請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48209
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張祖亮(Tsu-Liang Chang) | |
dc.contributor.author | Yi-Jing Lin | en |
dc.contributor.author | 林宜靜 | zh_TW |
dc.date.accessioned | 2021-06-15T06:48:59Z | - |
dc.date.available | 2012-07-06 | |
dc.date.copyright | 2011-07-06 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-03-29 | |
dc.identifier.citation | 1. 王子慶、蔡佳宏、吳明昌. 2001. 細葉山葡萄及香茹草抗致突變性之研究. 科學農業 49 : 186-191.
2. 王存. 2009. 多效唑在植物生產上的應用現狀. 熱帶農業科學 29 : 67-72. 3. 王宇靈、白小明、羅仁峰、魯存海、相斐. 2010. 多效唑對多年生黑麥草擴展性和根系特性的影響. 中國沙漠 30:1319-1324. 4. 王曉曼、王晨、師校欣、杜國強. 2009. 植物生長調節劑對蘋果組培苗延緩生長保存的效應. 中國農業通報 25 : 89-92. 5. 吳建明、李楊端、王愛勤、楊柳、楊麗濤. 2010. 赤霉素處理對甘蔗節間伸長及產質量的影響. 中國糖料4: 24-26. 6. 林玲、張瑛、黃羽、曹慕明、白先進. 2010. 矮壯素( CCC )對巨峰葡萄汁燒生長及果實品質的影響. 中外葡萄與葡萄酒 5:50-52. 7. 林信山、林嘉興、張林仁、林金和. 1993. 植物生長抑制劑對新世紀梨生長之影響. 臺中區農業改良場研究彙報. 39:51-59. 8. 林義恭、劉新裕、賴瑞聲、胡敏夫、高瑞隆、徐源田. 2002. 台灣原生細本山葡萄的選種與栽培( I )細本山葡萄的外表型變異. 中華農業研究 51 : 24-31. 9. 周業斌. 2003. Thidiazuron誘導細本山葡萄( Vitis thnubergii Sieb. & Zucc. )不定芽及其發根之研究. 國立中興大學農藝學系所碩士論文. 10. 胡月華、潘自舒. 2010. 多效唑在酸櫻桃離體植株保存中的應用研究. 江蘇農業科學 5 : 393-394. 11. 胡澤寬、柯金存、顏裕齊、陳似任. 2006. 台灣細本山葡萄品種性狀調查及試驗檢定之研究. 行政院農業委員會農糧署九十五年度科技計畫研究報告. 12. 陳麗筠、朱建鏞、黃敏展. 2004. Paclobutrazol及Uniconazole對大王仙丹花盆花生育及開花之影響. 中國園藝 50:43-52. 13. 張希太、宋久英、朱秀蘭、王國昌. 1997. 多效唑在草莓試管種質常溫保存中應用. 北方園藝 5:8-9. 14. 張淨環、廖松淵. 2005. 生長調節物質對於大蒜培殖體生長之影響。作物、環境與生物資訊 2:287-295. 15. 郭延平、李嘉端. 1995. 多效唑誘導獼猴桃試管苗生根的作用機理初探. 園藝學報 22 : 189-190. 16. 李小玲、華智銳. 2008. PP333對百合試管苗壯苗和生根的影響. 安徽農業科學 36 : 5307-5308. 17. 李如升、韋玲敏、路思廣. 2010. 赤霉素處理打破虎眼萬年青休眠的研究. 北方園藝 12:86-87. 18. 柯曼琴、韓曉弟. 1990. PP333對馬鈴薯莖、葉解剖結構的影響. 曲阜師範大學學報 16:60-64. 19. 高景輝. 1998. 植物荷爾蒙生理. 華香園出版社. 台北市. 20. 湯青林、胡瑤、宋明、王小佳、王志敏. 2008. 赤霉素及脫落酸誘導芥菜抽苔的效果. 中國蔬菜 12: 18~20. 21. 蔡淑華. 2005. 植物解剖學. 國立編譯館出版. 台北市. 22. Kahn, A. and J. A. Goss. 1957. Effect of gibberellins on germination of lettuce seed. Sci. 125:645-646. 23. Balamani, V. and B. W. Poovaiah. 1985. Retardation of shoot growth and promotion of tuber growth of potato plants by paclobutrazol. Am. Pot. J. 62:363-369. 24. Berova, M. and Z. Zlatev. 2000. Physiological response and yield of paclobutrazol treated tomato plants ( Lycopersicon esculentum Mill.). Plant Growth Reg. 30:117-123. 25. Bhattacharya, S., N. C. Bhattacharya and C. P. Malik. 1978. Synergistic effect of gibberellic acid and indole-3-acetic acid on rooting in stem cuttings of Abelmoschus esculentus Moench. Planta 138:111-112. 26. Bidadi, H., S. Yamaguchi, M. Asahina and S.Satoh. 2010. Effects of shoot-applied gibberellins/gibberellins-biosynthesis inhibitors on root growth and expression of gibberellins biosynthesis genes in Arabidopsis thaliana. Plant Root. 4:4-11. 27. Butcher, D. N. and H. E. Street. 1959. The effects of gibberellins on the growth of excised tomato roots. J. Exp. Bot. 11 : 206-216. 28. Campilho, A., O. Lindgren and Y. Helariutta. 2009. Vascular morphogenesis during root development. Ann. Plant Rev. 37:39-63. 29. Cosgrove D. 1986. Biophysical control of plant cell growth. Ann. Rev. Plant Physiol. 37:377-405. 30. Cosgrove D. J. and S. A. Sovonick-Dunford. 1989. Mechanism of gibberellin-dependent stem elongation in peas. Plant Physiol. 89:184-191. 31. Crozier A. 1973. Effects of AMO-1618 on growth, morphology, and gibberellins content of Phaseolus coccineus seedlings. J. Exp. Bot. 24:923-934. 32. Davis, T. D., E. A. Curry and G. L. Steffens. 1991. Chemical regulation of vegetative growth. Critical Rev. in Plant Sci. 10:151-188. 33. Fu, x. and N. P. Harberd. 2003. Auxin promotes Arabidopsis root growth by modulating gibberellins response. Nature 421:740-743. 34. Hedden, P. and J. E. Graebe. 1985. Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates of Cucurbita maxima endosperm and Malus pumila embryos. J. Plant Growth Reg. 4:111 – 122. 35. Joseph, C.V.V. and Y. George. 1992. Growth and photosynthesis of sweet orange plants treated with paclobutrazol. J. Plant Growth Reg. 11:85-89. 36. Koizumi, K., M. Sugiyama and H. Fukuda. 2000. A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. Development 127:3197-3204. 37. Oda. A., C. Sakuta, S. Masuda, T. Mizoguchi, H. Kamada and S. Satoh. 2003. Possible involvement of leaf gibberellins in the clock-controlled expression of XSP 30, a gene encoding a xylem sap lectin, in Cucumber roots. Plant Physiol. 133:1779-1790. 38. O’Neill , D. P. and J. J. Ross. 2002. Auxin regulation of the gibberellin pathway in pea. Plant Physiolsiol. 130 : 1974-1982. 39. Quinlan, J. D. and P. J. Richardson. 1984. Effect of paclobutrazol ( PP333 ) on apple shoot growth. Acta Hortic. 146:105-110. 40. Sankhla N., T. D. Davis, A. Upadhyaya, D. Sankhla, R. H. Walser and B. N. Smith. 1985. Growth and metabolism of soybean as affected by paclobutrazol. Plant Cell Physiol. 26:913-921. 41. Skene, K. G. and M. G. Mullins. 1967. Effect of CCC on the growth of roots of Vitis vinifera L. Planta 77:157-163. 42. Tanimoto, E. 1987. Gibberellin-dependent root elongation in Lactuca sativa: recovery from growth retardant-suppressed elongation with thickening by low concentration of GA3. Plant Cell Physiol. 28:963-973. 43. Tanimoto, E. 1988. Gibberellin regulation of root growth with change in galactose content of cell walls in Pisum sativum. Plant Cell Physiol. 29:269-280. 44. Tanimoto, E. 1994. Interaction of gibberellins A3 and ancymidol in the growth and cell-wall extensibility of dwarf pea root. Plant Cell Physiol. 35:1019-1028. 45. Tanimoto, E. 2005. Regulation of root growth by plant hormones-roles for auxin and gibberellin. Cri. Rev. Plant Sci. 24:249-265. 46. Wang, S.Y., T. Sun and M. Faust. 1986. Translocation of paclobutrazol, a gibberellin biosynthesis inhibitor, in apple seedlings. Plant Physiol. 82:11-14. 47. Wang, L. H. and C. H. Lin. 1992. The effect of paclobutrazol on physiological and biochemical changes in the primary roots of pea. J. Exp. Bot. 43:1367-1372. 48. Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Ann. Rev. Plant Biol. 59 : 225-51. 49. Yaxley, J. R., J. Ross, L. J. Sherriff and J. B. Reid. 2001. Gibberellin biosynthesis mutations and root development in pea. Plant Physiol. 125:627-633. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48209 | - |
dc.description.abstract | 本論文以小本山葡萄( Vitis thunbergii Sieb. & Zucc. var. taiwaniana Lu. )單節帶芽莖段為試驗材料,探討PP333對小本山葡萄組培苗及不定根之生長發育的影響,並測試GA3與IAA是否有逆轉PP333影響的作用;論文中也觀察PP333與GA3對甘藷、菸草與甜菊生長發育之影響。試驗結果顯示四種受試植物都因PP333的處理而有地上部變矮、節間縮短、葉片變小、葉色加深的現象。PP333使小本山葡萄有明顯根長變短、根徑變大的形態變化,且表現側根易脫離主根而斷裂的情形;甘藷與菸草根系發育受抑制,但無根徑加粗之變化,且隨著培養時間的拉長,抑制效果漸趨不明顯,而甜菊根系發育嚴重受抑制且根變粗,甚至導致死亡。外加GA3無法回復PP333抑制小本山葡萄地上部生長的效果,但可部分緩解根部膨大之異常現象;而外加IAA則無解除PP333抑制的任何效果。GA3對甘藷、菸草、甜菊的根受PP333抑制的現象有回復的效果,但無法使三種受試植物的地上部回復正常生長。切片觀察因PP333處理而膨大的小本山葡萄根部組織,發現中柱直徑增大,皮層的細胞層數與細胞直徑也大於對照組,其中皮層細胞層數增加的程度最顯著。外加GA3至含有PP333的處理組,會使植株的根端直徑、皮層細胞層數與細胞直徑均略為回復,但無法改善PP333造成側根易脫離主根的現象。綜合之,1.0 mg/L PP333嚴重抑制小本山葡萄培植體的生長發育,此作用應可延長組培苗繼代移植的時間間隔,節省以瓶苗保存物種的勞力。 | zh_TW |
dc.description.abstract | To study the effects of paclobutrazol (PP333) on the growth of Vitis thunbergii Sieb. & Zucc. var. taiwaniana Lu., an in vitro culture system using single-node segment was established in this study. In addition to Vitis thunbergii, sweet potato, tobacco and stevia were also used to examine the effects of PP333. Plantlets derived from single-node cuttings grown in PP333-containing media showed apparent alteration of phenotype, such as stunted shoot, shortened internodes, small leaves with dark color. Besides, PP333 also caused the reduction of root length and increase in root thickness. Unlike the other three species tested, the branching roots of Vitis thunbergii were brittle and easily detached from major roots. Gibberellic acid ( GA3 ) and indole-3-acetic acid ( IAA ) were tested for the resumption effect against the action of PP333. Exogenous GA3 could partially alleviate the root thickening, but could not abolish the inhibitory effects of PP333 on shoot growth in V. thunbergii, while IAA had no effect. Root growth of PP333-treated sweet potato and tobacco could be completely restored by application of GA3, and shoot growth did not. According to the results of anatomical analysis, root thickening caused by PP333 treatment could be attributed to increases in stele diameter, cortical cell layers and cell size. GA3 application could partially reverse the effect of PP333 on cortical cell layers and cell size, but could not alter the brittle property of branch roots. Our results also showed that the strong inhibition of 1 mg/L PP333 on in vitro growth of V. thunbergii var. taiwaniana was gradually alleviated during the period of prolonged culture. And it is suggested that including PP333 in medium can be applied to in vitro germplasm conservation of V. thunbergii var. taiwaniana in order to saving labor work of subculture. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:48:59Z (GMT). No. of bitstreams: 1 ntu-100-R96628125-1.pdf: 5844689 bytes, checksum: 7cbd486d49e1323cc154833e086def8d (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄
摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥I Abstract‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥II 目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥III 圖目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥V 表目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥VII 簡寫對照表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥VIII 第一章、前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1 第二章、前人研究‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3 2.1、GA之介紹 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3 2.1.1、GA之基本構造‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3 2.1.2、 GA的合成‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3 2.1.3、GA對植物細胞生長之影響‥‥‥‥‥‥‥‥‥‥‥4 2.1.4、GA突變種‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5 2.1.5、GA對根生長之影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥6 2.1.6、GA在農業上的應用‥‥‥‥‥‥‥‥‥‥‥‥‥‥7 2.2、GA合成抑制劑‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8 2.2.1、常見的GA合成抑制劑及其功效‥‥‥‥‥‥‥‥‥ 8 2.2.2、Paclobutrazol之介紹及在植物體內的運輸‥‥‥ 8 2.2.3、Paclobutrazol對植物生長之影響‥‥‥‥‥‥‥‥9 2.2.4、GA合成抑制劑對根生長之影響‥‥‥‥‥‥‥‥ 10 2.2.5、生長延緩劑在園藝產業的應用‥‥‥‥‥‥‥‥‥10 2.3、根的生長發育‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11 2.3.1、根、側根與維管束的形成‥‥‥‥‥‥‥‥‥‥‥11 2.3.2、植物荷爾蒙對根生長之影響‥‥‥‥‥‥‥‥‥‥12 第三章、材料與方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 14 3.1、試驗材料來源‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 14 3.2、培養基之配製‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 14 3.3、試驗材料之維持‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 14 3.4、培植體之選擇‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 15 3.5、根之切片觀察‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 15 3.6、生長調查項目‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 17 3.7、附註‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 18 第四章、結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 20 4.1、PP333抑制小本山葡萄組培苗的生長‥‥‥‥‥‥‥‥20 4.2、外加GA3對PP333抑制小本山葡萄地上部生長無回復效果,可部分回復根部膨大之現象‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥22 4.3、GA3與PP333對甘藷、菸草及甜菊生長發育的影響‥‥ 24 4.3.1、PP333對甘藷、菸草及甜菊生長發育的影響‥‥ 24 4.3.2、PP333與GA3對甘藷、菸草及甜菊生長發育的影響‥26 4.4、外加IAA無法緩和PP333對小本山葡萄植株生長之抑制作用‥‥‥ 27 4.5、切片觀察小本山葡萄根在PP333與GA3作用下之變化‥ 29 4.5.1、根尖、皮層細胞與中柱之構造變化‥‥‥‥‥‥‥29 4.5.2、主根連接側根處之切面觀察‥‥‥‥‥‥‥‥‥‥30 第五章、結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 46 參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥47 | |
dc.language.iso | zh-TW | |
dc.title | 生長抑制劑PP333對小本山葡萄組培苗生長發育之影響 | zh_TW |
dc.title | Effects of growth retardant PP333 on in vitro growth of Vitis thunbergii var. taiwaniana | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 王淑美(Shu-Mei Wang) | |
dc.contributor.oralexamcommittee | 陳開憲(Kaih-Sien Chen) | |
dc.subject.keyword | 小本山葡萄,PP333,GA3,根的生長, | zh_TW |
dc.subject.keyword | Vitis thunbergii var. taiwaniana,PP333,GA3,root growth, | en |
dc.relation.page | 51 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-03-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 5.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。