受地表自由面反射與隧道散射效應,導致襯砌受震引致應力大幅增加現象而發生損害。
應用本研究所提分析模式探討岩石隧道受震地盤因子之影響獲知,震波引致襯砌最大正規化軸應力、剪應力及撓曲應力增量隨覆蓋深度之分佈,與輸入波之頻率或波長(λ)相關,且於正規化覆蓋H/λ=0.25時有尖峰值,研判隧道襯砌因入射波、自由面反射波及隧道散射作用互制影響而放大;同時可發現阻尼比越大,隨覆蓋越深,正規化襯砌相關最大應力值越小,或為淺覆蓋發生損壞機率較高原因之一。而依據本研究分析模式考慮不同深度、襯砌勁度、阻尼、斷面形狀等之第一尖峰值皆發生於H/λ=0.25附近,與三義壹號隧道於1999年集集地震中損壞區段覆蓋厚度與岩盤卓越頻率的組合皆在H/λ=0.25範圍相符,可解釋三義壹號隧道地質較差之岩體,受損位置發生於較淺區段,地質較佳之岩體,受損位置發生於較深區段,亦可解釋地質較佳岩體於深覆蓋發生損壞原因。此外,於相同輸入波與頻率情況下,地質越差岩體或趨近於第五類或第六類岩體類別,其波長越短,波長與隧道直徑之比值越小,襯砌相關最大應力越大,此可解釋國內外隧道案例於較差岩體較易損壞之原因。
應用本研究所提分析模式探討岩石隧道受震工程因子的影響獲知,襯砌勁度越大,震波引致最大應力增量正規化值愈大,即震波引致應力增量值愈大,因此隧道襯砌耐震設計不能全以提高勁度為主要方法。隧道襯砌與岩盤互制作用研究結果顯示,採用勻滑開挖、防水膜及襯砌與岩盤填補增加滑動性材料等,可減少襯砌受震引致軸向應力增量,達到減震效果;岩石隧道混凝土襯砌外側之再加厚襯砌與輔助工法等加勁措施,經過採用等值勁度模擬分析結果顯示,提高加勁勁度將增加襯砌軸向應力,但減少剪應力及撓曲應力;加大加勁範圍可減少襯砌軸向應力,但將增加剪應力及撓曲應力;開挖引致的鬆動區具有減少加勁勁度的效果,將減少襯砌軸向應力,但增加剪應力及撓曲應力。
zh_TW
dc.description.abstractSince 1935, the railway tunnels Taiwan were damage due to Hsinchu-Taichung earthquake.After the 921 earthquake in 1999, about fifty rock tunnel had been damaged. In addition to the damages at portal slopes, the tunnel lining were cracked or damaged, The most serious damage were Sanyi railway no.1 tunnel and Shek Kong dam diversion tunnel that affected railway transportation and water supply in the western part of Taiwan. According to the literature shows that there were rock tunnels damaged triggered by earthquake in Japan, the United States, Turkey and China. The earthquakes occur frequently and the total length of the tunnels stretch over eight hundred kilometers in Taiwan, while the soil tunnel has been clear and feasible for the seismic analysis and specification to follow. Nerveless, there are fewer seismic design specifications for reference. In this manner, this study review and analyze the rock tunnels damaged due to earthquake in Taiwan and overseas first. It is found the failure mechanism of rock tunnel could be separated into ground shaking, fault dislocation, ground failure (including portal slope failure). The ground shaking is studied due to complex failure mechanism compared to the other two. Besides, this study explore the failure mode, the failure mechanism and influence factors of the seismic damage of rock tunnel through the analysis of the dynamic numerical model verified by analytical solution.Considering the features of wave propagation in the surrounded rock and construction methods of the tunnel, this study explores the seismic behavior, failure mode and failure mechanism of the tunnel. Results of this study include: the comparison the characteristics of the soil tunnel and rock tunnel, the seismic damage pattern and location, failure mechanism, establishment of the dynamic numerical model, seismic behavior , failure mechanism through numerical results. The sub-subjects are divided into geological factors and engineering factors for the seismic response of tunnel. The geological factors include the depth of the tunnel, damping ratio of rock mass and rock type. Engineering factors include the tunnel cross-section shape, lining stiffness, interaction between the lining and rock, reinforcement of the surrounding rock by rock bolt and auxiliary methods, disturbance zone due to poor excavation. the seismically induced stress ofr the tunnel lining from the numerical results are, maximum axial stress, maximum shear stress and maximum flexural stress according to practical application of lining design. Finally, this study analyzes seismic damage to the tunnel by representative case ,the literature and numerical results, the failure mode of rock tunnel and its mechanism for academic and engineering
applications.
The rock mass and tunnel lining are assumed to be homogeneous, isotropic and elastic. Seismic wave is simulated as harmonic S wave, P wave and Rayleigh wave with the frequency within the range of predominant frequency in rock mass, 1~ 5Hz. The maximum axial stress, maximum shear stress and maximum flexural stress of the lining are normalized by maximum stress of incident wave. Tunnel depth H is normalized by wavelength λ. Analysis result of the study about geological factors shows the distribution of maximum axial stress, shear stress and flexural stress varied with depth are related to frequency or wavelength (λ) of the incident wave. The peak values of the related stresses occur when the value of H / λ is 0.25. It could be the effect of the incident wave, reflected
wave from free surface and the scattering of the tunnel.
The greater the damping ratio can be, the smaller maximum related stresses of the lining with depth are. This could explain the reason for the higher probability of seismic damaged in shallow depyh. Also, under the assumptions of this study, different depths, lining stiffness, damping, and cross section shape of the first peak occur at the H / λ value of 0.25. Finally, by establishing the H / λ = 0.25 relationship with Sanyi no.1 tunnel damaged due to Chi-Chi earthquake in Taiwan. This comparative case study shows the all the damage positions of rock tunnel are located within the predominant frequency 1 ~ 5Hz for the relationship of H / λ = 0.25. These indicate the reasonableness of the relationship. It could be the reason the seismic damage occurred in the shallow depth when the geology of rock mass and in the deeper depth when the geology of rock mass is good. In addition, the worse the geology of rock mass like rock type V or VI is and the shorter the wavelength is, when the same incident wave with the same frequency. When the ratio of the wavelength to the diameter of the tunnel is small, the maximum stresses of lining are larger. This could
explain rock tunnels in poor geological condition were easily damaged.
Analysis of engineering factors shows that the greater the lining stiffness is, the greater maximum stress of lining is. That is it is not suitable to enhance the stiffness as the main seismic design of tunnel lining. For the study about the interaction between tunnel lining and rock mass, smooth excavation face, waterproof membrane and filled materials to increase the slip behavior between the rock and lining can reduce the stresses and achieve the reduction of seismic action. This study simulates reinforcement measures of rock tunnel such as shotcrete lining and the auxiliary methods by the increase of equivalent stiffness of related rock mass. The increase of stiffness of lining will increase the maximum axial stress of the lining, but it will reduce the maximum shear stress and flexural stress. The increase of the area of the reinforced section will decrease the maximum axial stress of the lining, but it will increase the maximum shear stress and flexural stress. On the other hand, loosen area in surrounding rock due to poor excavation will reduce the reinforcement stiffness. It will decrease the maximum axial stress of the lining, but it will increase the maximum shear
stress and flexural stress.
Finally,the four significant damage patterns of lining are also elucidated,including the longitudinal cracks,circumferential cracks or construction joint dislocation,circularity-spalling of lining concrete,as well as oblique cracks and associated spalling of lining concrete. The seismically induced exceeding axial- and flexural stress caused by the S wave with vertical and 45˚ incident elevation angle yield to the longitudinal cracks. The tensile failure caused by horizontally propagating P wave and the stress increment caused by Love wave dominate the circumferential cracks or construction joint dislocation. The stress increment caused by the S waves with 45˚ incident elevation angle,occurred nearby opening refuges and amplified while a tunnel subjected to significantly horizontal stress results in the circularity-like spalling. The propagating S wave induced distinct strains in-between of the soft and hard rock layer lead to the oblique cracks and associated spalling. This study clarifies the seismically induced damage patterns of rock tunnels and associated
affecting factors,which is conductive to seismic design for tunnels.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:50:00Z (GMT). No. of bitstreams: 1
ntu-100-D90521022-1.pdf: 18620127 bytes, checksum: 0243cb73c2806288170e95425f3945b1 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
誌 謝 ii
摘 要 iii
Abstract vi
目 錄 ix
表 目 錄 xii
圖 目 錄 xiv
符號對照表 xxiii
第一章 導論 1-1
1.1 研究動機 1-1
1.2 研究目的 1-2
1.3 研究流程與步驟 1-3
1.4 本文內容 1-4
第二章 文獻回顧 2-1
2.1 台灣區域地震 2-1
2.2 台灣隧道現況 2-1
2.3 隧道受震破壞案例 2-2
2.3.1 台灣 2-2
2.3.2 國外 2-4
2.4 隧道受震之影響因素 2-6
2.4.1 國內外相關統計資料回顧 2-6
2.4.2 其它影響因素之研究 2-7
2.5 隧道受震行為及目前耐震分析方法 2-9
2.5.1隧道受震行為 2-9
2.5.2 目前耐震分析方法 2-11
2.6 隧道耐震設計規範 2-25
第三章 隧道受震損害案例與破壞機制探討 3-1
3.1 岩石與土壤隧道受震特性比較 3-1
3.2 隧道受震損害案例探討 3-3
3.2.1 國內三義壹號隧道受震損壞案例 3-4
3.2.2 大陸隧道於汶川地震中損壞案例 3-6
3.2.3 日本隧道受震損壞案例 3-7
3.2.4 其他地區隧道受震損壞案例 3-8
3.3 隧道受震損害類型與損害部位 3-8
3.3.1 損害類型 3-8
3.3.2 損害部位 3-9
3.3.3 襯砌受震損害型態 3-9
3.4 隧道受震破壞機制之探討 3-10
3.4.1 破壞機制 3-10
3.4.2 影響因子 3-11
第四章 分析模式之建立與驗證 4-1
4.1 分析模式之建立 4-1
4.1.1 數值模型元素尺寸 4-1
4.1.2 數值模型邊界範圍 4-2
4.2 與解析解之比對驗證 4-5
4.2.1 簡諧P波作用情況 4-5
4.2.2 簡諧S波作用情況 4-6
4.2.3 R波作用情況 4-6
4.3 與隧道受震損害案例之比對驗證 4-8
4.3.1 破壞類型、部位與型態之比較 4-8
4.3.2 覆蓋深度與襯砌震害嚴重區段之比較 4-10
第五章 隧道受震反應之地盤影響因子 5-1
5.1 隧道受震二維數值模型 5-1
5.1.1 隧道幾何斷面與網格尺寸 5-1
5.1.2 震波參數 5-1
5.1.3 岩體與襯砌材料參數 5-2
5.2 覆蓋深度的影響 5-2
5.2.1 覆蓋深度範圍 5-2
5.2.2 分析結果 5-3
5.3 阻尼特性的影響 5-6
5.4 岩體類別的影響 5-6
5.5 小結 5-7
第六章 隧道受震反應之工程影響因子 6-1
6.1 數值模型及參數 6-1
6.2 隧道斷面的影響 6-1
6.3 襯砌剛度的影響 6-2
6.4 襯砌與岩盤互制影響 6-3
6.5 隧道圍岩加勁影響 6-4
6.6 隧道圍岩弱化影響 6-5
6.7 小結 6-5
第七章 結論與建議 7-1
7.1 結論 7-1
7.2 建議 7-3
參考文獻 8-1
附錄A 簡諧S與P波入射二維半無限域空間之彈性解析解 A-1
附錄B 人工吸能邊界 B-1
附錄C 隧道位於地質弱帶破壞案例 C-1
附錄D 口試委員意見及意見回覆 D-1
dc.language.isozh-TW
dc.title岩石隧道受震行為及襯砌破壞機制之研究zh_TW
dc.titleStudy on the Seismic Behavior of Rock Tunnels and Failure Mechanism of Liningsen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee葉超雄,鄭富書,林銘郎,褚炳麟,陳堯中
dc.subject.keyword岩石隧道,隧道襯砌,受震行為,破壞型態,破壞機制,zh_TW
dc.subject.keywordrock tunnel,tunnel lining,seismic behaviour,failure pattern,failure mechanism,en
dc.relation.page230
dc.rights.note有償授權
dc.date.accepted2011-02-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
18.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved