Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵
dc.contributor.authorFang-Jing Chenen
dc.contributor.author陳芳璟zh_TW
dc.date.accessioned2021-06-15T06:47:27Z-
dc.date.available2016-07-25
dc.date.copyright2011-07-25
dc.date.issued2011
dc.date.submitted2011-06-02
dc.identifier.citationAswathy US, Sukumaran RK, Devi GL, Rajasree KP, Singhania RR, Pandey A (2010) Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresource Technol 101: 925-930.
Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15: 147-157.
Bajpai P, Bajpai PK (1998) Deinking with enzymes: a review. Tappi J 81: 111-117.
Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958.
Bhat G, Heitmann JA, Joyce TW (1991) Novel techniquies for enhancing the stength of secondary fiber. TAPPI J 74: 151-157.
Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383.
Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15: 583-620.
Bhardwaj NK, Duong TD, Nguyen KL (2004a) Pulp charge determination by different methods: effect of beating/refining. Colloids Surf 236:39–44.
Bhardwaj NK, Kumar S, Bajpai PK (2004b) Effects of processing on zeta potential and cationic demand of kraft pulps. Colloid Surf 246:121–125.
Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresource Technol 101: 4767-4774.
Boussaid A, Saddler JN (1999) Adsorption and activity profiles of cellulases during the hydrolysis of two Douglas fir pulps. Enzyme Microb Technol 24:138–143.
Boopathy R (1998) Biological treatment of swine waste using anaerobic baffled reactors. Bioresource Technol 64: 1-6.
Champagne P, Li CJ (2009) Enzymatic hydrolysis of cellulosic municipal wastewater treatment process residuals as feedstocks for the recovery of simple sugars. Bioresource Technol 100: 5700-5706.
Chernoglazov VM, Ermolova OV, Klyosov AA (1988) Adsorption of high-purity endo-1,4-beta-glucanases from Trichoderma reesei on components of lignocellulosic materials: cellulose, lignin, and xylan. Enzyme Microb Technol 10:503–507.
Cheung SW, Anderson BC (1997) Laboratory investigation of ethanol production from municipal primary wastewater. Bioresource Technol 59: 81-96.
Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69: 124-154.
Dewes T, Hunsche E (1998) Composition and Microbial degradability in the soil of farmyard manure from ecologically-managed farms. Biol Agric Hortic 16: 251-268.
Dienes D, Borjesson J, Stalbrand H, Reczey K (2006) Production of Trichoderma reesei Cel7B and its catalytic core on glucose medium and its application for the treatment of secondary fibers. Process Biochem 41: 2092-2096.
Din N, Gilkes NR, Tekant B, Miller RC, Warren AJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase. Biotechnol 9: 1096-1099.
Fan LT, Lee YH, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22:177–199.
Fengel D, Wegener G (1983) Wood Chemistry, Ultrastructure, Reactions. Walter de Gruyter: Berlin and New York
Gerber PJ, Joyce TW, Heitmann JA, Siika-aho M, Buchert J (1997) Adsorption of a Trichoderma reesei endoglucanase and cellobiohydrolase onto bleached kraft fibers. Cellulose 4: 255-268.
Gilkes NJ, Henrissat B, Kilburn DG, Miller RC, Warren RAJ (1991) Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55: 303–315.
Goulet MT, Stratton RA (1990) The effect of pulping, bleaching, and refining operations on the electrokinetic properties of wood fines. Nordic Pulp Paper Res J 3:118-125.
Gray KA, Zhao L, Emptage M (2006) Current opinion in chemical biology. Bioethanol. Chem Biolo 10: 141–146.
Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053.
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807.
Hrmova M, Harvey AJ, Wang J, Shirley NJ, Jones GP, Stone BA, Høj PB, Fincher GB (1996) Barley beta-D-glucan exohydrolases with beta-D-glucosidase activity. Purification, characterization, and determination of primary structure from a cDNA clone. J Biol Chem 271(9):5277–5286.
Huang HJ, Ramaswamy S, Al-Dajania WW, Tschirner U (2010) Process modeling and analysis of pulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanol production: A comparative study. Bioresource Technol 101(2):624–631.
Ishizawa CI, Jeoh T, Adney WS, Himmel ME, Johnson DK, Davis MF (2009) Can delignification decrease cellulose digestibility in acid pretreated corn stover? Cellulose 16:677–686.
Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122.
Kautto J, Henricson K, Sixta H, Trogen M, Alen R (2010) Effects of integrating a bioethanol production process to a kraft pulp mill. Nordic Pulp Pap Res J 25(2):233–242.
Kerkes RJ (2005) Characterizing refining action in PFI mills. Tappi J 4(3):9–13.
Ko CH, Lin ZP, Tu J, Tsai CH, Liu CC, Chen HT, Wang TP (2010) Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Int Biodeterior Biodegrad 64:13–19.
König J, Grasser R, Pikor H, Vogel K (2002) Determination of xylanase, beta-glucanase, and cellulase activity. Anal Bioanal Chem 374:80–87.
Kumar R, Wyman CE (2009) Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioengine 103:252–267.
Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technol 101: 4900-4906.
Linder M, Teeri T (1997) The roles and function of cellulose-binding domains. J Biotechnol 57:15–28.
Lynd LR, Laser MS, Brandsby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172.
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577.
Lyytikäinen K, Saukkonen E, Kajanto I, and Käyhkö J (2011) The effect of hemicellulose extraction on fiber charge properties and retention behavior of kraft pulp fibers. BioRes 6: 219-231.
Mao HB, Genco JM, van Heiningen A, Pendse H (2010) Kraft mill biorefinery to produce acetic acid and ethanol: Technical economic analysis. Bioresources 5(2):525–544.
Mooney CA, Mansfield SD, Beatson RP, Saddler JN (1999) The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates. Enz Microb Technol 25: 644-650.
Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch MR (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96: 673-686.
Nazhad M, Paszner L (1994) Temperature effect on paper recycling. Prog Paper Recycl 3: 22-28.
Nidetzky B, Steiner W, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. Biochem J 303(3):817–823.
Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J. Biotechnol 78: 39-48.
Ooshima H, Burns DS, Converse AO (1990) Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric-acid with explosive decompression Biotechnol Bioeng 36:446– 452.
Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72.
Pèlach MA, Pastor FJ, Puig J, Vilaseca F, Mutjé P (2003) Enzymic deinking of old newspapers with cellulase. Process Biochem 38: 1063-1067.
Pere J, Siika-aho M, Buchert J, Viikari L (1995) Effects of purified Trichoderma reesei cellulases on the fiber properties of kraft pulp. Tappi J 78: 71-78.
Piccolo C, Wiman M, Bezzo F, Liden G (2010) Enzyme adsorption on SO2 catalyzed steam-pretreated wheat and spruce material. Enzyme Microb Technol 46:159–169.
Rahkamo L, Siika-aho M, Vehviläinen M, Dolk M, Viikari L, Nousiainen P, Buchert J (1996) Modification of hardwood dissolving pulp with purified Trichoderma reesei cellulase. Cellulose 3: 153-163.
Ramos LP, Nazhad MM, Saddler JN (1993) Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enzyme Microb Technol 15:821–831.
Reczey K, Szengyel Z, Eklund R, Zacchi G (1996) Cellulase production by Trichoderma reesei. Bioresource Technol 57: 25-30.
Reshamwala S, Shawky BT, Dale BE (1995) Ethanol production from enzymatic hydrolysates of AFEX-treated coastal Bermuda grass and switchgrass. Appl Biochem Biotechnol 51/52: 43-55.
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioeng Res 1: 20-43.
Sjöström E (1991) Wood chemistry, Fundamentals and Applications. San Diego, CA: Academic Press.
Suurnäkki A, Heijnesson A, Buchert J, Viikari L, Westermark U (1996) Chemical characterization of the surface layers of unbleached pine and birch Kraft pulp fibers. J Pulp Paper Sci 22: J43-J47.
Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. Bioresour 2: 472-499.
Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576.
Tomme P, Warren RAJ, Miller RC, Kilburn DG, Gilkes NR (1995) Cellulose-binding domains: classification and properties. Enzymatic degradation of Insoluble carbohydrates 618: 142-163.
Tu M, Pan X, Saddler JN (2009) Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem 57(17):7771–7778.
Uçar G, Balaban M (2004) Accurate determination of the limiting viscosity number of pulps. Wood Sci and Technol 38:139-148.
Vyas S, Lachke A (2003) Biodeinking of mixed office waste paper by alkaline active cellulases from alkalotolerant Fusarium sp. Enz and Microb Technol 32: 236-245.
Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 24:452–481.
Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol Bioeng 88: 797-824.
Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 24:452–481.
Zhu JY, Wang GS, Pan XJ, Gleisner R (2009) Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chem Eng Sci 64:474–485.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48152-
dc.description.abstract本實驗利用紙漿纖維和纖維素間切酶來探討纖維素材料的物理及化學性質對於酵素水解的影響。
材料的部分以PFI磨漿機來製造不同形態的纖維,以不同的氧漂及氯漂漂序來製造含有不同木質素和聚戊醣含量的纖維,來作為不同木化性質的纖維材料。
酵素對於紙漿的可及性,是將纖維及酵素置於4oC及40oC環境下做蛋白質的吸附,除了測定游離蛋白質含量外,也測定分子量和還原糖來觀察纖維的水解程度。
在低溫4oC的蛋白質吸附結果顯示,因在經過PFI磨漿後,產生較短、較寬的纖維,以及較多的微細纖維情況下,對於酵素有較好的吸附可及性,且木質素含量最少者有最高的吸附量;反之,在高溫水解時,較多木質素含量的纖維卻有較高的酵素吸附量。
對於PFI磨漿處理,未經PFI磨漿的纖維在經過酵素水解後,未漂漿的分子量下降最少;但若是經過PFI磨漿後,木質素的存在對於分子量下降多寡的影響便會下降,而讓PFI磨漿處裡的纖維有幾乎相同的分子量降解程度。
實驗結果表示,磨漿處理可以讓纖維表面產生較多的可反應面積,並改善木質素和聚戊糖在酵素水解時所會造成的影響。
zh_TW
dc.description.abstractRoles played by fiber physical and chemical characteristics in enzymatic hydrolysis of cellulosic materials were investigated by analyzing the interaction between an endoglucanase complex and eucalypt kraft fibers. PFI refining was employed to create the difference of fiber size distribution and morphology. Oxygen delignification and bleaching were employed to prepare fibers with different lignin and pentosan contents. The enzyme accessibility was monitored by adsorption at 4oC and during hydrolysis at 40oC. Molecular weight changes and reducing sugar released were monitored for digestibility of the samples. Greater maximum adsorption capacities of the enzymes were shown for the pulps with shorter and wider fibers and more fine fractions after refining. Highest amount of enzyme was adsorbed onto fibers with the least lignin contents at 4oC. Fewer desorbed from fibers with higher lignin contents during hydrolysis at 40oC. For unrefined fibers, less molecular weight reductions were observed for fibers with higher lignin contents. However, extensive fibrillation by refining negated the effects of lignin on the action of endoglucanase, similar molecular weight reductions were observed for fibers with three different lignin contents. Refining could be able to expose more reaction sites on the fiber surface, hence the impacts of lignin and pentosan diminished during hydrolysis for refined fibers.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:47:27Z (GMT). No. of bitstreams: 1
ntu-100-R97625046-1.pdf: 800714 bytes, checksum: 569e960d2b64d4cac2e96dc7c6e12335 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要:I
Abstract:II
Index:III
Table Index:V
Figure Index:VI
I.Introduction:01
II.Literature Reviews:04
2.1 Expansion of Bio-energy:04
2.1.1 Pretreatment Methods on Lignocellulosic Sources:05
2.1.2 Saccharification and Fermentation of Lignocellulosic Materials:06
2.2 Cellulolytic Enzymes:07
2.2.1 Characterization and Structure of Cellulose:07
2.2.2 Cellulolytic Enzymes:07
2.2.3 Catalytic Domains and Carbohydrate Binding Modules of Cellulases:08
2.2.4 Application of Cellulases:09
2.3 Factors Affect the Interaction Between Enzyme and Substrates:09
2.3.1 Effect of Ionic Strength:10
2.3.2 Effect of Softwood and Hardwood Fibers:12
2.3.3 Effect of Fiber History:14
2.3.4 Effect of Fiber Length:15
2.3.5 Effect of Different Fiber Types from Different Pulping Methods:19
2.3.6 Effect of Different Lignocellulosic Substrates:27
III.Objectives:32
IV.Materials and Methods:33
4.1 Materials:33
4.1.1 Pulp Production:33
4.1.2 Nuclear Magnetic Resonance:35
4.1.3 Enzyme:36
4.2 Experiment and Methods:36
4.2.1 Enzyme Accessibility:36
4.2.2 Enzymatic Digestibility:37
4.2.3 Pulp Morphology Analysis:38
4.2.4 Powder and Fiber X-ray Diffraction:38
V.Results and Discussions:40
5.1 Fiber Morphology Analysis:40
5.2 Effect of Refining on the Accessibility of Endoglucanase:42
5.3 Impact of Fiber Characters on Enzyme Adsorption During Hydrolysis:46
5.4 Effect of Refining on Fiber Hydrolysis:47
5.5 Nuclear Magnetic Resonance:50
5.6 Enzyme Digestibility:51
5.7 Powder and Fiber X-ray Diffraction:53
5.8 Discussions:55
VI.Conclusion:59
VII.Reference:60
dc.language.isoen
dc.subject纖維zh_TW
dc.subject吸附纖維素內切&#37238zh_TW
dc.subject水解zh_TW
dc.subject木質素zh_TW
dc.subject酵素可及性zh_TW
dc.subjectfiberen
dc.subjectaccessibilityen
dc.subjectadsorptionen
dc.subjectendoglucanaseen
dc.subjecthydrolysisen
dc.subjectligninen
dc.title木質素與纖維形態對纖維素內切酶水解桉樹硫酸鹽紙漿之影響zh_TW
dc.titleImpact of Lignin and Fiber Morphology on Endoglucanese Hydrolysis of Eucalypt Kraft Pulpen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張上鎮,藍浩繁,林曉洪
dc.subject.keyword酵素可及性,吸附纖維素內切&#37238,水解,木質素,纖維,zh_TW
dc.subject.keywordaccessibility,adsorption,endoglucanase,hydrolysis,lignin,fiber,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2011-06-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
781.95 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved