請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48158完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李佳翰 | |
| dc.contributor.author | Ying-Yu Chang | en |
| dc.contributor.author | 張櫻諭 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:47:37Z | - |
| dc.date.available | 2016-06-01 | |
| dc.date.copyright | 2011-06-01 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-05-31 | |
| dc.identifier.citation | REFERENCE
[1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “ Extraordinary optical transmission through sub-wavelength hole arrays, ” Nature, 391, 667-669 (1998). [2] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics, ” Nature. Rev, 424, 824-830 (2003). [3] R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmon modes,” New J. Phys,10,. 105018-105031 ( 2008). [4] H. A. Atwater, “The promise of plasmonics,” Sci. Am, 26, 56-63 (2007). [5] K. Hering, D. Cialla, K. Ackermann, T. Dorfer, R. Moller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rosch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem, 390, 113-124 (2008). [6] K. Kneipp, H. Kneipp, I. Itzkan , R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter, 14, R597-R624 (2002). [7] C. R. Yonzon, X. Zhang, and R. P. Van Duyne, “Localized surface plasmon resonance immunoassay and verification using surface-enhanced Raman spectroscopy,” Proceedings of SPIE, 5224, 78-85 ( 2003). [8] N. C. Linn, C. H. Sun, A. Arya, P. Jiang, and B. Jiang, “ Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness ”, Nanotechnology, 20, 225303-225311 (2009). [9] Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detections by local electromagnetic field enhancement effect,” Nano Lett, vol. 5, pp. 119-124, 2005. [10] J. J. Baumberg et al.,”Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,”NanoLett, 5, 2262-2267 (2005). [11] N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express, 14, 847-857 (2006). [12] A. Kocabas, G. Ertas, S. S. Senlik1 and A. Aydinli1, “Plasmonic band gap structures for surface enhanced Raman scattering”, Opt. Express, 16 (2008). [13] Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo and R. Gordon, “Localized Raman Enhancement from a Double-Hole Nanostructure in a Metal Film”, J. Phys. Chem C, 112, 15098-15101 (2008). [14] R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance”, Opt. Express, 15 (2007). [15] H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D Liu, and Q. Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Ping to Enhance Exction-Plasmon Interactions,” Adv. Mater (2009). [16] Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmon nanoantenna arrays for the visible,” Metamaterials, 2, 45-51 (2008). [17] R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “ Understanding plasmon in nanoscale voids, ” NanoLett, 7, 2094-2100 (2007). [18] B. P. Joshi, and Q. H. Wei, “Cavity resonances of metal-dielectric-metal nanoantennas ”, Opt. Express, 16, 10315-10322 (2008). [19] S. Kasap and P. Capper, “Solar cells and Photovoltaics,” in Springer Handbook of Electronic and Photonic Materials, 1095-1106 (2006). [20] P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys, 62, 243-249 (1987). [21] T. Juvonen, J. Harkonen, and P. Kuivalainen, “ High efficiency single crystalline silicon solar cell, ” Physica Scripta, 101, 96-98 (2002). [22] J. Haynos, J. Allison, R. Arndt, A. Meulenberg, International Conference on Photovoltaic Power Generation, Hamburg, Germany, September, 487 (1974). [23] C. R. Baraona and H. W. Brandhorst, “V-grooved silicon solar cells,” in Proceedings of the Eleventh IEEE Photovoltaic Specialists Conf, 44-48 (1975). [24] B. Paivanranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology, 20, 375301-375307 (2009). [25] J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double-layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett, 66, 3636-3638 (1995). [26] J. Zhao, A. Wang and M.A. Green, “24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates”, Progress in Photovoltaics, 7, 471-474 (1999). [27] P. Campbell, and M. A. Green, “High performance light trapping textures for monocrystalline silicon solar cells,” Solar Energy Materials and Solar Cells, 65, 369-375 (2001). [28] S. C. Chiao, J. L. Zhou, and H. A. Macleod, “Optimized design of an antireflection coating for textured silicon solar cells,” Applied Optics, 32, 5557-5560 (1993). [29] D. Thorp, P. Campbell, and S. R. Wenham, “Conformal films for light-trapping in thin silicon solar cells,” Progress in photovoltaics: research and applications, 4, 205-224 (1996). [30] S. Strehlke, S. Bastide, J. Guillet, and C. Levy-Clement, “ Design of porous silicon antireflection coatings for silicon solar cells, ” Marterials Science and Enginerring, B69-70, 81-86 (2000). [31] S. A. Maier, Plasmonics: Fundamentals and applications, springer [32] W. Shcokley, and H. J. Queisser, “Detailed balance limit of efficient of p-n junction solar cells, ” J. Applied Phys, 32, 510-519 (1961). [33] “Solar pectral irradiance,” http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG-173/ASTMG17.html [34] E. Hecht, 'Optics', Fourth Edition, Addison-Wesley, 393-396 (2002). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48158 | - |
| dc.description.abstract | 我們使用二維時域有限差分法模擬並且比較V型結構與W型結構的表面電漿極化傳遞的性質,探討表面電漿極化在不同結構上的傳遞現象。我們發現表面電漿極化在W型結構中較不易傳遞,增加了局域的電場強度。另一方面,我們使用三維時域有限差分法與光追跡模擬太陽能電池的抗反射層。探討不同幾何結構反射次數對於太陽能電池的吸收效率,我們比較倒金字塔結構以及我們自己設計的結構對於太陽能電池的吸收效率,使用短路電流密度、幾何光學來分析,我們發現我們設計的結構與倒金字塔結構相比,具有較少的反射和較高的短路電流密度。 | zh_TW |
| dc.description.abstract | We study the propagation properties of surface plasmons polaritons in two-dimensional V-shape and W-shape nanostrucures by using the finite-difference time-domain method. It shows that some W-shape cases can increase the electric field intensities because the surface plasmon propagation is more difficult at W-shape nanostructures. On the other hand, we also propose a three-dimensional anti-reflection layer structure for solar cells. We use the three-dimensional finite-difference time-domain method and ray tracing method to simulate our designed the structure. We study the absorption in with different geometry structure, and compare with the inverted pyramid structures. We use the short circuit current density and geometry optics to discuss the reflection for solar cells. We found that our designed structure can have lesser reflection and larger short circuit current density as comparing to the inverted pyramid structures. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:47:37Z (GMT). No. of bitstreams: 1 ntu-100-R97525028-1.pdf: 2303025 bytes, checksum: 822fb9ec45d65d83128c1919bf34efd6 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii STATEMENT OF CONTRIBUTION iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Literature review 1 1.1.1 Plasmonic property of nanostructure 1 1.1.2 High performance anti-reflection solar cells 2 1.2 Objective 3 1.3 Framework of this thesis 4 Chapter 2 Research Method 5 2.1 Surface Plasmon Polaritons at a single interface 5 2.2 Surface Plasmon Polaritons and localized surface plasmons 7 2.3 Solar cell anti-reflective layer and geometrical optics 8 2.4 Short circuit current density 9 Chapter 3 Surface Plasmonic properties of nanostructures 15 3.1 Compare two-dimensional V-shape and W-shape 15 3.2 Current source excite surface plasmon 18 Chapter 4 High performance light capture structure of solar cell anti-reflection layer 43 4.1 Different tip geometry 44 4.2 Different angle of the tip 45 4.3 Different tip height 45 4.4 Simulation ray tracing by trace-pro 46 Chapter 5 Conclusion and future work 58 REFERENCE 60 VITA 64 | |
| dc.language.iso | en | |
| dc.subject | 時域有限差分法 | zh_TW |
| dc.subject | 表面電漿極化 | zh_TW |
| dc.subject | 光追跡 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | ray tracing | en |
| dc.subject | solar cell | en |
| dc.subject | finite-difference time-domain method | en |
| dc.subject | surface plasmon polariton | en |
| dc.title | 具有表面電漿特性之W型奈米結構與一種新型太陽能電池抗反射層結構之設計 | zh_TW |
| dc.title | The Surface Plasmon Property of the W-shape Nanostructure and A New Design of Antireflection Layer for Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許文翰,朱仁佑,林鼎晸,李坤彥 | |
| dc.subject.keyword | 時域有限差分法,表面電漿極化,光追跡,太陽能電池, | zh_TW |
| dc.subject.keyword | finite-difference time-domain method,surface plasmon polariton,ray tracing,solar cell, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-05-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
