Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48226
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋聖榮(Sheng-Rong Song)
dc.contributor.authorLi-Wei Kuoen
dc.contributor.author郭力維zh_TW
dc.date.accessioned2021-06-15T06:49:28Z-
dc.date.available2011-03-12
dc.date.copyright2011-03-12
dc.date.issued2011
dc.date.submitted2011-03-02
dc.identifier.citationAbercrombie, H. J., I. E. Hutcheon, J. D. Bloch, P. de Caritat, 1994. Silica activity and the smectite-illite reaction, Geology 22:6, p.539-542.
Abercrombie, R. E., J. R. Rice, 2005. Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International 162, p. 406.
Andersen, T. B. and H. Austrheim, 2006. Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica, Earth and Planetary Science Letters 242, p. 58-72.
Austrheim, H., and T. M. Boundy, 1994. Pseudotachylytes generated during seismic faulting and eclogitation of the deep crust. Science 265, p. 82-83.
Bai, T. B., S. Guggenheim, S. J. Wang, 1993. Metastable phase relations in the chlorite-H2O system, American Mineralogist 78, p. 1208-1216.
Bauluz, B., D. R. Peacor and C.J. Hollis, 2004. TEM study of meteorite impact glass at New Zealand Cretaceous–Tertiary sites: evidence for multiple impacts or differentiation during global circulation?, Earth and Planetary Science Letters 219, p. 209–219.
Biscaye, P. E.,1965. Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans, Geological Society of American. Bulletin 76, p. 803-832.
Boullier, A. M., T. Ohtani, K. Fujimoto, H. Ito, M. Dubois, 2001. Fluid inclusions in pseudotachylytes from the Nojima fault, Japan. Journal of Geophysical Research 106, p. 21,965-21,977.
Boullier, A. M., E. C. Yeh, S. Boutareaud, S. R. Song, C. H. Tsai, 2009. Micro-scale anatomy of the 1999 Chi-Chi earthquake fault zone, Geochemistry Geophysics Geosystems 10 (3), Q03016.
Boutareaud, S, A. M. Boullier, M. Andréani, D. G. Calugaru, P. Beck, S. R. Song, T. Shimamoto, 2010. Clay clast aggregates in gouges: New textural evidence for seismic faulting, Journal of Geophysical Research 115, B02408, doi:10.1029/2008jb006254.
Brantut, N., A. Schubnel, J. N. Rouzaud, F. Brunet, and T. Shimamoto, 2008. High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics, Journal of Geophysical Research 113, B10401, doi:10.1029/2007JB005551.
Brindley, G.W., and S.Z. Ali, 1950. Thermal Transformations in Magnesium Chlorites, Acta Crystallographica 3, p.25-30.
Brindley, G. W., and M. Nakahira, 1959. The kaolinite-Mullite reaction series, Journal of the American Ceramic Society 42, p.311-324.
Brodsky, E. E., H. Kanamori, 2001. Elastohydrodynamic lubrication of faults, Journal of Geophysical Research, Solid Earth 106, p. 16357–16374.
Brodsky, E. E., J. Mori, P. M. Fulton, 2010. Drilling into faults quickly after earthquakes, EOS, Transactions, American geophysical union 91, p. 237-238.
Byerlee, J. D., 1970. The mechanics of stick slip, Tectonophysics 9 (5), p. 475-486.
Caillère, S., S. Hénin, 1960. Relationship between the crystallochemical constitution of phyllites and their dehydration temperature, Application in the case of chlorites, Bulletin of Society France Ceramic 48, p. 63-67.
Caine, J. S., J. P. Evans, C. B. Forster, 1996. Fault zone architecture and permeability structure, Geology 24 (11), p. 1025-1028.
Camacho, A., R. H. Vernon, J. D. Fitz Gerald, 1995. Large volumes of anhydrous pseudotachylyte in the Woodroffe Thrust, eastern Musgrave Ranges, Australia. Journal of Structural Geology 17, p. 371-383.
Carroll, D., 1970. Clay Minerals: A guide to their X-Ray Identification.
Chamley, H., 1989. Clay Sedimentology, Springer, New York, p. 623.
Chen, Y. G., W. S. Chen, J. C. Lee, Y. H. Lee, C. T. Lee, H. C. Chang, H. C. Lo, 2001. Surface rupture of 1999 Chi-Chi earthquake yields insights on active tectonics of central Taiwan, Bulletin of Seismological Society of America 91, p. 977-985.
Chen, W. M, H. Tanaka, H. J. Huang, C. B. Lu, C. Y. Lee, C. Y. Wang, 2007. Fluid infiltration associated with seismic faulting: examining chemical and mineralogical composition of fault rocks from the active Chelungpu fault, Tectonophysics 443, p. 243-254.
Chester, F. M., and J. M. Logan, 1986. Implications for mechanical properties of brittle faults from observation of the Punchbowl fault zone, California, Pure and Applied Geophysics 124, p. 79-106.
Chester, F. M., and J. M. Logan, 1987. Composite planar fabric of gouge from the Punchbowl fault, California, Journal of Structural Geology 9, p. 621-634.
Chester, F. M., J. P. Evans, R. L. Biegel, 1993. Internal structure and weakening mechanisms of the San Andreas Fault, Journal of Geophysical Research 98, p. 771-786.
Chester, F. M., J. M. Chester, D. L. Kirschner, S. E. Schulz, J. P. Evans, 2004. Structure of large-displacement, strike-slip fault zones in the brittle continental crust, in Rheology and deformation of the Lithosphere at Continental Margins, G. D. Karner, J. D. Morris, N. W. Driscoll, and E. A. Silver (Editors), Columbia University Press, New York, p. 223-260.
