Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵
dc.contributor.authorPo-Heng Linen
dc.contributor.author林柏亨zh_TW
dc.date.accessioned2021-06-15T06:47:33Z-
dc.date.available2016-07-25
dc.date.copyright2011-07-25
dc.date.issued2011
dc.date.submitted2011-05-31
dc.identifier.citationAa, K., Flengsrud, R., Lindahl, V., Tronsmo, A., 1994. Characterization of production and enzyme properties of an endo-beta-1,4-glucanase from Bacillus subtilis ck-2 isolated from compost soil. Anton Leeuw int J. G., 66, 319-326.
Akaracharanya, A., Lorliam, W., Tanasupawat, S., Lee, K.C., Lee, J.-S., 2009. Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. Int. J. Syst. Evol. Microbiol., 59, 2680-2684.
Aswathy, U.S., Sukumaran, R.K., Devi, G.L., Rajasree, K.P., Singhania, R.R., Pandey, A., 2010. Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresour. Technol., 101, 925-930.
Bajpai, P., 1999. Application of enzymes in the pulp and paper industry. Biotechnol. Prog., 15, 147-157.
Bajpai, P., Bajpai, P.K., 1998. Deinking with enzymes: a review. Tappi J., 81, 111-117.
Bajpai, P., Mishra, S.R., Mishra, O.P., Kumar, S., Bajpal, P.K., 2006. Use of enzymes for reduction in refining energy - laboratory studies. Tappi J., 5, 25-32.
Bauchop, T., 1979. Rumen anaerobic fungi of cattle and sheep. Appl. Environ. Microbiol., 38, 148-158.
Bauchop, T., 1981. The anaerobic fungi in rumen fibre digestion. Agric. Environ., 6, 339-348.
Bezerra, R.M., Dias, A.A., Fraga, I., Pereira, A.N., 2006. Simultaneous ethanol and cellobiose inhibition of cellulose hydrolysis studied with integrated equations assuming constant or variable substrate concentration. Appl. Biochem. Biotechnol. 134, 27-38.
Beguin, P., Aubert, J.P., 1994. The biological degradation of cellulose. FEMS Microbiol. Rev., 13, 25-58.
Bhardwaj, N.K., Bajpai, P., Bajpai, P.K., 1996. Use of enzymes in modification of fibres for improved beatability. J. Biotechnol., 51, 21-26.
Bhardwaj, N.K., Bajpai, P., Bajpai, P.K., 1997. Enhancement of strength and drainage of secondary fibres. Appita J., 50, 230-232.
Bhat, M.K., 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv., 18, 355-383.
Bhat, M.K., Bhat, S., 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv., 15, 583-620.
Bischoff, K. M., Liu, S., Hughes, S. R., 2007. Cloning and characterization of a recombinant family 5 endoglucanase from Bacillus licheniformis strain B-41361. Process Biochem.42, 1150–1154.
Blanco, A., Díaz, P., Martínez, J., Vidal, T., Torres, A.L., Pastor, F.I., 1998. Cloning of a new endoglucanase gene from Bacillus sp. BP-23 and characterisation of the enzyme. Performance in paper manufacture from cereal straw. Appl Microbiol Biotechnol., 50, 48-54.
Boisset, C., Fraschini, C., Schulein, M., Henrissat, B., Chanzy, H., 2000. Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl. Environ. Microbiol., 66, 1444-1452.
Champagne, P., Li, C.J., 2009. Enzymatic hydrolysis of cellulosic municipal wastewater treatment process residuals as feedstocks for the recovery of simple sugars. Bioresour. Technol., 100, 5700-5706.
Coughlan, M.P., 1985. Cellulases: Production properties and applications. Biochem. Soc. Trans., 13, 405-406.
Demain, A.L., Newcomb, M., Wu, J.H.D., 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev., 69, 124-154.
Dhillon, N., Chhibber, S., Saxena, M., Pajni, S., Vadehra, D.V., 1985. A constitutive endoglucanase (Cmcase) from Bacillus Licheniformis-1. Biotechnol. Lett., 7, 695-697.

Dienes, D., Borjesson, J., Stalbrand, H., Reczey, K., 2006. Production of Trichoderma reesei Cel7B and its catalytic core on glucose medium and its application for the treatment of secondary fibers. Process Biochem., 41, 2092-2096.
Din, N., Gilkes, N.R., Tekant, B., Miller, R.C., Warren, A.J., Kilburn, D.G., 1991. Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase. Bio-Technology, 9, 1096-1099.
Eriksson, K.E., Wood, T.M., 1985. Biodegradation of cellulose n: Biosynthesis and Biodegradation of Wood Components. Academic Press, New York.
Feng, Y., Duan, C.-J., Pang, H., Mo, X.-C., Wu, C.-F., Yu, Y., Hu, Y.-L., Wei, J., Tang, J.-L., Feng, J.X., 2007. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol., 75, 319–328
Forsberg, C.W., Groleau, D., 1982. Stability of the endo-beta-1,4-glucanase and beta-1,4-glucosidase from bacteroides-succinogenes. Can. J. Microbiol., 28, 144-148.
Gaboriaud, C., Bissery, V., Benchetrit, T., Mornon, J.P., 1987. Hydrophobic cluster-analysis - an efficient new way to compare and analyze amino-acid-sequences. FEBS Lett., 224, 149-155.
Garcia, O., Torres, A.L., Colom, J.F., Pastor, F.I.J., Diaz, P., Vidal, T., 2002. Effect of cellulase-assisted refining on the properties of dried and never-dried Eucalyptus pulp. Cellulose, 9, 115-125.
Gil, N., Gil, C., Amaral, M. E, Costa, A. P., Duarte, A. P., 2009. Use of enzymes to improve the refining of a bleached Eucalyptus globulus kraft pulp. Biochem. Eng. J., 46, 89-95.
Hagemeyer, R. W., Kocurek, M. J., Manson, D. W. (eds.), 1992. Pulp and Paper Manufacture Series. Volume 6: Stock Preparation. Joint Textbook Committee of the Paper Industry. Tappi press, Atlanta, USA. 316 pp.
Han, S.-J., Yoo, Y.-J., Kang, H.-S., 1995. Characterization of a bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo- and endoglucanase activity. J. Biol. Chem. 270, 26012–26019.
Henrissat, B., 1991. A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. J., 280, 309-316.
Henrissat, B., Bairoch, A., 1993. New families in the classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. J., 293, 781-788.
Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L., Mornon, J.P., 1989. Cellulase families revealed by hydrophobic cluster-analysis. Gene, 81, 83-95.
Horikoshi, K., Akiba,T., 1982. Alkalophilic microorganisms - a new microbial world. Can. J. Microbiol., 30, 774-779.
Ibrahim, A.S.S., El-diwany, A.I., 2007. Isolation and identification of new cellulases producing thermophilic bacteria from an egyptian hot spring and some properties of the crude enzyme. Aust. J. Basic Appl. Sci., 1, 473-478.
Ito, S., Kobayashi, T., Ara, K., Ozaki, K., Kawai, S., Hatada, Y., 1998. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles, 2, 185-190.
Johnson, E.A., Sakajoh, M., Halliwell, G., Madia, A., Demain, A.L., 1982. Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol., 43, 1125-1132.
Jung, K.H., Chun, Y.C., Lee, J.C., Kim, J.H., Yoon, K.H., 1996. Cloning and expression of a Bacillus sp 79-23 cellulase gene. Biotechnol. Lett., 18, 1077-1082.
Kim, S.-J., Lee, C.-M., Han, B.-R., Kim, M.-Y., Yeo, Y.-S., Yoon, S.-H., Koo, B.-S., Jun, H-K., 2008. Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol. Lett. 282, 44–51.
Kamaya, Y., 1996. Role of endoglucanase in enzymatic modification of bleached kraft pulp. J. Ferment. Bioeng., 82, 549-553.
Ko, C.-H., Lin, Z.-P., Tu, J., Tsai, C.-H., Liu, C.-C., Chen, H.-T., Wang, T.-P., 2009. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Int. Biodeterior. Biodegrad., doi: DOI: 10.1016/j.ibiod.2009.10.001
Ko, C.-H., Chen, W.L., Tsai, C.H., Jane, W.N., Liu, C.C., Tu, J., 2007. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresour. Technol., 98, 2727-2733.
König, J., Grasser, R., Pikor, H., Vogel, K., 2002. Determination of xylanase, beta-glucanase, and cellulase activity. Anal. Bioanal. Chem. 374, 80-87.
Koshland, D.E., 1953. Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. Camb. Philos. Soc., 28, 416-436.
Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Lamed, R., Bayer, E.A., 1988. The cellulosome of Clostridium thermocellum. Adv. Appl. Microbiol., 33, 1-46.
Lamed, R., Setter, E., Bayer, E.A., 1983. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol., 156, 828-836.
Lee, Y.-J., Kim, B.-K., Lee, B.-H., Jo, K.-I., Lee, N.-K., Chung C.-H., Lee, Y.-C., Lee, J.W., 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol., 99, 378-386.
Lemeslevarloot, L., Henrissat, B., Gaboriaud, C., Bissery, V., Morgat, A., Mornon, J.P., 1990. Hydrophobic cluster-analysis - procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie, 72, 555-574.
Ljungdahl, L.G., Pettersson, B., Eriksson, K.E., Wiegel, J., 1983. A yellow affinity substance involved in the cellulolytic system of Clostridium thermocellum. Curr. Microbiol., 9, 195-199.
Lowe, S.E., Theodorou, M.K., Trinci, A.P., 1987. Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan. Appl. Environ. Microbiol., 53, 1216-1223.
Lumianinen, J.J., 2000. Refining of chemical pulp, in: Paulapuro (Eds.), Papermaking Science and Technology, vol. 8: Papermaking Part 1.: Stock preparation and wet end, Fapet Oy, Helsinki, Finland.
Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., Singh, S., Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol., doi:10.1016/j.biortech.2009.10.066.
Lucas, R., Robles, A., García, M. T., de Cienfuegos, G. A., Gálvez, A., 2001. Production, purification, and properties of an endoglucanase produced by the hyphomycete Chalara (Syn. Thielaviopsis) paradoxa CH32. J. Agric. Food Chem. 2001, 49, 79-85.
Lynd, L.R., Cushman, J.H., Nichols, R.J., Wyman, C.E., 1991. Fuel ethanol from cellulosic biomass. Science, 251, 1318-1323.
Lynd, L.R., Laser, M.S., Brandsby, D., Dale, B.E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J.D., Sheehan, J., Wyman, C.E., 2008. How biotech can transform biofuels. Nat. Biotechnol., 26, 169-172.
Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S., 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev., 66, 506-577.
Mackenzie, C.R., Patel, G.B., Bilous, D., 1987. Factors involved in hydrolysis of microcrystalline cellulose by acetivibrio cellulolyticus. Appl. Environ. Microbiol., 53, 304-308.
Mandels, M., 1985. Applications of cellulases. Biochem. Soc. Trans., 13, 414-416.
Mawadza, C., Rajini, H.K., Zvauya, R. and Mattiasson, B., 2000. Purification and characterization of cellulases produced by two Bacillus strains, J. Biotech., 83, 177–187.
Mountfort, D.O., Asher, R.A., 1985. Production and regulation of cellulase by two strains of the rumen anaerobic fungus neocallimastix-frontalis. Appl. Environ. Microbiol., 49, 1314-1322.
Mutjé, P., Pèlach, M.A., Vilaseca, F., García, J.C., Jiménez, L., 2005. A comparative study of the effect of refining on organosolv pulp olive trimmings and kraft pulp from eucalyptus wood. Bioresour. Technol. 96, 1125–1129
Oh, J.H., Cha, J.A., Yoon, M.H., 2008. Molecular Characterization of a β-1,4-Endoglucanase Gene from Bacillus subtilis H12. Appl. Biol. Chem., 51, 299-304.
Okazaki, M., Moo-Young, M., 1978. Kinetics of enzymatic hydrolysis of cellulose: analytical description of a mechanistic model. Biotechnol. Bioeng., 20, 637-63.
Oksanen, T., Pere, J., Paavilainen, L., Buchert, J., Viikari, L., 2000. Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J. Biotechnol., 78, 39-48.
Paul, J., Varma, A.K.,1990. Influence of sugars on endoglucanase and B-xylanase
activities of a Bacillus sp. Biotechnol. Lett. 60: 61-64.
Pason, P., Kyu, K.L., Ratanakhanokchai, K., 2006. Paenibacillus curdlanolyticus strain
B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble
polysaccharides. Appl. Environ. Microbiol., 72, 2483-2490.
Pastor, F.I.J., Pujol, X., Blanco, A., Vidal, T., Torres, A.L., Diaz, P., 2001. Molecular
cloning and characterization of a multidomain endoglucanase from
Paenibacillus sp BP-23: evaluation of its performance in pulp refining. Appl.
Microbiol. Biotechnol., 55, 61-68.
Pèlach, M.A., Pastor, F.J., Puig, J., Vilaseca, F., Mutjé, P., 2003. Enzymic deinking of
old newspapers with cellulase. Process Biochem., 38, 1063-1067.
Robson, L.M. and G.H. Chambliss, 1984. Characterization of the cellulolytic activity
of a bacillus isolate. Appl. Environ. Microbiol., 47, 1039-1046.
Robson, L.M. and G.H. Chambliss, 1987. Endo-B-1,4-glucanase gene of Bacillus
subtilis DLG. J. Bacteriol. 169, 2017-2025.
Rivas, R., Garcia-Fraile, P., Mateos, P.F., Martinez-Molina, E., Velazquez, E., 2006.
Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium
isolated from the bract phyllosphere of Phoenix dactylifera. Int. J. Syst. Evol.
Microbiol., 56, 2777-2781.
Schülein, M., 1997. Enzymatic properties of cellulases from Humicola insolens. J.
Biotechnol. 57, 71-81.
Schulein, M., 2000. Protein engineering of cellulases. BBA-PROTEIN STRUCT M,
1543, 239-252.
Shoseyov, O., Doi, R.H., 1990. Essential 170-kDa subunit for degradation of
crystalline cellulose by Clostridium cellulovorans cellulase. Proc. Natl. Acad.
Sci. U. S. A., 87, 2192-2195.
Singh, J., Batra, N., Sobti, R.C., 2001. A highly thermostable, alkaline CMCase
produced by a newly isolated Bacillus sp VG1. World J. Microbiol. Biotechnol.,
17, 761-765.
Singh, J., Batra, N., Sobti, R.C., 2004. Purification and characterisation of alkaline
cellulase produced by a novel isolate, Bacillus sphaericus JS1. J. Ind.
Microbiol. Biotechnol., 31, 51-56.
Sinnott, M.L., 1990. Catalytic mechanisms of enzymatic Glycosyl Transfer. Chem.
Rev., 90, 1171-1202.
Sprey, B., Lambert, C., 1983. Titration curves of cellulases from trichoderma-reesei -
demonstration of a cellulase-xylanase-beta-glucosidase-containing complex.
FEMS Microbiol. Lett., 18, 217-222.
Srivastava, R., Gopinathan, K.P., Ramakrishnan, T., 1981. Deoxyribonucleic acid
methylation in mycobacteria. J Bacteriol. 148, 716-719.
Subramaniyan, S., Prema, P., 2000. Cellulase-free xylanases from Bacillus and other
microorganisms. FEMS Microbiol. Lett., 183, 1-7.
Sukumaran, R.K., Singhania, R.R., Pandey, A., 2005. Microbial cellulases- Production,
applications and challenges. J. Sci. Ind. Res., 64, 832-844.
Thayer, D.W., 1978. Carboxymethylcellulase produced by facultative bacteria from
hind-gut of termite Reticulitermes hesperus. J. Gen. Microbiol., 106, 13-18.
Thayer, D.W., Lowther, S.V., Phillips, J.G., 1984. Cellulolytic activities of strains of the
genus Cellulomonas. Int. J. Syst. Bacteriol. 34, 432-438
Tomme, P., Vantilbeurgh, H., Pettersson, G., Vandamme, J., Vandekerckhove, J.,
Knowles, J., Teeri, T., Claeyssens, M., 1988. Studies of the cellulolytic system
of Trichoderma reesei Qm-9414 - analysis of domain function in 2
cellobiohydrolases by limited proteolysis. Eur. J. Biochem., 170, 575-581.
Tomme, P., Warren, R.A.J., Miller, R.C., Kilburn, D.G., Gilkes, N.R., 1995.
Cellulose-binding domains: classification and properties. Enzymatic
Degradation of Insoluble Carbohydrates, 618, 142-163.
Wang, C.-M., Shyu, C.-L., Ho, S.-P. Chiou, S.-H., 2008. Characterization of a novel
thermophilic, cellulose degrading bacterium Paenibacillus sp. strain B39. Lett.
Appl. Microbiol. 47, 46–53.
Wang, C -Y, Hsieh, Y.-R., Ng, C.-C., Chan, H., Lin, H.-T., Tzeng, W.-S., Shyu, Y.-T.,
2009. Purification and characterization of a novel halostable cellulase from
Salinivibrio sp. strain NTU-05. Enz. & Microb. Technol. 44,373–379
Wang, W., Liu, J., Chen, G.J., Zhang, Y.S., Gao, P.J., 2003. Function of a low
molecular weight peptide from Trichoderma pseudokoningii S38 during
cellulose biodegradation. Curr. Microbiol., 46, 371-379.
Wolfenden, R., Snider, M.J., 2001. The depth of chemical time and the power of
enzymes as catalysts. Acc. Chem. Res., 34, 938-945.
Wood, P.J., Erfle, J.D., Teather, R.M., 1988. Use of complex formation between Congo
red and polysaccharide in detection and assay of polysaccharide hydrolases,
Methods Enzymol., 160, 59–74.
Wood, T.M., 1992. Fungal cellulases. Biochem. Soc. Trans., 20, 46-53.
Wood, T.M., Bhat, K.M., 1988. Methods for measuring cellulase activities. Methods
Enzymol., 160, 87-112.
Wood, T.M., Mccrae, S.I., Macfarlane, C.C., 1980. The isolation, purification and
properties of the cellobiohydrolase component of Penicillium funiculosum
Cellulase. Biochem. J., 189, 51-65.
Wood, T.M., Wilson, C.A., Mccrae, S.I., Joblin, K.N., 1986. A highly-active
extracellular cellulase from the anaerobic rumen fungus
neocallimastix-frontalis. FEMS Microbiol. Lett., 34, 37-40.
Vyas, S., Lachke, A., 2003. Biodeinking of mixed office waste paper by alkaline active
cellulases from alkalotolerant Fusarium sp. Enz. & Microb. Technol., 32,
236-245.
Zechel, D.L., Withers, S.G., 2000. Glycosidase mechanisms: Anatomy of a finely tuned
catalyst. Acc. Chem. Res., 33, 11-18.
Zhang, Y.H.P., Himmel, M.E., Mielenz, J.R., 2006. Outlook for cellulase improvement:
Screening and selection strategies. Biotechnol. Adv., 24, 452-481.
Zhang, Y.H.P., Lynd, L.R., 2004. Toward an aggregated understanding of enzymatic
hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng.,
88, 797-824.
Zhang, Y.H.P., Lynd, L.R., 2005. Determination of the number-average degree of
polymerization of cellodextrins and cellulose with application to enzymatic
hydrolysis. Biomacromolecules, 6, 1510-1515.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48156-
dc.description.abstract由Paenibacillus campinasensis BL11 之基因中選殖出的基因片段(CelBL11)具有對對羧甲基纖維素(CMC)有活性的內切型葡聚醣酶於大腸桿菌中表達。CelBL11 由1,465 個核苷酸所組成,而此片段的末端並沒有停止密碼子。CelBL11經轉譯後形成約 55 kDa 的內切葡聚醣酶的蛋白質。其N 端包含一個經由預測的29 個氨基酸長度的訊息肽。催化中心(catalytic domain)是被歸類在family 5(GH5)之中。在纖維素酶的C 端有碳水化合物結合區是被歸類在在family III(CBM3)之中。重組蛋白在纖維素酶的N 端上有His-tag 的片段是用來作NTA-Agarose 親合性管柱曾析純化蛋白質所用。在SDS-PAGE 顯示分別在52 kD 和38 kDa 的位置上有內切型纖維素酶之活性。由核甘酸所推測出的長度大概與38 kDa 相差14kDa 左右。有可能是因為後修飾作用或是蛋白質酶水解所導致的結果。38 kDa纖維素酶對avicel, acid swollen avicel, CMC, 1,3B-glucan 和xylan 可作為分解的基質。經由純化後的38 kDa 纖維素酶其最適酸鹼條件為pH 7 最適溫度為60 oC。Hg2+和 N-bromosuccinimide 對纖維素酶具有劇烈的抑制;而Mn2+對纖維素酶有促進的效果。當環境pH 6 和7 時,在60 oC 的環境下八個小時後活性只減少的百分之二十以下;pH 5 和8 其相對活性分別為31%和15%。纖維素酶酵素動力學常數在基質為羧甲基纖維素時Km 和Vmax 分別為11.25 mg/ml 與1250mol/min/mg。當環境cellobiose 的濃度在5 mg/ml 以下時,基質與cellobiose 為競爭型抑制。zh_TW
dc.description.abstractFrom Paenibacillus campinasensis BL11, the gene CelBL11 encoding an
endoglucanase with an activity towards carboxymethyl cellulose (CMC) was cloned
and expressed in E. coli. CelBL11 is composed of 1,465 bp nucleotides without stop
coden in C-terminal. Cel-BL11 encodes an endoglucanase of 55 kDa. The N-terminal
of the cellulase contains a deduced signal peptide of 29 amino acids in length and a glycosyl hydrolase domain (catalytic domain) in family 5 (GH5); and a carbohydrate binding module in family III (CBM3) at C-terminal of this cellulase. The Cel-BL11 was fused with a His-tag at its N-terminal and the recombinant Cel-BL11 was purified by Ni-NTA affinity chromatography. Zymographic analysis of the recombinant Cel-BL11 exhibited two cellulase activities at 52 kDa and 38 kDa. Apparent ca. 14 kDa difference between the recombinant 38 kDa cellulase and its precursor form minus the signal peptide (ca. 3 kDa) could be due to proteolysis or post-translational modifications. The 38 kDa cellulase hydrolyzed avicel, acid swollen avicel, CMC, 1,3B-glucan and xylan. Optimum temperature and pH for the 38 kDa cellulase activity of the purified cellulase were found to be 60 °C and pH 7.0, respectively. The 38 kDa cellulase activity was strongly inhibited by Hg2+ and N-bromosuccinimide, andstrongly promoted by Mn2+. More than 80% residual activities at 60 oC for 8 h were demonstrated at pH 6 and 7; while 31 and 15% residual activities found for pH 5 and 8. The 38 kDa cellulase has a Km of 11.25 mg/ml and a Vmax of 1250 mol/min/mg with carboxymethyl-cellulose (CMC). Competitive inhibition of cellobiose below 5 mg/ml on CMC hydrolysis by Cel-BL11 was found.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:47:33Z (GMT). No. of bitstreams: 1
ntu-100-R97625009-1.pdf: 581600 bytes, checksum: 962796790aae88b9036200095e125c5e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsIndex……………………………………………………………………… III
Table index……………………………………………………………….. V
Figure index………………………...………………………..................... V
Ⅰ Introduction…………………….………………………………………... 1
Ⅱ Literature review…………….…………………………………………. 4
1. Characterization and structure of cellulose…………………………….. 4
2. Cellulolytic enzymes…………………………………………………... 5
3. The mechanisms of cellulolytic enzymes……………………………… 7
4. Classification of cellulases…………………………………………….. 9
4.1 Classification of catalytic domains………………………………….. 9
4.2 Classification of carbohydrate-binding modules…………………… 11
5. Cellulase producing microorganisms………………………………….. 12
5.1 Bacterium………...……………………………………...................... 12
5.2 Fungi……………………………………..………………………….. 17
6. Applicationsof cellulase………………………………………………... 18
Ⅲ Objective…………………………………………………………………. 21
Ⅳ Materials and methods………………………………………………….. 22
1. Materials............…………………………………………..................... 22
2. Bacterial strains and plasmids…………………………………………. 22
3. DNA isolation, genomic library construction and screening…............... 22
4. DNA sequencing and sequence analysis………………………………. 23
5. Construction of BL11 cellulase expression system……………………. 24
6. Protein analysis………………………………………………………… 24
7. Expression and purification of the recombinant cellulase……………... 24
8. SDS-PAGE and zymogram……………………………………………. 25
9. Effects of pH and temperature on CMCase activity and stability……... 26
10. Effect of additives on cellulase activity………………………………. 26
11. Substrate specificity…………………………………………………... 27
12. Kinetic parameters and hydrolysis inhibition by cellobiose………….. 27
Ⅴ Results and Discussion…………………….......... …………………….. 29
1. Cloning of the cellulase gene Cel BL11……………………………….. 29
2. DNA sequence analysis of the cellulase (Cel BL11) gene…………….. 30
3. Overexpression of cloned cellulase……………………………………. 32
3.1 Primer set design of cellulase gene and optimal PCR program…….. 32
3.2 TA cloning, restriction enzyme digestion, and fragment recovery…. 33
3.3 Restriction enzyme digestion and fragment recovery of pET15b…... 34
3.4 Ligation, electroporation, and transformation………………………. 35
4. Purification of cloned BL11 cellulase…………………………………. 37
4.1 Condition test of induction………………………………………….. 37
4.2 Pretest of purification condition…………………………………….. 38
4.3 Purification of Cel-BL11 endoglucanase…………………………… 39
5. Production and characterization of the recombinant cellulase………… 41
5.1 DNSA assay of crude Cel BL11 cellulase activity………………….. 41
5.2 DNSA assay of purify induced Cel BL11 activity…………………... 42
6. Effect of pH and temperature on CMCase stability……………………. 44
7. Effect of various additives on cellulase activity……………………….. 47
8. Substrate specificity……………………………………………………. 48
9. Kinetic parameters and hydrolysis inhibition by cellobiose…………… 50
VI Conclusion……………………………………………………………….. 52
VII References………………………………………………….…………….. 54
dc.language.isoen
dc.titlePaenibacillus campinasensis BL11 纖維素酶之大量表現、純化及基本性質zh_TW
dc.titleOverexpression, purification and characteristics of the cellulase gene from Paenibacillus campinasensis BL11en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張上鎮,常玉強,劉佳振
dc.subject.keyword羧甲基纖維素(CMC),纖維素&#37238,clone,Paenibacillus campinasensis BL11,zh_TW
dc.subject.keywordcarboxylmethylcellulose (CMC),cellulase,clone,Paenibacillus campinasensis BL11.,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2011-06-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
567.97 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved