請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48149完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林中天(Chung-Tien Lin) | |
| dc.contributor.author | Lih-Chuan Yang | en |
| dc.contributor.author | 楊力權 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:47:23Z | - |
| dc.date.available | 2011-07-06 | |
| dc.date.copyright | 2011-07-06 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-05 | |
| dc.identifier.citation | 1. Ahmed A, Berati H, Nalan A, and Aylin S. Effect of bevacizumab on corneal neovascularization in experimental rabbit model. Clin Experiment Ophthalmol 37: 730-736, 2009.
2. Al-Abdullah AA, and Al-Assiri A. Resolution of bilateral corneal neovascularization and lipid keratopathy after photodynamic therapy with verteporfin. Optometry 82: 212-214, 2011. 3. Alfonso E, Arrellanes L, Boruchoff SA, Ormerod LD, and Albert DM. Idiopathic bilateral lipid keratopathy. Br J Ophthalmol 72: 338-343, 1988. 4. Andreoli CM. Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 18: 502-508, 2007. 5. Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MaA, and Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113: 363-372, 2006. 6. Badala F. The treatment of branch retinal vein occlusion with bevacizumab. Curr Opin Ophthalmol 19: 234, 2008. 7. Bahar I, Kaiserman I, McAllum P, Rootman D, and Slomovic A. Subconjunctival bevacizumab injection for corneal neovascularization. Cornea 27: 142-147, 2008. 8. Berse B, Brown L, Van de Water L, Dvorak H, and Senger D. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 3: 211-220, 1992. 9. Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, Plouet J, Derbin C, Perret G, and Mazie JC. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19: 1525-1533, 2000. 10. Bock F, König Y, Kruse F, Baier M, and Cursiefen C. Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 246: 281-284, 2008. 11. Bock F, Onderka J, Dietrich T, Bachmann B, Kruse FE, Paschke M, Zahn G, and Cursiefen C. Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Invest Ophthalmol Vis Sci 48: 2545-2552, 2007. 12. Bock F, Onderka J, Rummelt C, Dietrich T, Bachmann B, Kruse FE, Schlötzer-Schrehardt U, and Cursiefen C. Safety profile of topical VEGF neutralization at the cornea. Invest Ophthalmol Vis Sci 50: 2095-2102, 2009. 13. Bonanno JA, Stickel T, Nguyen T, Biehl T, Carter D, Benjamin WJ, and Soni PS. Estimation of human corneal oxygen consumption by noninvasive measurement of tear oxygen tension while wearing hydrogel lenses. Invest Ophthalmol Vis Sci 43: 371-376, 2002. 14. Carrasco MA. Subconjunctival bevacizumab for corneal neovascularization in herpetic stromal keratitis. Cornea 27: 743-745, 2008. 15. Chang JH, Gabison EE, Kato T, and Azar DT. Corneal neovascularization. Curr Opin Ophthalmol 12: 242-249, 2001. 16. Chen WL, Lin CT, Lin NT, Tu IH, Li JW, Chow LP, Liu KR, and Hu FR. Subconjunctival injection of bevacizumab (Avastin) on corneal neovascularization in different rabbit models of corneal angiogenesis. Invest Ophthalmol Vis Sci 50: 1659-1665, 2009. 17. Chilov MN, Grigg JR, and Playfair TJ. Bevacizumab (Avastin) for the treatment of neovascular glaucoma. Clin Experiment Ophthalmol 35: 494-496, 2007. 18. Chu HS, Hu FR, Yang CM, Yeh PT, Chen YM, Hou YC, and Chen WL. Subconjunctival injection of bevacizumab in the treatment of corneal neovascularization associated with lipid deposition. Cornea 30: 60-66, 2011. 19. Cogan DG, and Kuwabara T. Lipid keratopathy and atheroma. Circulation 18: 519-525, 1958. 20. Cogan DG, and Kuwabara T. Ocular changes in experimental hypercholesteremia. AMA Arch Ophthalmol 61: 219-225, 1959. 21. Colby KA, and Adamis AP. Prevalence of corneal neovascularization in a general eye service population (Abstract). Invest Ophthalmol Vis Sci 37: S593, 1996. 22. Crispin S. Ocular lipid deposition and hyperlipoproteinaemia. Prog Retin Eye Res 21: 169-224, 2002. 23. Crispin SM. Lipid keratopathy in the dog. University of Edinburgh. PhD Thesis, 1984. 24. Crispin SM. Lipid keratopathy in the dog. In: Grunsell, CSG, Hill, FWG, Raw, M-E (Eds), The Veterinary Annual 27th Issue John Wright and Sons, Bristol 196-208, 1987. 25. Crispin SM. Ocular manifestations of hyperlipoproteinaemia. J Small Anim Pract 34: 500-506, 1993. 26. Crispin SM, and Barnett KC. Dystrophy, degeneration and infiltration of the canine cornea. J Small Anim Pract 24: 63-83, 1983. 27. Croxatto JO, Dodds CM, and Dodds R. Bilateral and massive lipoidal infiltration of the cornea (secondary lipoidal degeneration). Ophthalmology 92: 1686-1690, 1985. 28. Cursiefen C, Hofmann-Rummelt C, Küchle M, and Schlötzer-Schrehardt U. Pericyte recruitment in human corneal angiogenesis: an ultrastructural study with clinicopathological correlation. Br J Ophthalmol 87: 101-106, 2003. 29. Cursiefen C, Küchle M, and Naumann GOH. Angiogenesis in corneal diseases: histopathologic evaluation of 254 human corneal buttons with neovascularization. Cornea 17: 611-613, 1998. 30. Dastjerdi MH, Al-Arfaj KM, Nallasamy N, Hamrah P, Jurkunas UV, Pineda R, II, Pavan-Langston D, and Dana R. Topical bevacizumab in the treatment of corneal neovascularization: sesults of a prospective, open-label, noncomparative study. Arch Ophthalmol 127: 381-389, 2009. 31. Doors M, Berendschot TTJM, de Brabander J, Webers CAB, and Nuijts RMMA. Value of optical coherence tomography for anterior segment surgery. J Cataract Refract Surg 36: 1213-1229, 2010. 32. Erie JC, McLaren JW, and Patel SV. Confocal microscopy in ophthalmology. Am J Ophthalmol 148: 639-646, 2009. 33. Falke K, Büttner A, Schittkowski M, Stachs O, Kraak R, Zhivov A, Rolfs A, and Guthoff R. The microstructure of cornea verticillata in Fabry disease and amiodarone-induced keratopathy: a confocal laser-scanning microscopy study. Graefes Arch Clin Exp Ophthalmol 247: 523-534, 2009. 34. Fernando NH, and Hurwitz HI. Targeted therapy of colorectal cancer: clinical experience with bevacizumab. Oncologist 9: 11-18, 2004. 35. Ferrara N, Gerber HP, and LeCouter J. The biology of VEGF and its receptors. Nat Med 9: 669-676, 2003. 36. Gan L, Fagerholm P, and Palmblad J. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in the regulation of corneal neovascularization and wound healing. Acta Ophthalmol Scand 82: 557-563, 2004. 37. Klintworth GK. Corneal angiogenesis: a comprehensive critical review. New York, Springer-Verlag 5-10, 1991. 38. Grisanti S, Biester S, Peters S, Tatar O, Ziemssen F, and Bartz-Schmidt KU. Intracameral bevacizumab for iris rubeosis. Am J Ophthalmol 142: 158-160, 2006. 39. Gupta D, and Illingworth C. Treatments for corneal neovascularization: a review. Cornea, 2011. [Epub ahead of print] 40. Guthoff RF, Zhivov A, and Stachs O. In vivo confocal microscopy, an inner vision of the cornea - a major review. Clin Experiment Ophthalmol 37: 100-117, 2009. 41. Harcourt-Brown F. Clinical pathology. In: Harcourt-Brown F, ed. Textbook of rabbit medicine. 1st ed. London, Elsevier Science, 167-168, 2002. 42. Harvitt DM, and Bonanno JA. Direct noninvasive measurement of tear oxygen tension beneath gas-permeable contact lenses in rabbits. Invest Ophthalmol Vis Sci 37: 1026-1036, 1996. 43. Harvitt DM, and Bonanno JA. Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia. Optom Vis Sci 76: 712-719, 1999. 44. Hashemian MN, Zare MA, Rahimi F, and Mohammadpour M. Deep intrastromal bevacizumab injection for management of corneal stromal vascularization after deep anterior lamellar keratoplasty, a novel technique. Cornea 30: 215-218, 2011. 45. Haynes WL, Proia AD, and Klintworth GK. Effect of inhibitors of arachidonic acid metabolism on corneal neovascularization in the rat. Invest Ophthalmol Vis Sci 30: 1588-1593, 1989. 46. Hicklin DJ, and Ellis LM. Role of the Vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23: 1011-1027, 2005. 47. Hosseini H, Nejabat M, Mehryar M, Yazdchi T, Sedaghat A, and Noori F. Bevacizumab inhibits corneal neovascularization in an alkali burn induced model of corneal angiogenesis. Clin Experiment Ophthalmol 35: 745-748, 2007. 48. Hough RB, and Piatigorsky J. Preferential transcription of rabbit Aldh1a1 in the cornea: implication of hypoxia-related pathways. Mol Cell Biol 24: 1324-1340, 2004. 49. Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C, and et al. Optical coherence tomography. Science 254: 1178-1181, 1991. 50. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, and Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335-2342, 2004. 51. Joussen AM, Germann T, and Kirchhof B. Effect of thalidomide and structurally related compounds on corneal angiogenesis is comparable to their teratological potency. Graefes Arch Clin Exp Ophthalmol 237: 952-961, 1999. 52. Kafarnik C, Fritsche J, and Reese S. In vivo confocal microscopy in the normal corneas of cats, dogs and birds. Vet Ophthalmol 10: 222-230, 2007. 53. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, and Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841-844, 1993. 54. Kim SW, Ha BJ, Kim EK, Tchah H, and Kim TI. The effect of topical bevacizumab on corneal neovascularization. Ophthalmology 115: e33-e38, 2008. 55. Koenig Y, Bock F, Horn F, Kruse F, Straub K, and Cursiefen C. Short- and long-term safety profile and efficacy of topical bevacizumab (Avastin) eye drops against corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 247: 1375-1382, 2009. 56. Labbé A, Hong L, Martin C, Brignole-Baudouin F, Warnet J-M, and Baudouin C. Comparative anatomy of laboratory animal corneas with a new-generation high-resolution in vivo confocal microscope. Current Eye Research 31: 501-509, 2006. 57. Ladage PM, Yamamoto K, Ren DH, Li L, Jester JV, Petroll WM, Bergmanson JPG, and Cavanagh HD. Proliferation rate of rabbit corneal epithelium during overnight rigid contact lens wear. Invest Ophthalmol Vis Sci 42: 2804-2812, 2001. 58. Lepri A, Benelli U, Bernardini N, Bianchi F, Lupetti M, Danesi R, Del Tacca M, and Nardi M. Effect of low molecular weight heparan sulphate on angiogenesis in the rat cornea after chemical cauterization. J Ocul Pharmacol 10: 273, 1994. 59. L'Esperance FA Jr. Clinical applications of the organic dye laser. Ophthalmology 92: 1592-1600, 1985. 60. Levy J, Benharroch D, and Lifshitz T. Bilateral severe progressive idiopathic lipid keratopathy. Int Ophthalmol 26: 181-184, 2005. 61. Li L, Ren DH, Ladage PM, Yamamoto K, Matthew Petroll W, Jester JV, and Cavanagh HD. Annexin V binding to rabbit corneal epithelial cells following overnight contact lens wear or eyelid closure. CLAO J 28: 48-54, 2002. 62. Lin CT, Hu FR, Kuo KT, Chen YM, Chu HS, Lin YH, and Chen WL. The different effects of early and late bevacizumab (Avastin) injection on inhibiting corneal neovascularization and conjunctivalization in rabbit limbal insufficiency. Invest Ophthalmol Vis Sci 51: 6277-6285, 2010. 63. Linton LL, Moore CP, Collier LL. Bilateral lipid keratopathy in a Boxer dog: cholesterol analysis and dietary management. Prog Vet Comp Ophthalmol 3: 9-14, 1993. 64. Lipman RM, Epstein RJ, and Hendricks RL. Suppression of corneal neovascularization with cyclosporine. Arch Ophthalmol 110: 405-407, 1992. 65. Loeffler KU, and Seifert P. Unusual idiopathic lipid keratopathy: a newly recognized entity? Arch Ophthalmol 123: 1435-1438, 2005. 66. Lopez E, Rizzo M, Croxatto J, Mazzolini G, and Gallo J. Suramab, a novel antiangiogenic agent, reduces tumor growth and corneal neovascularization. Cancer Chemother Pharmacol 67: 723-728, 2011. 67. Mariano M, and Spector WG. The formation and properties of macrophage polykaryons (inflammatory giant cells). J Pathol 113: 1-19, 1974. 68. Marsh RJ. Lasering of lipid keratopathy. Trans Ophthalmol Soc U K 102: 154-156, 1982. 69. Marsh RJ, and Marshall J. Treatment of lipid keratopathy with the argon laser. Br J Ophthalmol 66: 127-135, 1982. 70. McCanna DJ, Driot JY, Hartsook R, and Ward KW. Rabbit models of contact lens-associated corneal hypoxia: a review of the literature. Eye Contact Lens 34: 160-165, 2008. 71. Michels S, Rosenfeld PJ, Puliafito CA, Marcus EN, and Venkatraman AS. Systemic Bevacizumab (Avastin) Therapy for neovascular age-related macular degeneration: twelve-week results of an uncontrolled open-label clinical study. Ophthalmology 112: 1035-1047, 2005. 72. Moilanen JAO, Holopainen JM, Vesaluoma MH, and Tervo TMT. Corneal recovery after lasik for high myopia: a 2-year prospective confocal microscopic study. Br J Ophthalmol 92: 1397-1402, 2008. 73. Murata T, Ishibashi T, Khalil A, Hata Y, Yoshikawa H, and Inomata H. Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels. Ophthalmic Res 27: 48-52, 1995. 74. Mustonen RK, McDonald MB, Srivannaboon S, Tan AL, Doubrava MW, and Kim CK. In Vivo Confocal Microscopy of Fuchs' Endothelial Dystrophy. Cornea 17: 493-503, 1998. 75. Ng YS, Krilleke D, and Shima DT. VEGF function in vascular pathogenesis. Exp Cell Res 312: 527-537, 2006. 76. Niederkorn JY. Immune privilege in the anterior chamber of the eye. Crit Rev Immunol 22: 13-4634, 2002. 77. Nomoto H, Shiraga F, Kuno N, Kimura E, Fujii S, Shinomiya K, Nugent AK, Hirooka K, and Baba T. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest Ophthalmol Vis Sci 50: 4807-4813, 2009. 78. Norum KR, Berg T, Helgerud P, and Drevon CA. Transport of cholesterol. Physiol Rev 63: 1343-1419, 1983. 79. Oh JY, Kim MK, and Wee WR. Subconjunctival and intracorneal bevacizumab injection for corneal neovascularization in lipid keratopathy. Cornea 28: 1070-1073, 2009. 80. Pérez-Santonja JJ, Campos-Mollo E, Lledó-Riquelme M, Javaloy J, and Alió JL. Inhibition of corneal neovascularization by topical bevacizumab (Anti-VEGF) and sunitinib (Anti-VEGF and Anti-PDGF) in an animal model. Am J Ophthalmol 150: 519-528, 2010. 81. Philipp W, Speicher L, and Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci 41: 2514-2522, 2000. 82. Pillai CT, Dua HS, and Hossain P. Fine needle diathermy occlusion of corneal vessels. Invest Ophthalmol Vis Sci 41: 2148-2153, 2000. 83. Presta LG, Chen H, O'Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, and Ferrara N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57: 4593-4599, 1997. 84. Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, and Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16: 159-178, 2005. 85. Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, and Izatt JA. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol 119: 1179-1185, 2001. 86. Rebuzzi L, Willmann M, Sonneck K, Gleixner KV, Florian S, Kondo R, Mayerhofer M, Vales A, Gruze A, Pickl WF, Thalhammer JG, and Valent P. Detection of vascular endothelial growth factor (VEGF) and VEGF receptors Flt-1 and KDR in canine mastocytoma cells. Vet Immunol Immunopathol 115: 320-333, 2007. 87. Reichard M, Hovakimyan M, Wree A, Meyer-Lindenberg A, Nolte I, Junghans C, Guthoff R, and Stachs O. Comparative in vivo confocal microscopical study of the cornea anatomy of different laboratory animals. Curr Eye Res 35: 1072-1080, 2010. 88. Rodger FC. A study of the ultrastructure and cytochemistry of lipid accumulation and clearance in cholesterol-fed rabbit cornea. Exp Eye Res 12: 88-93, 1971. 89. Rosenberg ME, Tervo TMT, Petroll WM, and Vesaluoma MH. In vivo confocal microscopy of patients with corneal recurrent erosion syndrome or epithelial basement membrane dystrophy. Ophthalmology 107: 565-573, 2000. 90. Rosenstein JM, and Krum JM. New roles for VEGF in nervous tissue--beyond blood vessels. Exp Neurol 187: 246-253, 2004. 91. Samolov B, Steen B, Seregard S, van der Ploeg I, Montan P, and Kvanta A. Delayed inflammation-associated corneal neovascularization in MMP-2-deficient mice. Exp Eye Res 80: 159-166, 2005. 92. Sarver MD, Polse KA, and Baggett DA. Intersubject difference in corneal edema response to hypoxia. Am J Optom Physiol Opt 60: 128-131, 1983. 93. Scappaticci FA, Skillings JR, Holden SN, Gerber H-P, Miller K, Kabbinavar F, Bergsland E, Ngai J, Holmgren E, Wang J, and Hurwitz H. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst 99: 1232-1239, 2007. 94. Scroggs MW, Proia AD, Smith CF, Halperin EC, and Klintworth GK. The effect of total-body irradiation on corneal neovascularization in the Fischer 344 rat after chemical cauterization. Invest Ophthalmol Vis Sci 32: 2105-2111, 1991. 95. Senger D, Galli S, Dvorak A, Perruzzi C, Harvey V, and Dvorak H. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983-985, 1983. 96. Seta F, Patil K, Bellner L, Mezentsev A, Kemp R, Dunn MW, and Schwartzman ML. Inhibition of VEGF expression and corneal neovascularization by siRNA targeting cytochrome P450 4B1. Prostaglandins Other Lipid Mediat 84: 116-127, 2007. 97. Shakiba Y MK, Arshadi D, Rezaei N. Corneal neovascularization: molecular events and therapeutic options. Recent Pat Inflamm Allergy Drug Discov 3: 221-231, 2009. 98. Sharma A, Oakley JD, Schiffman JC, Budenz DL, and Anderson DR. Comparison of automated analysis of Cirrus HD OCT spectral-domain optical coherence tomography with stereo photographs of the optic disc. Ophthalmology, 2011. [Epub ahead of print] 99. Shi W, Gao H, Xie L, and Wang S. Sustained intraocular rapamycin delivery effectively prevents high-risk corneal allograft rejection and neovascularization in rabbits. Invest Ophthalmol Vis Sci 47: 3339-3344, 2006. 100. Small DM, and Shipley GG. Physical-chemical basis of lipid deposition in atherosclerosis. Science 185: 222-229, 1974. 101. Stock EL, Mendelsohn AD, Lo GG, Ghosh S, and O'Grady RB. Lipid keratopathy in rabbits: an animal model system. Arch Ophthalmol 103: 726-730, 1985. 102. Terpstra AHM, and Sanchez-Muniz FJ. Time course of the development of hypercholesterolemia in rabbits fed semipurified diets containing casein or soybean protein. Atherosclerosis 39: 217-227, 1981. 103. Tolentino MJ, Miller JW, Gragoudas ES, Jakobiec FA, Flynn E, Charzisrefanou K, Ferrara N, and Adamis AP. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103: 1820-1828, 1996. 104. Visser N, McGhee CNJ, and Patel DV. Laser-scanning in vivo confocal microscopy reveals two morphologically distinct populations of stromal nerves in normal human corneas. Br J Ophthalmol 93: 506-509, 2009. 105. Walton KW, and Dunkerley DJ. Studies on the pathogenesis of corneal arcus formation II. Immunofluorescent studies on lipid deposition in the eye of the lipid-fed rabbit. J Pathol 114: 217-229, 1974. 106. Weissman BA, Selzer K, Duffin RM, and Pettit TH. Oxygen permeability of rabbit and human corneal stroma. Invest Ophthalmol Vis Sci 24: 645-647, 1983. 107. Weller RO. The ultrastructure of intracellular lipid accumulation in atheroma. J Atherosclerosis Res 6: 184–189, 1966. 108. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, and Jain RK. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10: 145-147, 2004. 109. Wylęgała E, Teper S, Nowińska AK, Milka M, and Dobrowolski D. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography. J Cataract Refract Surg 35: 1410-1414, 2009. 110. Yaylali V, Ohta T, Kaufman SC, Maitchouk DY, and Beuerman RW. In vivo confocal imaging of corneal neovascularization. Cornea 17: 646-653, 1998. 111. Yoeruek E, Spitzer MS, Tatar O, Aisenbrey S, Bartz-Schmidt KU, and Szurman P. Safety profile of bevacizumab on cultured human corneal cells. Cornea 26: 977-982, 2007. 112. Yu CQ, Zhang M, Matis KI, Kim C, and Rosenblatt MI. Vascular endothelial growth factor mediates corneal nerve repair. Invest Ophthalmol Vis Sci 49: 3870-3878, 2008. 113. Yu L, Pragay DA, Chang D, and Wicher K. Biochemical parameters of normal rabbit serum. Clin Biochem 12: 83-87, 1979. 114. Zhang SX, and Ma J-x. Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 26: 1-37, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48149 | - |
| dc.description.abstract | 脂肪性角膜病變為描述角膜因血管新生而繼發脂肪沈積的專有名詞,此疾病會嚴重影響眼睛的美觀以及視力。本研究之主要目的為建立脂肪性角膜病變之紐西蘭白兔動物模式,次要目的為藉此動物模式在結膜下注射能直接阻抗血管內皮生長因子的人類化單株抗體藥物bevacizumab (Avastin®;癌思停),評估此藥物對於角膜新生血管和脂肪沈積的抑制效果。在脂肪性角膜病變動物模式的建立上,會藉由合併角膜新生血管動物模式以及高血脂動物膜者兩者來達成,又依此兩者的先後順序不同分為兩組,第一組先誘導角膜新生血管模式後,再誘導高血脂模式,第二組則先誘導高血脂模式後,再誘導角膜新生血管模式。兩組結果皆可見所有角膜出現明顯的晶體物質沈積,隨後進行活體共軛焦雷射掃描顯微鏡檢查、眼前段光學同調斷層掃描術檢查,以及製作成冷凍切片並使用油紅染色,證實角膜前基質的晶體沈積物質為脂肪,而且主要沈積部位為角膜前基質,因此成功地建立兩組脂肪性角膜病變動物模式。使用此兩組動物模式評估每週結膜下注射bevacizumab藥物5 mg之處置效果,另外評估連續10週注射藥物之副作用。兩組動物模式的所有藥物處置組別,皆沒有看到明顯的改善效果。本研究結果顯示成熟的脂肪性角膜病變對於藥物的反應不佳,另外在短期10週內使用高劑量的bevacizumab皆沒有明顯的副作用發生,未來可再評估更為早期的處置對於此疾病的抑制效果,以及更為長期的藥物副作用評估。本研究提供了一個良好且穩定的脂肪性角膜病變動物模式,提供了其他學者對於該疾病的控制及治療上能夠有更多的研究機會。 | zh_TW |
| dc.description.abstract | Lipid keratopathy is the term to describe lipid deposition in the cornea secondary to corneal neovascularization (NV). The disease causes the cosmetic problem, alters visual acuity and worsens the prognosis of corneal surgery. The primary purpose of this study is to establish a rabbit animal model of lipid keratopathy, and then the secondary purpose is to evaluate the inhibitory effects on corneal NV and lipid deposition by subconjunctival injection of bevacizumab, a humanized monoclonal antibody directed against vascular endothelial growth factor. Both animal models of corneal NV and hyperlipidemia were combined for establishing the animal model of lipid keratopathy, and the lipid keratopathy model was divided into two groups. The corneal NV model was induced before the hyperlipidemia model in the first group, and the second one was opposite in order. Significant crystal depositions were noted in all corneas of two groups. The treated eyes were examined with in vivo confocal laser-scanning microscopy and anterior segment optical coherence tomography, and they were prepared for corneal cryosections stained with Oil red O stain. The crystal depositions located in the anterior corneal stroma were confirmed for lipid. Therefore, the two rabbit models of lipid keratopathy were established successfully. Each of two lipid keratopathy models was used to evaluate the therapeutic effects by subconjunctival injection of 5 mg bevacizumab weekly and the side effects of bevacizumab by injecting for 10 weeks. There were no improvement noted obviously in all drug management groups of two lipid keratopathy models. The response to the drug was not significant in the eye with advanced lesion of lipid keratopathy, and there were no obvious side effects after injecting high dose of bevacizumab for 10 weeks. The inhibitory effects of early management on lipid keratopathy and the side effects of long-term injecting bevacizumab remain to investigate further in the future. The good animal model of lipid keratopathy was established stably and successfully in this study. The animal model will be useful in studies toward the developing new methods for controlling and treating lipid keratopathy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:47:23Z (GMT). No. of bitstreams: 1 ntu-100-R98643004-1.pdf: 2605209 bytes, checksum: 336d411ad3fba90609e7cc5c199f26da (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書i
致謝ii 中文摘要iii 英文摘要iv 目 錄iv 圖目錄viii 表目錄ix 附錄x 第一章 緒論1 第一節 角膜新生血管1 第二節 脂肪性角膜病變 (lipid keratopathy) 1 第三節 抗血管內皮生長因子抗體藥物bevacizumab (Avastin®)2 第四節 研究目的2 第二章 文獻探討3 第一節 角膜新生血管的機制及處置3 第二節 脂肪性角膜病變的機制及處置4 第三節 活體共軛焦雷射掃描顯微鏡的應用8 第四節 眼前段光學同調斷層掃描術之應用9 第五節 抗血管內皮生長因子藥物10 第六節 角膜新生血管、高脂血症與脂肪性角膜病變之動物模式13 第三章 實驗材料與方法15 第一節 實驗材料15 第二節 實驗方法16 2 - 1 角膜新生血管之實驗兔模式16 2 - 2 高血脂症之實驗兔模式16 2 - 3 脂肪性角膜病變之實驗兔模式16 2 - 4 活體共軛焦雷射掃描顯微鏡檢查 (in vivo laser-scanning confocal microscopy) 17 2 - 5 眼前段光學同調斷層掃描檢查 (anterior segment optical coherence tomography, ASOCT) 17 2 - 6 組織病理學檢查18 2 - 7 評估處置及藥物注射方式18 2 - 8 統計分析方法19 第四章 實驗結果20 第一節 角膜新生血管之實驗兔模式20 第二節 高血脂症之實驗兔模式20 第三節 脂肪性角膜病變之實驗兔模式20 第四節 活體共軛焦雷射掃描顯微鏡檢查21 第五節 眼前段光學同調斷層掃描檢查21 第六節 組織病理學檢查22 第七節 處置及藥物注射結果22 第五章 討論24 第一節 脂肪性角膜病變之動物模式24 第二節 以bevacizumab處置脂肪性角膜病變之角膜新生血管及脂肪沈積情形 25 第三節 投予bevacizumab之副作用研究26 第四節 動物模式、影像學檢查技術以及bevacizumab藥物在獸醫的應用與發展27 第五節 本研究之優點與缺點28 第六節 未來展望28 第六章 結論29 參考文獻30 | |
| dc.language.iso | zh-TW | |
| dc.subject | 脂肪性角膜病變 | zh_TW |
| dc.subject | 角膜新生血管 | zh_TW |
| dc.subject | 高血脂症 | zh_TW |
| dc.subject | 癌思停 | zh_TW |
| dc.subject | bevacizumab | en |
| dc.subject | hyperlipidemia | en |
| dc.subject | lipid keratopathy | en |
| dc.subject | corneal neovascularization | en |
| dc.title | 建立及分析角膜新生血管相關脂肪性角膜病變之紐西蘭白兔動物模式 | zh_TW |
| dc.title | Establishment and Characterization of a Rabbit Model of Corneal Neovascularization with Lipid Keratopathy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳偉勵(Wei-Li Chen) | |
| dc.contributor.oralexamcommittee | 劉振軒,詹東榮 | |
| dc.subject.keyword | 角膜新生血管,高血脂症,脂肪性角膜病變,癌思停, | zh_TW |
| dc.subject.keyword | corneal neovascularization,hyperlipidemia,lipid keratopathy,bevacizumab, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-06-07 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床動物醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