Chester, J. S., F. M. Chester, A. K. Kronenberg, 2005. Fracture surface energy of the Punchbowl fault, San Andreas system, Nature 437, p. 133-136.
Childs, C., T. Manzocchi, J. J. Walsh, C. G. Bonson, A. Nicol, M. P. J. Schöpfer, 2008. A geometric model of fault zone and fault rock thickness variations, Journal of Structural Geology 31 (2), p. 117-127.
Chiu, H. T., 1971: Folds in the northern half of western Taiwan. Petroleum Geology of Taiwan 8, p. 7-19.
Covey, M., 1984. Lithofacies analysis and basin reconstruction, Plio-Pleistocene Western Taiwan foredeep, Petrological Geology of Taiwan 20, p. 53-83.
Dalguer, L. A., J. D. Irikura, J. D. Riera, H. C. Chiu, 2001. The importance of the dynamic source effects on strong ground motion during the 1999 Chi-Chi, Taiwan, earthquake: brief interpretation of the damage distribution on building, Bulletin of Seismological Society of America 91, p. 1112-1127.
Di Toro, G. and G. Pennacchioni, 2004. Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps), Journal of Structural Geology 26, p.1783-1801.
Di Toro, G. and G. Pennacchioni, 2005. Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps), Tectonophysics 402, p. 54-79
Di Toro, G., G. Pennacchioni, G. Teza, 2005. Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults, Tectonophysics 402, p. 3-20.
Di Toro, G., T. Hirose, S. Nielsen, G. Pennacchioni, T. Shimamoto, 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes, Science 311, p. 647-649.
Dubacq, B., O. Vidal, V. D. Andrade, 2010. Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates, Contributions to Mineralogy and Petrology 159, p.159–174; DOI 10.1007/s00410-009-0421-6.
Esquevin, J., 1969. Influence de la composition chimique des illites surcristallinite, Bulletin of Centre Rech. Rau SNPA 3, p. 147–153.
Evans, J. P., and F. M. Chester, 1995. Fluid-rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures, Journal of Geophysical Research 100, p. 13,007-13,020.
Fagel, N., T. Boski, L. Likhoshway, H. Oberhaensli, 2003. Late quaternary clay mineral record in central lake Baikal (Academician Ridge, Siberia), Palaeogeography, Palaeoclimatology, Palaeoecology 193, p. 159-179.
Faulkner, D.R., E. H. Rutter, 2001. Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology 29, p. 503–506.
Freed, R. L., D. R. Peacor, 1989. Variability in temperature of the smectite/ illite reaction in Gulf Coast sediments, Clay Minerals 24(2), p. 171-180.
Grim, R. E., 1968. Clay Mineralogy, 2nd ed. McGraw-Hill, New York.
Guatteri, M., P. Spudich, G. C. Beroza, 2001. Inferring rate and state friction parameters from a rupture model of the 1995 Hyogo-ken Nanbu (Kobe) Japan earthquake. Journal of Geophysical Research 106, p. 26,511-26,521.
Hashimoto, Y., O. Tadai, M. Tanimizu, W. Tanikawa, T. Hirono, W. Lin, T. Mishima, M. Sakaguchi, W. Soh, S. R. Song, K. Aoike, T. Ishikawa, M. Murayama, K. Fujimoto, T. Fukuchi, M. Ikehara, H. Ito, H. Kikuta, M. Kinoshita, K. Masuda, T. Matsubara, O. Matsubayashi, M. Mizoguchi, N. Nakamura, K. Otsuki, T. Shimamoto, H. Sone, M. Takahashi, 2008. Characteristics of chlorites in seismogenic fault zones: the Taiwan Chelungpu Fault Drilling Project (TCDP) core sample, e-Earth 3 (http://www.electronic-earth. net/3/issue1.html), p. 1-6.
Heermance, R. V., 2002. Geometry and physical properties of the Chelungpu fault, Taiwan, and their effect on fault rupture. Master Thesis, Utah State University, Logan, Utah, USA.
Heermance, R. V., Z. K. Shipton, and J. P. Evans, 2003. Fault structure control on fault slip and ground motion during the 1999 rupture of the Chelungpu fault, Taiwan, Bulliten of Seismological Society of America 93, p. 1034-1050.
Hirono, T., M. Ikehara, K. Otsuki, T. Mishima, M. Sakaguchi, W. Soh, M. Omori, W. Lin, E. C. Yeh, W. Tanikawa, C. Y. Wang, 2006a. Evidence of frictional melting within disk-shaped black materials discovered from the Taiwan Chelungpu fault system, Geophysical Research Letters 33, L19311, doi:10.1029/2006GL027329.
Hirono, T., W. Lin, E. C. Yeh, W. Soh, Y. Hashimoto, H. Sone, O. Matsubayashi, K. Aoike, H. Ito, M. Kinoshita, M. Murayama, S. R. Song, K. F. Ma, J. H. Hung, C. Y. Wang, Y. B. Tsai, 2006b. High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault: Nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B, TCDP, Geophysical Research Letters 33, L15303, doi:10.1029/2006GL026133.
Hirono, T., K. Fujimoto, T. Yokoyama, Y. Hamada, W. Tanikawa, O. Tadai, T. Mishima, M. Tanimizu, W. Lin, W. Soh, S. R. Song, 2008a. Clay mineral reactions caused by frictional heating during an earthquake: An example from the Taiwan Chelungpu fault, Geophysical Research Letters 35, L16303, doi:10.1029/2008GL034476.
Hirono, T., M. Sakaguchi, K. Otsuki, H. Sone, K. Fujimoto, T. Mishima, W. Lin, W. Tanikawa, M. Tanimizu, W. Soh, E. C. Yeh, S. R. Song, 2008b. Characterization of slip zone associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and microstructural observations of the Taiwan Chelungpu fault, Tectonophysics 449, p. 63–84.
Hirose, T. and T. Shimamoto, 2005. Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes. Bullettin of the Seismological Society of America 95, p.1666–1673.
Ho, C. S., 1988: An Introduction to the Geology of Taiwan—Explanatory Text of the Geologic Map of Taiwan, 2nd Ed., Central Geological Survy, MOEA, Taipei, Taiwan, ROC, p. 163.
Huang, W. H., J. M. Longo, and D. R. Pevear, 1993. An experimental derived kinetic model for the smectite-to-illite conversion and its use as a geothermometer, Clays and Clay Minerals 41, p. 162– 177.
Hung, J. H., Y. H. Wu, E. C. Yeh, J. C. Wu, 2007. Subsurface structure, physical properties, and fault zone characteristics in the scientific drill holes of Taiwan Chelungpu-fault Drilling Project, Terrestrial Atmospheric and Oceanic Science 18(2), p. 271 – 293.
Hung, J. H., K. F. Ma, C. Y. Wang, H. Ito, W. Lin, E. C. Yeh, 2009. Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project, Tectonophysics 466, p. 307-321.
Hyndman, R. D., 2004: Controls on subduction thrust earthquakes: downdip changes in composition and state, in Rheology and Deformation of the Lithosphere at Continental Margins. In: Karner, G. D., B. Taylor, N. W. Driscoll, and D. L. Kohlstedt (Eds.), Columbia University Press, New York, p. 166-178.
Ikari, M. J., D.M. Saffer, C. Marone, 2009. Frictional and hydrologic properties of clay-rich fault gouge, Journal of Geophysical Research 114, B05409, doi:10.1029/2008JB006089.
Ishikawa T., M. Tanimizu, K. Nagaishi, J. Matsuoka, O. Tadai, M. Sakaguchi, T. Hirono, T. Mishima, W. Tanikawa, W. Lin, H. Kikuta, W. Soh, S. R. Song, 2008. Coseismic fluid–rock interactions at high temperatures in the Chelungpu fault, Nature Geoscience 1, doi:10.1038/ngeo308.
Issacs A. J., J. P. Evans, Song S. R., and Kolesar P. T., 2007. Characterizing brittle deformation, damage parameters, and clay composition in fault zones: variations along strike and with depth in the Chelungpu Fault zone, Terrestrial Atmospheric and Oceanic Science 18, p. 183-221.
Jacobs, J. R., 2005. Examination of exhumed faults in the western San Bernardino mountains, California: Implication for fault growth and earthquake, Master’s Thesis, Utah State University, Logan, Utah.
Jones, R.M., R. R. Hillis, 2003. An integrated, quantitative approach to assessing fault-seal risk, American Association of Petroleum Geologists Bulletin 87, p. 507–524.
Kano, Y., J. Mori, R. Fujio, H. Ito, T. Yanagidani, S. Nakao, K. F. Ma, 2006. Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake. Geophysical Research Letters 33, L14306. doi:10.1029/ 2006GL026733.
Kao, H., and W. P. Chen, 2000. The Chi-Chi earthquake sequence: Active out-of-sequence thrust faulting in Taiwan, Science 288, p. 2346 – 2349.
Kawamoto, E., 2004. Clast-size of impact-generated pseudotachylite from Vredefort Dome, South Africa, Journal of Structural Geology 26, p. 1419-1426.
Killingley, J. S., Day, S. J., 1990. Dehydroxylation kinetics of kaolinite and montmorillonite, Fuel 69 (10), p. 1145– 1149.
Krumm, S., and W. Buggisch, 1991. Sample preparation effects on illite crystallinity measurements: Grain size gradation and particle orientation, Journal of Metamorphic Geology 9, p. 671–677.
Kuo, L. W., S. R. Song, E. C. Yeh, H. F. Chen, 2009. Clay mineral anomalies in the fault zone of Chelungpu Fault, Taiwan, and its implication, Geophysical research Letters 36, L18306. doi:10.1029/2009GL039269.
Lai, K. Y., Y. G. Chen, J. H. Hung, J. Suppe, L. F. Yue, Y. W. Chen, 2006. Surface deformation related to kink-folding above an active fault: Evidence from geomorphic features and co-seismic slips, Quaternary International 147, p. 44-54.
Lee, J. C., Y. G. Chen, K. Sieh, K. Mueller, W. S. Chen, H. T. Chu, Y. C. Chan, C. Rubin, and R. Yates, 2001. A vertical exposure of the 1999 surface rupture of the Chelungpu fault at Wufeng, western Taiwan: structural and paleoseismic implications for an active thrust fault, Seismological Society of America 91(5), p. 914-929.
Lee, J.C., H.T. Chu, J. Angelier, , Y.C. Chan, J.C. Hu, C.Y. Lu, R.J. Rau, 2002. Geometry and structure of northern surface ruptures of the1999 Mw 7.6 Chi–Chi, Taiwan earthquake: influence frominherited fold belt structures, Journal of Structural Geology 24(1), p. 173–192.
Liao, C. F., 2003. Analysis of fault rock deformation and clay minerals from fault cores of Chelungpu fault zone, Master’s thesis of National Central University, in Chinese, summary in English, p. 132.
Lin, A., 1994a. Glassy pseudotachylyte veins from the Fuyun fault zone, northwest China, Journal of Structural Geology 16, p. 71-83.
Lin, A., 1994b. Microlite morphology and chemistry in pseudotachylite, from the Fuyun fault zone, China. The Journal of Geology 102, p. 317-29.
Lin, A., T. Shimamoto, 1998. Selective melting processes as inferred from experimentally-generated pseudotachylytes. Journal of Asian Earth Science 16, p. 533-545.
Lin A, 1999a. S-C cataclasite in granitic rock, Tectonophysics 304, p. 257-273.
Lin A, 1999b. Roundness of fragments in pseudotachylytes as an indicator of frictional Melting, Journal of Structural Geology 21, p.473-478.
Lin, A., T. Ouchi, A. Chen, T. Maruyama, 2001. Co-seismic displacements, folding and shortening structures along the Chelungpu surface repture zone occurred during the 1999 Chi-Chi, Taiwan earthquake, Tectonophyics 330, p.225-244.
Lin A., Z. Sun, Z. Yang, 2003. Multiple generations of pseudotachylyte in the brittle to ductile regimes, Qinling-Dabie Shan ultrahigh-pressure metamorphic complex, central China. Island Arc 12, p. 423-435.
Lin A., T. Maruyama, A. Stallard, K. Michibayashi, A. Camacho, K. Kano, 2005. Propagation of seismic slip from brittle to ductile regimes: evidence from the pseudotachylyte of Woodroffe thrust, central Australia. Tectonophysics 402, p. 21-35.
Lin, M. L., F. S. Cheng, T. H. Weng, J. C. Hung, C. Y. Li, Y. H. Chou, L. Y. Chu, C. N. Li, W. C. Huang, C. S. Kao, 2000. The research of rock mechanics of the fault gouge, report of Ministry of Transportation and Communications of Taiwan area national expressway engineering bureau, in Chinese, p. 90-95.
Liu, Z., C. Colin, W. Huang, K.P. Le, S. Tong, Z. Chen, A. Trentesaux, 2007. Climatic and tectonic controls on weathering in South China and the Indochina Peninsula: clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems 8, Q05005. doi:10.1029/2006GC001490
Liu, Z., Y. Zhao, C. Colin, F. P. Siringan, Q. Wu, 2009. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments, Applied Geochemistry, doi:10.1016/j.apgeochem.2009.09.025.
Ma, K. F., T. R. A. Song, S. J. Lee, H. I. Wu, 2000. Spatial slip distribution of the Septmber 20, 1999, Chi-Chi, Taiwan, earthquake, Mw 7.6 - Inverted from teleseismic data, Geophysical Research Letters 27, p. 3417-3420.
Ma, K. F., E. E. Brodsky, J. Mori, C. Ji, T. A. Song, H. Kanamori, 2003. Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (Mw 7.6), Geophysical Research Letters 30, p.1244. doi:10.1029/2002/2002GL015380.
Ma, K. F., H. Tanaka, S. R. Song, C. Y. Wang, J. H. Hung, Y. B. Tsai, J. Mori, Y. F. Song, E. C. Yeh, W. Soh, H. Sone, L. W. Kuo, H. Y. Wu, 2006. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature 444, p. 473-476.
Mackenzie, D., J. N. Brune, 1972. Melting on fault planes during large earthquakes, Geophysical Journal Royal Astronomical Society 29, p. 65-78.
Maddock, R. H., 1983. Melt origin of fault-generated pseudotachylytes demonstrated by textures, Geology 11, p. 105-108.
Magloughlin J. F., 1992. Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crust levels: the cataclasite- pseudotachylyte connection. Tectonophysics 204, p. 243-260.
McKenzie, D. and J.N. Brune, 1972. Melting on fault planes during large earthquakes. Royal Astronomical Society of Geophysical Journal 29, 65-78.
McNulty B. A., 1995. Pseudotachylyte generated in semi-brittle and brittle regimes, Bench Canyon shear zone, central Sierra Nevada. Journal of Structural Geology 11, p. 1507-1521.
Mishima, T., T. Hirono, W. Soh, S.R. Song, 2006. Thermal history estimation of the Taiwan Chelungpu fault using rock-magnetic methods, Geophysical Research Letters 33, L23311.
Mishima, T., T. Hirono, N. Nakamura, W. Tanikawa, W. Soh, S. R. Song, 2009. Changes to magnetic minerals caused by frictional heating during the 1999 Taiwan Chi-Chi earthquake, Earth, Planets, and Space Letters 61, p. 797-801.
Moecher, D. P. and A. J. Brearley, 2004. Mineralogy and petrology of a mullite-bearing pseudotachylyte: Constraints on the temperature of coseismic frictional fusion. American Mineralogist 89, p. 1,486-1,495.
Moore, D. M., Jr., R. C. Reynolds, 1997. Chapter 5: Individual Clay Minerals, X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York.
Mount, V., J. Suppe, 1987. State of stress near the San Andreas fault: implications for wrench tectonics, Geology 15, p. 1143–1146.
Nesbitt, H. W., and G. M. Young, 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature 299, p. 715–717.
Nielsen, S., G. Di Toro, T. Hirose, T. Shimamoto, 2008. Frictional melt and seismic slip. Journal of Geophysical Research 113, B01308, DOI: 10.1029/2007JB005122.
Nutting, P. G., 1943. Some standard thermal dehydration curves of minerals, U. S. Geological Survey, Profess paper 197E, p. 197-216.
Obata, M., S. Karato, 1995. Ultramafic pseudotachylite from the Balmucca peridotite, Ivrea-Verbano zone, northern Italy, Tectonophysics 242, p. 313-328.
O’Hara, K. D., 2001. A pseudotachylyte geothermometer. Journal of Structural Geology 23, p. 1,345-1,357.
Okubo, P. G., J. H. Dieterich, 1984. Effects of physical fault properties on frictional instabilities produced on simulated faults. Journal of Geophysical Research 89, p. 5,817-5,827.
Otsuki, K., T. Uduki, N. Monzawa, H. Tanaka, 2005a. Clay injection veins and pseudotachylyte from two boreholes penetrating the Chelungpu fault, Taiwan: their implications for the contrastive seismic slip behaviors during the 1999 Chi-Chi earthquake, The Island Arc 14, p. 22–36.
Otsuki, K., T. Uduki, N. Monzawa, H. Tanaka, 2005b. Fractal size and spatial distributions of fault zones: an investigation into the seismic Chelungpu fault, Taiwan, The Island Arc 14, p. 12–21.
Otsuki, K., T. Hirono, M. Omori, M. Sagaguchi, W. Tanigawa, W. Lin, W. Soh, S. R. Song, 2009. Analyses of pseudotachylyte from Hole-B of Taiwan Chelungpu Fault Drilling Project (TCDP); their implications for seismic slip behaviors during the 1999 Chi-Chi earthquake, Tectonophysics, doi:10.1016/j.tecto.2009.01.008.
Pédro, G., 1981. Les grands traits de l’e´volution cristallochimique des mine´raux au cours de l’alte´ration superficielle desroches, Rend. Soc. Italy Mineralogical Petrolgy 37, p. 633–666.
Ray, S. K., 1999. Transformation of cataclastically deformed rocks to pseudotachylyte by pervasion of frictional melt: inference from clast-size analysis, Tectonophysics 301, p.283-304.
Ray, S. K., 2004. Melt-clast interaction and power-law size distribution of clasts in pseudotachylytes, Journal of Structural Geology 26, p. 1,831-1,834.
Rice, J. R., 1992. Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans, B., Wong, T.-f. (Eds.), Fault Mechanics and Transport Properties of Rocks; A Festschrift in Honor of W. F. Brace. Academic Press, San Diego, p. 475–503.
Rice, J. R., C. G. Sammis, R. Parsons, 2005. Off-fault secondary failure induced by a dynamic slip-pulse. Bulletin of Seismological Society of America 95, p. 109-134.
Rivera, L., and H. Kanamori, 2005. Representations of the radiated energy in earthquakes: Geophysical Journal International 162 (1), p. 148-155.
Scholz, C. H., 2002. The Mechanics of Earthquakes and Faulting, 2nd ed.
Sembira, A. N., J. G. Dunn, 1996. High temperature calibration of DTA and DSC apparatus using encapsulated samples, Thermochimica 274, p. 113-124.
Senkayi, A. L., J. B. Dixon, and L. R. Hossner, 1981. Transformation of chlorite to smectite through regularly interstratified intermediates. Soil Science Society of America Journal 45, p. 650-656.
Shand S. J., 1916. The pseudotachylyte of Parijs (Orange Free State), and its relation to ‘trap-shotten gneiss’ and ‘flinty crush rock’. The Quarterly Journal of the Geological Society of London 72, p.198-221.
Sibson, R. H., 1973. Interaction between temperature and pore-fluid pressure during earthquake faulting-a mechanism for partial or total stress relief, Nature Physical Sicence 243, p. 66-68.
Sibson R. H., 1975. Generation of pseudotachylite by ancient seismic faulting. Geophysics Royal Astronomical Society 43, p. 775-94.
Sibson R. H., 1980. Transient discontinuities in ductile shear zones. Journal of Structural Geology 2, p. 165-174.
Sibson, R. H., 1990. Conditions for fault-valve behaviour. In: Knipe, R. J., Rutter, E. H. (Eds.), Deformation Mechanisms, Rheology and Tectonics Geological Society Special Publication 54, p. 15–28.
Sibson, R.H., 2003. Thickness of the Seismic Slip Zone, Bulletin of the Seismological Society of America 93 (3), p. 1169-1178.
Solum, J. G., van der Pluijm, B. A., and D. R. Peacor, 2005. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah, Journal of Structural Geology 27, p. 1563-1576.
Sone, H., E. C. Yeh, T. Nakaya, J. H. Hung, K. F. Ma, C. Y. Wang, S. R. Song, T. Shimamoto, 2007. Mesoscopic structural observations of cores from the Chelungpu fault system, Taiwan Chelungpu-fault Drilling Project Hole-A, Taiwan. Terrestrial Atmospheric and Oceanic Science 18, p. 359–377.
Sone, H., and T. Shimamoto, 2009. Frictional resistance of faults during accelerating and decelerating earthquake slip, Nature Geoscience 2, p. 705-708. DOI:10.1038/ NGEO0637.
Song, S. R., L. W. Kuo, E. C. Yeh, C. Y. Wang, J. H. Hung, and K. F. Ma, 2007. Characteristics of the Lithology, Fault-related Rocks and Fault Zone Structures in the TCDP Hole-A. Terrestrial Atmospheric and Oceanic Science 18, p. 243-269.
Spiel S., L. H. Berkelheimer, J. A. Pask, and B. Davies, 1945. Differential thermal analysis-Its application to clays and other aluminous minerals, Bulletin and Technical Papers of the United States Bureau of Mines, p. 664.
Spray J. G., 1987. Artificial generation of pseudotachylyte using frictional welding apparatus: simulation of melting on a fault plane. Journal of Structural Geology 9, p. 44-60
Spray J. G., 1987. Pseudotachylyte controversy: Fact or friction? Geology 23, p. 1119-1122.
Spray J. G., 1992. A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics 204, p. 205-221.
Suppe, J., 1981: Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China 4, p. 67-89.
Tanaka, H., C. Y. Wang, W. M. Chen, A. Sakaguchi, K. Ujie, H. Ito, M. Ando, 2002. Initial science report of shallow drilling penetrating into the Chelungpu fault zone, Taiwan, Terrestrial Atmospheric and Oceanic Science 13, p. 227-251.
Tanaka, H., W. M. Chen, C. Y. Wang, K. F. Ma, N. Urata, J. Mori, M. Ando, 2006. Frictional heat from faulting of the 1999 Chi-Chi, Taiwan earthquake, Geophysical research letters 33, L16316, doi:10.1029/2006GL026673.
Tanikawa, W., T. Shimamoto, 2009. Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake, Journal of Geophysical Research 114, B01402.doi:10.1029/2008JB005750.
Temuujin, J., K. Okada, K. J. D. Mackenzie, T. Jadambaa, 1998. The effect of water vapor atmospheres on the thermal transformation of kaolinite investigated by XRD, FTIR and solid state MAS NMR, Journal of the European Ceramic Society 19, p.105-112.
Tomita, K., H. Yamane, M. Kawano, 1993. Synthesis of smectite from volcanic glass at low temperature. Clay and Clay Minerals 41 (6), p.655-661.
Toyoshima, T., 1990. Pseudotachylite from the main zone of the Hidaka metamorphic belt, Hokkaido, northern Japan, Journal Metamorphic Geology 8, p. 507-523.
Traoré, K., F. Gridi-Bennadji, P. Blanchart, 2006. Significance of kinetic theories on the recrystallization of kaolinite, Thermochimica Acta 451, p. 99-104.
Ujiie, K., 2005. Fault rock analysis of the northern part of the Chelungpu fault and its relation to earthquake faulting of the 1999 Chi-Chi earthquake, Taiwan, The Island Arc 14, p.2-11.
Velde, B., 1985. Developments in sedimentology 40 – Clay minerals; A physic-chemical explanation of their occurrence, Elsevier, New York.
Velde, B., T. Suzuki, E. Nicot, 1986. Pressure-temperature-composition of illite/smectite mixed-layer minerals: niger delta mudstones and other examples, Clay and Clay Minerals 34 (4), p.435-441.
Vidal, O., B. Dubacq, 2009. Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity, Geochimica et Cosmochimica Acta 73, P. 6544–6564.
Vital, H., and K. Stattegger, 2000. Major and trace elements of stream sediments from the lowermost Amazon River, Chemical Geology 168, p. 151–168.
Vrolijk, P., and van der Pluijm, B. A., 1999. Clay Gouge, Journal of Structural Geology 21, p. 1039-1048.
Wang, Y., F. Westferro, M. L. Rivers, N. Nishiyama, J. Gebhardt, C. E. Lesher, S. R. Sutton, 2005. High-pressure x-ray tomography microscope: Synchrotron computed microtomography at high pressure and temperature, Review of scientific instruments 76, 073709.
Weaver, C. E., 1989. Developments in sedimentology 44 – Clays, Muds, and Shales, Elsevier, New York.
Whitney, G., 1990. Role of water in the smectite-to-illite reaction, Clays and Clay Minerals 38:4, p. 343-350.
Wibberley, C. A. J., T. Shimamoto, 2005. Earthquake slip weakening and asperities explained by thermal pressurization, Nature 436, p.689–692.
Wilson, R. P., R. Christofferson, A. K. Kronenberg, 1995. Fluid reaction weakening of fault zones, Journal of Geophysical Reasearch 100, p. 13,021-13,031.
Wintsch, R. P., R. Christofferson, A. K. Kronenberg, 1995. Fluid-rock reaction weakening of fault zones, Journary of Geophysical Research 100:B7, p. 13021-13032.
Wong, T. F., 1982. Shear fracture energy of Westerly granite from post-failure behaviour. Journal of Geophysical Research 87, p. 990-1,000.
Wu, H., K. F. Ma, M. Zoback, N. Boness, H. Ito, J. Hung, S. Hickman, 2007. Stress orientations of Taiwan Chelungpu-fault Drilling Project (TCDP) hole-A as observed from geophysical logs, Geophysical Research Letters 34, L01303. doi:10.1029/2006GL028050.
Yang, T. Y., C.C. Yang, C. Y. Lee, S. L. Chung, C. H. Chen, 1996. NTUG rock standards for geochemical analysis, Journal of the Geological society of China 39 (3), p.307-323.
Yeh, E. C., H. Sone, T. Nakaya, K. H. Ian, S. R. Song, J. H. Hung, W. Lin, T. Hirono, C. Y. Wang, K. F. Ma, W. Soh, and M. Kinoshita, 2007. Core Description and Characteristics of Fault Zones from the Hole-A of the Taiwan Chelungpu-Fault Drilling Project, Terrestrial Atmospheric and Oceanic Science 18, p. 327-357.
Yeskis, D., A. F. Koster van Groos, and S. Guggenheim, 1985. The dehydroxylation of kaolinite, American Mineralogist 70, p. 159-164.
Yielding, G., B. Freeman, D. T. Needham, 1997. Quantitative fault seal prediction, American Association of Petroleum Geologists Bulletin 81, p. 897–917.
Yue, L. F., J. Suppe, J. H. Hung, 2005. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw=7.6), Journal of Structural Geology 27, p. 2,058-2,083.
Zoback, M.D., 2000. Strength of the San Andreas Fault, Nature 405, p. 31–32.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48226-
dc.description.abstract地震一直是人們最注意的天然災害之一,因為其對我們的生命安全以及財富有極大的影響。其中,地震斷層,就是地震最主要的來源之一,對地震斷層的活動特性及其機制有進一步的瞭解,就能增加對人們的保障,以及減少可能的損失。
車籠埔斷層於西元1999年發生錯動,造成數千人死亡,以及數萬人無家可歸。所以,對車籠埔斷層作詳盡的研究是有其必要性的,若能瞭解斷層帶與圍岩之間的物理化學作用,將對其斷層機制可以有更深入之瞭解。臺灣車籠埔深鑽計畫,便油然而生。
要探討車籠埔斷層之斷層帶可能產生之物理化學作用,就必須先確定主要滑動帶之位置。唯有研究主要滑動帶的特性,才能瞭解其錯動可能之機制。所以,本文第一個工作就是利用黏土礦物的特徵判斷可能於1999年產生錯動之主要滑動帶。由於地震斷層滑動會釋放大量的摩擦熱,並且可能在滑動帶產生高溫造成岩石熔融,使礦物相改變。觀察斷層帶礦物相的特徵之後,發現黏土含量在位於深度1,111公尺處大量減少,而且礦物相與圍岩迥然不同,說明在此深度的斷層帶可能是921集集地震的滑動面。
再者,黏土礦物有不同溫度的崩解反應,所以本文的第二個研究,便是利用其不同的熱崩解特性對車籠埔斷層之三個斷層帶(深度分別為1,111、1,153、1,222公尺)曾經遭受的溫度作初步的估計,而所得到之溫度估計可以作為計算摩擦熱最重要的參數,溫度,提供一個良好限制。研究結果顯示主要滑動帶曾經達到的溫度最高,其次是深度1,153公尺的斷層帶,最低則是深度1,222公尺的斷層帶。
當然,風化作用也是產生黏土礦物另一個重要的過程,所以本文的第三個工作,便是將車籠埔斷層的黏土礦物特徵由南到北,由淺到深作系統性地分析,並提供風化作用對黏土礦物可能產生之影響作定性及定量的描述。其結果顯示,深鑽計畫中的材料可以忠實的呈現或保持滑動帶曾發生的物理或化學作用,而地表的材料則否,同時也說明深鑽計畫的重要性。
zh_TW
dc.description.abstractThe earthquake is one of the natural disasters that is harmful for safety and wealth of mankind. Seismic faults are the major source to produce earthquakes. Therefore, investigations of the characteristics and mechanisms of a seismic fault could protect people from dangers and damages.
The Chelungpu Fault, Taiwan produced a northward propagating rupture on September 21, 1999 resulting in an Mw 7.6 earthquake. It made thousands of people dead and produced serious destructions in central Taiwan areas. It is necessary to obtain more information on the Chelungpu fault zone properties, and to investigate fault mechanisms via understanding the physical and chemical processes in principal slip zone (PSZ) and/or slip surfaces. The Taiwan Chelungpu-fault Drilling Project (TCDP), therefore, is performed to extract deep materials for the investigation of faulting mechanism.
To realize the possible physical and chemical processes through fault zones and to investigate the faulting mechanism of the Chelungpu fault, the principal slip zone (PSZ) should be identified. In this study we recognize the PSZ of the Chelungpu fault related to 1999 Chi-Chi within its characteristics of clay minerals in the fault zone. The Taiwan Chelungpu-fault Drilling Project (TCDP) Hole-A recovered continuous core samples across the rupture zone of the 1999 Chi-Chi earthquake (Mw7.6). Studying in-situ chemical properties sequentially from fresh-fault-zone materials of the Chelungpu fault provides insight into possible faulting mechanisms. Distinct anomalies of mineral assemblages at the 1111-m fault zone of TCDP Hole-A are found to be: (1) A decrease in clay content within the primary slip zone (PSZ); and (2) A significant decline of illite, disappearance of chlorite and kaolinite, and spike in smectite within the PSZ. Meanwhile, features relating to melting or amorphous material in the PSZ have been observed by SEM and TEM. The results suggest that the PSZ might have experienced generation of glassy materials such as pseudotachylyte by the expense of clay minerals due to strong shear heating, then prompt alteration of pseudotachylyte into smectite. Characteristics of clay minerals and images obtained from electronic microscopes in the PSZ thus imply that pseudotachylyte possibly developed during the 1999 Chi-Chi earthquake, but quickly altered into smectite. This particular phenomenon may explain why pseudotachylyte is rarely found in exhumed hydrated fault zones.
To investigate the coseismic frictional temperature in seismogenic fault zones, we examine the characteristics of clays in the Chelungpu-fault zones with isothermal heating experiments, Scanning Electron Microscope coupled to an Energy Dispersive spectrometer (SEM/EDX), and Thermogravimetry analysis (TGA). In the TCDP case (Taiwan Chelungpu fault Drilling Project), three fault zones of the Chelungpu-fault system were identified at the depth of 1111m, 1153m, and 1,222m (described as FZ1111, FZ1153, and FZ1222 hereafter), respectively. The clay mineral assemblages of FZ1111 show evidence of melting, and the temperature in a ~2 cm band within the black gouge zone is estimated to be from 900°C to 1,100°C by comparing the SEM images of in situ natural samples with those of heated materials, and the finding of no recrystallization of kaolinite-amorphous aluminosilicates-spinel in the fault samples. The clay mineral assemblages of FZ1153 suggested that kaolinite has been broken down by the thermal decomposition/dehydroxylation but chlorite has not. The clay characteristics and results of SEM/EDX and TGA constrain the faulting temperature from 500°C to 900°C, with a spatial distribution up to ~1.3 m. The clay characteristics of FZ1222 indicated that clays were changed by experiencing high temperature acid fluids, instead of thermal decomposition/dehydroxylation processes, and that the temperature is localized in ~2 cm and ranges from 350°C to 500°C, the lowest temperature among three fault zones. The estimates of temperature ranges, and thermal anomaly intervals among three fault zones provide important information and constraints on the physical and chemical processes, coseismic dynamic weakening mechanism, and earthquake energy budget in the future.
Chemical weathering is also an important process to produce clay minerals. We systematically analyze the characteristics of clay minerals from north to south and along the depth of the Chelungpu fault. The Chelungpu fault, with northward propagating ruptures, was created as a result of the Mw 7.6 earthquake which struck Central Taiwan on 21 September 1999. To investigate its true faulting mechanism, we examined the clay mineralogy and major element geochemistry of the host rocks of the Chelungpu fault from four outcrops, Fengyuan (455.3 m in depth), Nantou (211.9 m in depth), and Taiwan Chelungpu fault Drilling Project (2003 m in depth). The outcrops are spanned roughly 70 km along the fault. Mineralogical and chemical results of the host rocks revealed different degrees of chemical weathering, and its intensity could be further understood through the relative clay percentage of smectite, illite chemistry index, and illite crystallinity. These mineralogical proxies combined with the chemical index of alteration (CIA) and the intensity of chemical weathering indicate that the degree of chemical weathering is a function of depth, i.e., the most severe on the surface and the mildest in the TCDP samples. The mineralogical and geochemical data obtained in this study also suggest that chemical weathering, rather than leaching, seems to be the main driving force for the phase change of clay. The amount of smectite produced by chemical weathering varies with depth, and it argues against a previously suggested idea that weak-fault behaviours were caused by the presence of smectite on the surface. The observations of clay mineralogy and major element geochemistry in this study indicate that the presence of smectite in the outcrops may not play a significant role during faulting, and suggest that fault-weakening as a result of the presence of smectite cannot be applied to the Chelungpu fault.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:49:28Z (GMT). No. of bitstreams: 1
ntu-100-D93224002-1.pdf: 3331359 bytes, checksum: 7f0325c8e4740f6c8a17d45e7a427125 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS vii
LIST OF FIGURES x
Chapter 1 Introduction 1
1-1 Fault zone structures 1
1-2 Link of frictional energy and mineralogy in fault cores 1
1-3 Pseudotachylyte 2
1-4 Motivation 5
Chapter 2 Clay Mineral Anomalies in the Fault Zone of the Chelungpu Fault, Taiwan, and Their Implications 7
2-1 Introduction 8
2-2 Experimental Methods and Results 9
2.2.1 XRD analysis 9
2.2.2 Evidence of pseudotachylyte at the 1111-m zone 11
2-3 Discussion and Conclusion 11
Chapter 3 Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan 18
3-1 Introduction 19
3-2 Sampling description 22
3-3 Analytical methods 23
3.3.1 X-ray diffractometer (XRD) 23
3.3.2 Isothermal heating experiment 23
3.3.3 Thermogravimetry analysis (TGA) 24
3.3.4 Scanning Electron Microscope with Energy Dispersive Spectrometer (SEM/EDX) 24
3-4 Results 25
3.4.1 Characteristics of the clay-rich fault gouge at FZ1111 25
3.4.2 Characteristics of the clay-rich fault gouge at FZ1153 26
3.4.3 Characteristics of the clay-rich fault gouge at FZ1222 27
3.4.4 Isothermal heating experiment 28
3.4.5 Thermogravimetry analysis (TGA) 29
3.4.6 Scanning Electron Microscope with Energy Dispersive Spectrometer (SEM/EDX) 31
3-5 Discussion 32
3.5.1 Estimate of the maximum temperature achieved in FZ1111 32
3.5.2 Estimate of the maximum temperature achieved in FZ1153 35
3.5.3 Estimate of the maximum temperature achieved in FZ1222 38
3.5.4 Limitation of temperature estimate and its significance 39
3-6 Conclusion 40
Chapter 4 Clay mineralogical and geochemical investigations along the Chelungpu fault, Taiwan, and its implication 51
4-1 Introduction 52
4-2 Geological setting and sampling 54
4-3 Analytical Methods 55
4-4 Results 56
4.4.1 Clay minerals 56
4.4.2 Major Elements 58
4-5 Discussion 59
4.5.1 Mineralogical changes 59
4.5.2 Chemical mobility and weathering trends 62
4.5.3 Formation of smectite and its implication 64
4-6 Conclusion 66
Chapter 5 Conclusions 74
5-1 Summary 74
5-2 Future scope 76
Reference 78
Appendix 96
dc.language.isozh-TW
dc.title台灣車籠埔斷層深鑽計畫之黏土礦物特性zh_TW
dc.titleCharacteristics of Clay Minerals from the Taiwan Chelungpu Fault Drilling Projecten
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃武良,馬國鳳,朱傚祖,胡植慶,葉恩肇,陳惠芬
dc.subject.keyword車籠埔斷層,黏土礦物,溫度,風化作用,車籠埔斷層深鑽計畫,zh_TW
dc.subject.keywordthe Chelungpu fault,clay mineral,temperature,weathering,Taiwan Chelungpu-fault Drilling Project,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2011-03-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved