Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48124
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorPo-Yu Huen
dc.contributor.author胡伯宇zh_TW
dc.date.accessioned2021-06-15T06:46:47Z-
dc.date.available2011-07-06
dc.date.copyright2011-07-06
dc.date.issued2011
dc.date.submitted2011-06-15
dc.identifier.citation1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
2. Cha EJ, Noh SJ, Kwon KS, Kim CY, Park BH, Park HS, Lee H, Chung MJ, Kang MJ, Lee DG, Moon WS, Jang KY. Expression of DBC1 and SIRT1 Is Associated with Poor Prognosis of Gastric Carcinoma. Clin Cancer Res 2009.
3. Yan K, He LJ, Cheng W, Ji ZZ, Zhao BX, Hui XL, Cao SS, Chen B, He L, Liang SH, Miao Y. Inhibiting gastric cancer-associated angiogenesis by CIAPIN1 siRNA. Cancer Biol Ther 2009;8.
4. Scartozzi M, Galizia E, Verdecchia L, Berardi R, Antognoli S, Chiorrini S, Cascinu S. Chemotherapy for advanced gastric cancer: across the years for a standard of care. Expert Opin Pharmacother 2007;8:797-808.
5. Palladino M, Chiusolo P, Reddiconto G, Marietti S, De Ritis D, Leone G, Sica S. MTHFR Polymorphisms Involved in Vitamin B(12) Deficiency Associated with Atrophic Gastritis. Biochem Genet 2009.
6. De Feo E, Persiani R, La Greca A, Amore R, Arzani D, Rausei S, D'Ugo D, Magistrelli P, van Duijn CM, Ricciardi G, Boccia S. A case-control study on the effect of p53 and p73 gene polymorphisms on gastric cancer risk and progression. Mutat Res 2009;675:60-5.
7. Lee HJ, Yang HK, Ahn YO. Gastric cancer in Korea. Gastric Cancer 2002;5:177-82.
8. Alonso-Amelot ME, Avendano M. Human carcinogenesis and bracken fern: a review of the evidence. Curr Med Chem 2002;9:675-86.
9. Gianfagna F, De Feo E, van Duijn CM, Ricciardi G, Boccia S. A systematicreview of meta-analyses on gene polymorphisms and gastric cancer risk. Curr Genomics 2008;9:361-74.
10. Williams L, Somasekar A, Davies DJ, Cronin J, Doak SH, Alcolado R, Williams JG, Griffiths AP, Baxter JN, Jenkins GJ. Aneuploidy involving chromosome 1 may be an early predictive marker of intestinal type gastric cancer. Mutat Res 2009.
11. Gunshefski L, Flancbaum L, Brolin RE, Frankel A. Changing patterns in perforated peptic ulcer disease. Am Surg 1990;56:270-4.
12. Nakayama M, Iwakiri R, Hara M, Ootani H, Shimoda R, Tsunada S, Sakata H, Fujimoto K. Low-dose aspirin is a prominent cause of bleeding ulcers in patients who underwent emergency endoscopy. J Gastroenterol 2009.
13. Gene E, Sanchez-Delgado J, Calvet X, Gisbert JP, Azagra R. What Is the Best Strategy for Diagnosis and Treatment of Helicobacter pylori in the Prevention of Recurrent Peptic Ulcer Bleeding? A Cost-Effectiveness Analysis. Value Health 2009.
14. Cheney G. Rapid healing of peptic ulcers in patients receiving fresh cabbage juice. Calif Med 1949;70:10-5.
15. Wachirawat W, Hanucharurnkul S, Suriyawongpaisal P, Boonyapisit S, Levenstein S, Jearanaisilavong J, Atisook K, Boontong T, Theerabutr C. Stress, but not Helicobacter pylori, is associated with peptic ulcer disease in a Thai population. J Med Assoc Thai 2003;86:672-85.
16. Kim YH, Lee JH, Lee SS, Cho EY, Oh YL, Son HJ, Rhee PL, Kim JJ, Koh KC, Paik SW, Rhee JC, Choi KW. Long-term stress and Helicobacter pylori infection independently induce gastric mucosal lesions in C57BL/6 mice. Scand J Gastroenterol 2002;37:1259-64.
17. Surveyor I, Goodwin CS, Mullan BP, Geelhoed E, Warren JR, Murray RN, Waters TE, Sanderson CR. The 14C-urea breath-test for the detection of gastric Campylobacter pylori infection. Med J Aust 1989;151:435-9.
18. Carmack SW, Genta RM, Schuler CM, Saboorian MH. The current spectrum of gastric polyps: a 1-year national study of over 120,000 patients. Am J Gastroenterol 2009;104:1524-32.
19. Schrauwen RW, Janssen MJ, de Boer WA. Seven-day PPI-triple therapy with levofloxacin is very effective for Helicobacter pylori eradication. Neth J Med 2009;67:96-101.
20. Essa AS, Kramer JR, Graham DY, Treiber G. Meta-analysis: four-drug, three-antibiotic, non-bismuth-containing 'concomitant therapy' versus triple therapy for Helicobacter pylori eradication. Helicobacter 2009;14:109-18.
21. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984;1:1311-5.
22. Vandenplas Y. Helicobacter pylori infection. World J Gastroenterol 2000;6:20-31.
23. Goodwin CS, Mendall MM, Northfield TC. Helicobacter pylori infection. Lancet 1997;349:265-9.
24. Morgner A, Bayerdorffer E, Neubauer A, Stolte M. Gastric MALT lymphoma and its relationship to Helicobacter pylori infection: management and pathogenesis of the disease. Microsc Res Tech 2000;48:349-56.
25. Covacci A, Telford JL, Del Giudice G, Parsonnet J, Rappuoli R. Helicobacter pylori virulence and genetic geography. Science 1999;284:1328-33.
26. Olson JW, Maier RJ. Molecular hydrogen as an energy source for Helicobacter pylori. Science 2002;298:1788-90.
27. Josenhans C, Eaton KA, Thevenot T, Suerbaum S. Switching of flagellar motility in Helicobacter pylori by reversible length variation of a short homopolymeric sequence repeat in fliP, a gene encoding a basal body protein. Infect Immun 2000;68:4598-603.
28. Goodwin CS. Duodenal ulcer, Campylobacter pylori, and the 'leaking roof' concept. Lancet 1988;2:1467-9.
29. Figueiredo C, Machado JC, Yamaoka Y. Pathogenesis of Helicobacter pylori Infection. Helicobacter 2005;10 Suppl 1:14-20.
30. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 2006;19:449-90.
31. Thanassi DG, Hultgren SJ. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 2000;12:420-30.
32. Cascales E, Christie PJ. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 2003;1:137-49.
33. Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 2006;9:207-17.
34. O'Toole PW, Janzon L, Doig P, Huang J, Kostrzynska M, Trust TJ. The putative neuraminyllactose-binding hemagglutinin HpaA of Helicobacter pylori CCUG 17874 is a lipoprotein. J Bacteriol 1995;177:6049-57.
35. Odenbreit S, Till M, Hofreuter D, Faller G, Haas R. Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol Microbiol 1999;31:1537-48.
36. Leunk RD, Johnson PT, David BC, Kraft WG, Morgan DR. Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med Microbiol 1988;26:93-9.
37. Atherton JC, Peek RM, Jr., Tham KT, Cover TL, Blaser MJ. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 1997;112:92-9.
38. Al-Marhoon MS, Nunn S, Soames RW. Effects of cagA+ and cagA- strains of Helicobacter pylori on the human gastric mucus layer thickness. J Gastroenterol Hepatol 2005;20:1246-52.
39. Wu CC, Chou PY, Hu CT, Liu ZC, Lin CY, Tseng YH, Lin NT. Clinical Relevance of the vacA, iceA, cagA, and flaA genes of Helicobacter pylori strains isolated in Eastern Taiwan. J Clin Microbiol 2005;43:2913-5.
40. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 1996;93:14648-53.
41. Backert S, Schwarz T, Miehlke S, Kirsch C, Sommer C, Kwok T, Gerhard M, Goebel UB, Lehn N, Koenig W, Meyer TF. Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer, and gastric cancer. Infect Immun 2004;72:1043-56.
42. Kim SY, Lee YC, Kim HK, Blaser MJ. Helicobacter pylori CagA transfection of gastric epithelial cells induces interleukin-8. Cell Microbiol 2006;8:97-106.
43. Umehara S, Higashi H, Ohnishi N, Asaka M, Hatakeyama M. Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 2003;22:8337-42.
44. van Doorn LJ, Figueiredo C, Sanna R, Plaisier A, Schneeberger P, de Boer W, Quint W. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology 1998;115:58-66.
45. Hazell SL, Lee A. Campylobacter pyloridis, urease, hydrogen ion back diffusion, and gastric ulcers. Lancet 1986;2:15-7.
46. Kuipers EJ. Review article: Relationship between Helicobacter pylori, atrophic gastritis and gastric cancer. Aliment Pharmacol Ther 1998;12 Suppl 1:25-36.
47. Vainio H, Heseltine E, Wilbourn J. Priorities for Future IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Environ Health Perspect 1994;102:590-1.
48. Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology 1998;115:642-8.
49. Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 1997;40:297-301.
50. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF, Jr., Rabkin CS. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000;404:398-402.
51. Take S, Mizuno M, Ishiki K, Nagahara Y, Yoshida T, Yokota K, Oguma K, Okada H, Shiratori Y. The effect of eradicating Helicobacter pylori on the development of gastric cancer in patients with peptic ulcer disease. Am J Gastroenterol 2005;100:1037-42.
52. Wessler S, Hocker M, Fischer W, Wang TC, Rosewicz S, Haas R, Wiedenmann B, Meyer TF, Naumann M. Helicobacter pylori activates the histidine decarboxylase promoter through a mitogen-activated protein kinase pathway independent of pathogenicity island-encoded virulence factors. J Biol Chem2000;275:3629-36.
53. Mitsuno Y, Yoshida H, Maeda S, Ogura K, Hirata Y, Kawabe T, Shiratori Y, Omata M. Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells. Gut 2001;49:18-22.
54. Fan XG, Kelleher D, Fan XJ, Xia HX, Keeling PW. Helicobacter pylori increases proliferation of gastric epithelial cells. Gut 1996;38:19-22.
55. Jones NL, Shannon PT, Cutz E, Yeger H, Sherman PM. Increase in proliferation and apoptosis of gastric epithelial cells early in the natural history of Helicobacter pylori infection. Am J Pathol 1997;151:1695-703.
56. Peek RM, Jr., Blaser MJ, Mays DJ, Forsyth MH, Cover TL, Song SY, Krishna U, Pietenpol JA. Helicobacter pylori strain-specific genotypes and modulation of the gastric epithelial cell cycle. Cancer Res 1999;59:6124-31.
57. Sherr CJ. Cancer cell cycles. Science 1996;274:1672-7.
58. Jiang W, Kahn SM, Zhou P, Zhang YJ, Cacace AM, Infante AS, Doi S, Santella RM, Weinstein IB. Overexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control, cell cycle progression and gene expression. Oncogene 1993;8:3447-57.
59. Resnitzky D, Reed SI. Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol 1995;15:3463-9.
60. Meyer-ter-Vehn T, Covacci A, Kist M, Pahl HL. Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem 2000;275:16064-72.
61. Roth W, Reed JC. Apoptosis and cancer: when BAX is TRAILing away. Nat Med 2002;8:216-8.
62. Graham DY, Lew GM, Klein PD, Evans DG, Evans DJ, Jr., Saeed ZA, MalatyHM. Effect of treatment of Helicobacter pylori infection on the long-term recurrence of gastric or duodenal ulcer. A randomized, controlled study. Ann Intern Med 1992;116:705-8.
63. Yanai A, Hirata Y, Mitsuno Y, Maeda S, Shibata W, Akanuma M, Yoshida H, Kawabe T, Omata M. Helicobacter pylori induces antiapoptosis through buclear factor-kappaB activation. J Infect Dis 2003;188:1741-51.
64. Maeda S, Yoshida H, Mitsuno Y, Hirata Y, Ogura K, Shiratori Y, Omata M. Analysis of apoptotic and antiapoptotic signalling pathways induced by Helicobacter pylori. Gut 2002;50:771-8.
65. Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML. IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer 2007;120:2600-8.
66. Oliveira MJ, Costa AC, Costa AM, Henriques L, Suriano G, Atherton JC, Machado JC, Carneiro F, Seruca R, Mareel M, Leroy A, Figueiredo C. Helicobacter pylori induces gastric epithelial cell invasion in a c-Met and type IV secretion system-dependent manner. J Biol Chem 2006;281:34888-96.
67. Zhang MJ, Meng FL, Ji XY, He LH, Zhang JZ. Adherence and invasion of mouse-adapted H pylori in different epithelial cell lines. World J Gastroenterol 2007;13:845-50.
68. Laine L, Schoenfeld P, Fennerty MB. Therapy for Helicobacter pylori in patients with nonulcer dyspepsia. A meta-analysis of randomized, controlled trials. Ann Intern Med 2001;134:361-9.
69. Hunt RH. Will eradication of Helicobacter pylori infection influence the risk of gastric cancer? Am J Med 2004;117 Suppl 5A:86S-91S.
70. Chan FK, Sung JJ, Chung SC, To KF, Yung MY, Leung VK, Lee YT, Chan CS,Li EK, Woo J. Randomised trial of eradication of Helicobacter pylori before non-steroidal anti-inflammatory drug therapy to prevent peptic ulcers. Lancet 1997;350:975-9.
71. Ying C, Hsu JT, Hung HC, Lin DH, Chen LF, Wang LK. Growth and cell cycle regulation by isoflavones in human breast carcinoma cells. Reprod Nutr Dev 2002;42:55-64.
72. Ying C, Hsu JT, Shieh SC. Growth inhibition of human endothelial cells by the phyto-oestrogen biochanin A, a metabolite of genistein. Br J Nutr 2001;85:615-20.
73. Ying C, Yang YC, Hong WF, Cheng WT, Hsu WL. Progesterone receptor gene expression in preimplantation pig embryos. Eur J Endocrinol 2000;143:697-703.
74. Ying C, Gregg DW, Gorski J. Estrogen-induced changes in rRNA accumulation and RNA polymerase I activity in the rat pituitary: correlation with pituitary tumor susceptibility. Mol Cell Endocrinol 1996;118:207-13.
75. Li X, Huang J, Yi P, Bambara RA, Hilf R, Muyan M. Single-chain estrogen receptors (ERs) reveal that the ERalpha/beta heterodimer emulates functions of the ERalpha dimer in genomic estrogen signaling pathways. Mol Cell Biol 2004;24:7681-94.
76. Leung YK, Mak P, Hassan S, Ho SM. Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling. Proc Natl Acad Sci U S A 2006;103:13162-7.
77. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-typeand ERalpha-knockout mouse. Endocrinology 1997;138:4613-21.
78. Yaghmaie F, Saeed O, Garan SA, Freitag W, Timiras PS, Sternberg H. Caloric restriction reduces cell loss and maintains estrogen receptor-alpha immunoreactivity in the pre-optic hypothalamus of female B6D2F1 mice. Neuro Endocrinol Lett 2005;26:197-203.
79. Babiker FA, De Windt LJ, van Eickels M, Grohe C, Meyer R, Doevendans PA. Estrogenic hormone action in the heart: regulatory network and function. Cardiovasc Res 2002;53:709-19.
80. Htun H, Holth LT, Walker D, Davie JR, Hager GL. Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor. Mol Biol Cell 1999;10:471-86.
81. Clemons M, Danson S, Howell A. Tamoxifen ('Nolvadex'): a review. Cancer Treat Rev 2002;28:165-80.
82. Fabian CJ, Kimler BF. Selective estrogen-receptor modulators for primary prevention of breast cancer. J Clin Oncol 2005;23:1644-55.
83. Harris HA, Albert LM, Leathurby Y, Malamas MS, Mewshaw RE, Miller CP, Kharode YP, Marzolf J, Komm BS, Winneker RC, Frail DE, Henderson RA, Zhu Y, Keith JC, Jr. Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology 2003;144:4241-9.
84. Kuroishi T, Hirose K, Tominaga S, Ogawa H, Tajima K. Prediction of future cancer mortality in Japan. Jpn J Clin Oncol 1992;22:365-9.
85. Sipponen P, Correa P. Delayed rise in incidence of gastric cancer in females results in unique sex ratio (M/F) pattern: etiologic hypothesis. Gastric Cancer 2002;5:213-9.
86. Palli D, Cipriani F, Decarli A, Galli M, Saieva C, Fraumeni JF, Jr., Blot WJ,Buiatti E. Reproductive history and gastric cancer among post-menopausal women. Int J Cancer 1994;56:812-5.
87. Pukkala E, Tulenheimo-Silfvast A, Leminen A. Incidence of cancer among women using long versus monthly cycle hormonal replacement therapy, Finland 1994-1997. Cancer Causes Control 2001;12:111-5.
88. Lindblad M, Garcia Rodriguez LA, Chandanos E, Lagergren J. Hormone replacement therapy and risks of oesophageal and gastric adenocarcinomas. Br J Cancer 2006;94:136-41.
89. Ando Y, Watanabe H, Fujimoto N, Ito A, Toge T. Progesterone enhancement of stomach tumor development in SD rats treated with N-methyl-N'-nitro-N-nitrosoguanidine. Jpn J Cancer Res 1995;86:924-8.
90. Kojima O, Takahashi T, Kawakami S, Uehara Y, Matsui M. Localization of estrogen receptors in gastric cancer using immunohistochemical staining of monoclonal antibody. Cancer 1991;67:2401-6.
91. Campbell-Thompson ML. Estrogen receptor alpha and beta expression in upper gastrointestinal tract with regulation of trefoil factor family 2 mRNA levels in ovariectomized rats. Biochem Biophys Res Commun 1997;240:478-83.
92. Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A, LeMeur M, Wendling C, Tomasetto C, Chambon P, Rio MC. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 1996;274:259-62.
93. Leung WK, Yu J, Chan FK, To KF, Chan MW, Ebert MP, Ng EK, Chung SC, Malfertheiner P, Sung JJ. Expression of trefoil peptides (TFF1, TFF2, and TFF3) in gastric carcinomas, intestinal metaplasia, and non-neoplastic gastric tissues. J Pathol 2002;197:582-8.
94. Sica V, Nola E, Contieri E, Bova R, Masucci MT, Medici N, Petrillo A, Weisz A, Molinari AM, Puca GA. Estradiol and progesterone receptors in malignant gastrointestinal tumors. Cancer Res 1984;44:4670-4.
95. Oshima CT, Wonraht DR, Catarino RM, Mattos D, Forones NM. Estrogen and progesterone receptors in gastric and colorectal cancer. Hepatogastroenterology 1999;46:3155-8.
96. Zhao XH, Gu SZ, Liu SX, Pan BR. Expression of estrogen receptor and estrogen receptor messenger RNA in gastric carcinoma tissues. World J Gastroenterol 2003;9:665-9.
97. Wu CW, Lui WY, P'Eng F K, Chi CW. Hormonal therapy for stomach cancer. Med Hypotheses 1992;39:137-9.
98. Messa C, Russo F, Pricci M, Di Leo A. Epidermal growth factor and 17beta-estradiol effects on proliferation of a human gastric cancer cell line (AGS). Scand J Gastroenterol 2000;35:753-8.
99. Pricci M, Linsalata M, Russo F, Messa C, Amati L, Caradonna L, Jirillo E, Di Leo A. Effects of 17beta-estradiol administration on apoptosis and polyamine content in AGS cell line. Anticancer Res 2001;21:3215-20.
100. Trampenau C, Muller KD. Affinity of Helicobacter pylori to cholesterol and other steroids. Microbes Infect 2003;5:13-7.
101. Ohtani M, Garcia A, Rogers AB, Ge Z, Taylor NS, Xu S, Watanabe K, Marini RP, Whary MT, Wang TC, Fox JG. Protective role of 17 beta -estradiol against the development of Helicobacter pylori-induced gastric cancer in INS-GAS mice. Carcinogenesis 2007;28:2597-604.
102. Chinniah A, Mohapatra S, Goswami S, Mahapatra A, Kar SK, Mallavadhani UV, Das PK. On the potential of Tephrosia purpurea as anti-Helicobacter pyloriagent. J Ethnopharmacol 2009.
103. Broussard CS, Goodman KJ, Phillips CV, Smith MA, Fischbach LA, Day RS, Aragaki CC. Antibiotics taken for other illnesses and spontaneous clearance of Helicobacter pylori infection in children. Pharmacoepidemiol Drug Saf 2009.
104. Iwai H, Nakamichi N, Nakae K, Konishi M, Inaba M, Hoshino S, Baba S, Amakawa R. Parotid mucosa-associated lymphoid tissue lymphoma regression after Helicobacter pylori eradication. Laryngoscope 2009.
105. Ueki N, Miyake K, Kusunoki M, Shindo T, Kawagoe T, Futagami S, Tsukui T, Inagaki H, Sakamoto C. Impact of quadruple regimen of clarithromycin added to metronidazole-containing triple therapy against Helicobacter pylori infection following clarithromycin-containing triple-therapy failure. Helicobacter 2009;14:91-9.
106. Yin Y, He LH, Zhang JZ. Successful isolation of Helicobacter pylori after prolonged incubation from a patient with failed eradication therapy. World J Gastroenterol 2009;15:1528-9.
107. Hsieh PF, Yang JC, Lin JT, Wang JT. Molecular mechanisms of clarithromycin resistance in Helicobacter pylori. J Formos Med Assoc 1998;97:445-52.
108. Bieche I, Parfait B, Le Doussal V, Olivi M, Rio MC, Lidereau R, Vidaud M. Identification of CGA as a novel estrogen receptor-responsive gene in breast cancer: an outstanding candidate marker to predict the response to endocrine therapy. Cancer Res 2001;61:1652-8.
109. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8.
110. Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63.
111. Wakeling AE, Dukes M, Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res 1991;51:3867-73.
112. Fawell SE, White R, Hoare S, Sydenham M, Page M, Parker MG. Inhibition of estrogen receptor-DNA binding by the 'pure' antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization. Proc Natl Acad Sci U S A 1990;87:6883-7.
113. McClelland RA, Manning DL, Gee JM, Anderson E, Clarke R, Howell A, Dowsett M, Robertson JF, Blamey RW, Wakeling AE, Nicholson RI. Effects of short-term antiestrogen treatment of primary breast cancer on estrogen receptor mRNA and protein expression and on estrogen-regulated genes. Breast Cancer Res Treat 1996;41:31-41.
114. Wakeling AE. Similarities and distinctions in the mode of action of different classes of antioestrogens. Endocr Relat Cancer 2000;7:17-28.
115. Bourdeau V, Deschenes J, Metivier R, Nagai Y, Nguyen D, Bretschneider N, Gannon F, White JH, Mader S. Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol 2004;18:1411-27.
116. Alekseev OM, Richardson RT, Alekseev O, O'Rand MG. Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP. Reprod Biol Endocrinol 2009;7:45.
117. Wang J, Qin R, Ma Y, Wu H, Peters H, Tyska M, Shaheen NJ, Chen X. Differential gene expression in normal esophagus and Barrett's esophagus. J Gastroenterol 2009.
118. Howell A. Is fulvestrant ('Faslodex') just another selective estrogen receptor modulator? Int J Gynecol Cancer 2006;16 Suppl 2:521-3.
119. Waalkes MP, Liu J, Goyer RA, Diwan BA. Metallothionein-I/II double knockout mice are hypersensitive to lead-induced kidney carcinogenesis: role of inclusion body formation. Cancer Res 2004;64:7766-72.
120. Adelaide J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F, Charafe-Jauffret E, Cervera N, Desplans J, Parzy D, Schoenmakers E, Viens P, Jacquemier J, Birnbaum D, Bertucci F, Chaffanet M. Integrated profiling of basal and luminal breast cancers. Cancer Res 2007;67:11565-75.
121. Chun JH, Kim HK, Kim E, Kim IH, Kim JH, Chang HJ, Choi IJ, Lim HS, Kim IJ, Kang HC, Park JH, Bae JM, Park JG. Increased expression of metallothionein is associated with irinotecan resistance in gastric cancer. Cancer Res 2004;64:4703-6.
122. Kang GH, Lee S, Cho NY, Gandamihardja T, Long TI, Weisenberger DJ, Campan M, Laird PW. DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest 2008;88:161-70.
123. Chung MJ, Kang AY, Lee KM, Oh E, Jun HJ, Kim SY, Auh JH, Moon TW, Lee SJ, Park KH. Water-soluble genistin glycoside isoflavones up-regulate antioxidant metallothionein expression and scavenge free radicals. J Agric Food Chem 2006;54:3819-26.
124. Calaf GM, Roy D. Human drug metabolism genes in parathion-and estrogen-treated breast cells. Int J Mol Med 2007;20:875-81.
125. Kanamori T, Takakura K, Mandai M, Kariya M, Fukuhara K, Kusakari T, Momma C, Shime H, Yagi H, Konishi M, Suzuki A, Matsumura N, Nanbu K,Fujita J, Fujii S. PEP-19 overexpression in human uterine leiomyoma. Mol Hum Reprod 2003;9:709-17.
126. Kothapalli R, Buyuksal I, Wu SQ, Chegini N, Tabibzadeh S. Detection of ebaf, a novel human gene of the transforming growth factor beta superfamily association of gene expression with endometrial bleeding. J Clin Invest 1997;99:2342-50.
127. Tabibzadeh S, Kothapalli R, Buyuksal I. Distinct tumor specific expression of TGFB4 (ebaf)*, a novel human gene of the TGF-beta superfamily. Front Biosci 1997;2:a18-25.
128. Oien KA, Vass JK, Downie I, Fullarton G, Keith WN. Profiling, comparison and validation of gene expression in gastric carcinoma and normal stomach. Oncogene 2003;22:4287-300.
129. Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, Stephens RM, Caporaso NE, Loffredo CA, Ambs S. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res 2008;68:927-36.
130. Hoffmann K, Firth MJ, Beesley AH, Freitas JR, Ford J, Senanayake S, de Klerk NH, Baker DL, Kees UR. Prediction of relapse in paediatric pre-B acute lymphoblastic leukaemia using a three-gene risk index. Br J Haematol 2008;140:656-64.
131. Pradeep PK, Li X, Peegel H, Menon KM. Dihydrotestosterone inhibits granulosa cell proliferation by decreasing the cyclin D2 mRNA expression and cell cycle arrest at G1 phase. Endocrinology 2002;143:2930-5.
132. Ando K, Ajchenbaum-Cymbalista F, Griffin JD. Regulation of G1/S transition by cyclins D2 and D3 in hematopoietic cells. Proc Natl Acad Sci U S A1993;90:9571-5.
133. Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW, Jr., de la Chapelle A, Frankel WL. Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene 2004;23:7366-77.
134. Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, Tsunoda T, Takata R, Kasahara K, Miki T, Fujioka T, Shuin T, Nakamura Y. Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res 2004;64:5963-72.
135. Sunami E, Shinozaki M, Sim MS, Nguyen SL, Vu AT, Giuliano AE, Hoon DS. Estrogen receptor and HER2/neu status affect epigenetic differences of tumor-related genes in primary breast tumors. Breast Cancer Res 2008;10:R46.
136. Chen B, Pollard JW. Cyclin D2 compensates for the loss of cyclin D1 in estrogen-induced mouse uterine epithelial cell proliferation. Mol Endocrinol 2003;17:1368-81.
137. Yu J, Leung WK, Ng EK, To KF, Ebert MP, Go MY, Chan WY, Chan FK, Chung SC, Malfertheiner P, Sung JJ. Effect of Helicobacter pylori eradication on expression of cyclin D2 and p27 in gastric intestinal metaplasia. Aliment Pharmacol Ther 2001;15:1505-11.
138. Miyake H, Nelson C, Rennie PS, Gleave ME. Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3'-kinase pathway. Endocrinology 2000;141:2257-65.
139. Hollier BG, Kricker JA, Van Lonkhuyzen DR, Leavesley DI, Upton Z. Substrate-bound insulin-like growth factor (IGF)-I-IGF binding protein-vitronectin-stimulated breast cell migration is enhanced by coactivation of the phosphatidylinositide 3-Kinase/AKT pathway by alphav-integrins and the IGF-I receptor. Endocrinology 2008;149:1075-90.
140. Leivo I, Jee KJ, Heikinheimo K, Laine M, Ollila J, Nagy B, Knuutila S. Characterization of gene expression in major types of salivary gland carcinomas with epithelial differentiation. Cancer Genet Cytogenet 2005;156:104-13.
141. Nishino R, Honda M, Yamashita T, Takatori H, Minato H, Zen Y, Sasaki M, Takamura H, Horimoto K, Ohta T, Nakanuma Y, Kaneko S. Identification of novel candidate tumour marker genes for intrahepatic cholangiocarcinoma. J Hepatol 2008;49:207-16.
142. Kian Tee M, Rogatsky I, Tzagarakis-Foster C, Cvoro A, An J, Christy RJ, Yamamoto KR, Leitman DC. Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta. Mol Biol Cell 2004;15:1262-72.
143. Huynh H, Yang XF, Pollak M. A role for insulin-like growth factor binding protein 5 in the antiproliferative action of the antiestrogen ICI 182780. Cell Growth Differ 1996;7:1501-6.
144. Suzuki S, Honma K, Matsuyama T, Suzuki K, Toriyama K, Akitoyo I, Yamamoto K, Suematsu T, Nakamura M, Yui K, Kumatori A. Critical roles of interferon regulatory factor 4 in CD11bhighCD8alpha- dendritic cell development. Proc Natl Acad Sci U S A 2004;101:8981-6.
145. Grumont RJ, Gerondakis S. Rel induces interferon regulatory factor 4 (IRF-4)expression in lymphocytes: modulation of interferon-regulated gene expression by rel/nuclear factor kappaB. J Exp Med 2000;191:1281-92.
146. Ramos JC, Ruiz P, Jr., Ratner L, Reis IM, Brites C, Pedroso C, Byrne GE, Jr., Toomey NL, Andela V, Harhaj EW, Lossos IS, Harrington WJ, Jr. IRF-4 and c-Rel expression in antiviral-resistant adult T-cell leukemia/lymphoma. Blood 2007;109:3060-8.
147. Hofman VJ, Moreilhon C, Brest PD, Lassalle S, Le Brigand K, Sicard D, Raymond J, Lamarque D, Hebuterne XA, Mari B, Barbry PJ, Hofman PM. Gene expression profiling in human gastric mucosa infected with Helicobacter pylori. Mod Pathol 2007;20:974-89.
148. Frasor J, Stossi F, Danes JM, Komm B, Lyttle CR, Katzenellenbogen BS. Selective estrogen receptor modulators: discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells. Cancer Res 2004;64:1522-33.
149. Seitz S, Korsching E, Weimer J, Jacobsen A, Arnold N, Meindl A, Arnold W, Gustavus D, Klebig C, Petersen I, Scherneck S. Genetic background of different cancer cell lines influences the gene set involved in chromosome 8 mediated breast tumor suppression. Genes Chromosomes Cancer 2006;45:612-27.
150. Wan D, Gong Y, Qin W, Zhang P, Li J, Wei L, Zhou X, Li H, Qiu X, Zhong F, He L, Yu J, Yao G, Jiang H, Qian L, Yu Y, Shu H, Chen X, Xu H, Guo M, Pan Z, Chen Y, Ge C, Yang S, Gu J. Large-scale cDNA transfection screening for genes related to cancer development and progression. Proc Natl Acad Sci U S A 2004;101:15724-9.
151. Morel C, Adami P, Musard JF, Duval D, Radom J, Jouvenot M. Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis. Exp Cell Res 2007;313:3971-82.
152. Yokoe T, Tanaka F, Mimori K, Inoue H, Ohmachi T, Kusunoki M, Mori M. Efficient identification of a novel cancer/testis antigen for immunotherapy using three-step microarray analysis. Cancer Res 2008;68:1074-82.
153. Ueda K, Kawano J, Takeda K, Yujiri T, Tanabe K, Anno T, Akiyama M, Nozaki J, Yoshinaga T, Koizumi A, Shinoda K, Oka Y, Tanizawa Y. Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic beta-cells via transcriptional activation. Eur J Endocrinol 2005;153:167-76.
154. Riggs AC, Bernal-Mizrachi E, Ohsugi M, Wasson J, Fatrai S, Welling C, Murray J, Schmidt RE, Herrera PL, Permutt MA. Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 2005;48:2313-21.
155. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661-78.
156. Yajima S, Ishii M, Matsushita H, Aoyagi K, Yoshimatsu K, Kaneko H, Yamamoto N, Teramoto T, Yoshida T, Matsumura Y, Sasaki H. Expression profiling of fecal colonocytes for RNA-based screening of colorectal cancer. Int J Oncol 2007;31:1029-37.
157. Shen D, Chang HR, Chen Z, He J, Lonsberry V, Elshimali Y, Chia D, Seligson D, Goodglick L, Nelson SF, Gornbein JA. Loss of annexin A1 expression
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48124-
dc.description.abstract本研究為探討胃幽門螺旋桿菌(Helicobacter pylori, H. pylori)感染所導致的胃癌中,人類雌激素受器(estrogen receptors, ERs)相關的分子調控機制。我們首先分析8片胃癌病人胃部組織的互補去氧核醣核酸微陣列晶片(cDNA microarray)以得到幽門螺旋桿菌與胃癌發生相關資料。在諸多幽門螺旋桿菌感染相關表現不同的基因裡,共有82個基因表現達兩倍以上。經Ingenuity Pathway Analysis (IPA) 軟體分析後共有41個基因與4組癌症調控網路高度相關,其中雌激素受器扮演調控網路中重要的中心角色(crucial hub),並調控20個癌症相關基因。以即時定量反轉錄聚合酶連鎖反應驗證幽門螺旋桿菌感染的胃癌細胞株AGS的基因表現,發現共有14個與雌激素受器相關的基因表現量達1.5倍以上。此外我們與Human Genome-wide High-affinity ERE資料庫進行比對後,建立了新的幽門螺旋桿菌感染所引發的胃癌之分子調控路徑。更進一步的實驗分析包括細胞存活試驗(MTT assay)、細胞週期分析(cell cycle analysis)、抗氧化測試 (oxidative stress resistance test)、細胞侵犯實驗(invasion assay)、西方墨點轉漬法(western blot)、以及即時定量反轉錄聚合酶連鎖反應。我們的結果顯示不論是1 nM 雌激素(estradiol)或10-5 M雌激素受體拮抗劑(estrogen receptor antagonist)法洛德(fulvestrant)均能有效減低AGS因幽門螺旋桿菌感染造成的增生、抗氧化力上升、和轉移能力。幽門螺旋桿菌會透過雌激素受器依賴(estrogen receptor dependent)的路徑使胃癌細胞生長、抗氧化、以及侵犯能力增加。以高生理濃度雌激素處理或用法洛德抑制胃癌細胞的雌激素受器能有效擾亂幽門螺旋桿菌感染所導致的各種不正常胃癌現象。我們的研究成果或許能為人類胃癌發生與進展調控機制帶來一線曙光。zh_TW
dc.description.abstractThis study is to elucidate the regulatory mechanism of estrogen receptors in Helicobacter pylori (H. pylori)-infected Gastric cancer. The correlation between H. pylori infection and gastric cancer was first analyzed using the cDNA microarray data from 8 gastric cancer patients. Among the differentially expressed H. pylori-related genes, 82 were found to be up-regulated two-fold. Ingenuity Pathway Analysis (IPA) analysis showed these genes to be highly related to four pathways with cancer progression, where estrogen receptor (ER) was the crucial hub in the network, and regulating 20 cancer related genes. A total of 14 ER-related genes were confirmed by q-RT-PCR to be up-regulated 1.5-fold in H. pylori-infected human AGS cells. Moreover, we utilized a human genome-wide high-affinity ERE database and built a new regulatory pathway for H. pylori-infected gastric cancer. Further experimental analysis included MTT assay, cell cycle analysis, oxidative stress resistance analysis, invasion assay, western blot, and q-RT-PCR. Our results show that either 1 nM estradiol or 10-5 M fulvestrant can reduce AGS viability, oxidative resistance, and metastasis that were increased by H. pylori infection. H. pylori enhanced the growth, resistance, and metastasis abilities of gastric cancer cells through ER-dependent pathway. With high physiological concentration of estradiol or shutting down ERs by fulvestrant, it can disturb abnormal gastric cancer conditions caused by H. pylori infection. Our results may shed light on the intricate regulatory mechanism in human gastric cancer formation and progression.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:46:47Z (GMT). No. of bitstreams: 1
ntu-100-R96b43004-1.pdf: 8188427 bytes, checksum: ce3d116a7edbfdb56aac2c0e462cfa0a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書…………………………………..………………………………….I
誌 謝……………………..……………………………….…………….…………...….…....II
中文摘要 ..................................................................................................................... IV
Abstract ....................................................................................................................... V
Figure Contents…………………………………………….………………………..………......XIII
Table Contents…………………………..…………..…………………………….….……….....XVI
I. Introduction .............................................................................................................. 1
1. Gastric Cancer ................................................................................................... 1
1-1. One of the Most Fatal Cancerous Diseases in Taiwan ........................... 1
1-2. Classification of Gastric Cancer ............................................................. 1
1-3. Pathophysiology of Gastric Cancer ........................................................ 2
1-3-1. Genetic Inheritance, Gender, and Age ........................................ 2
1-3-2. Bacterial Infection ....................................................................... 3
1-3-3. Gastritis May Lead to Gastric Cancer ......................................... 3
2. Gastric Ulcer and Duodenal Ulcer .................................................................... 4
2-1. Peptic Ulcer ............................................................................................ 4
2-2. Pathophysiology of Peptic Ulcers .......................................................... 4
2-2-1. Bacteria Infection ........................................................................ 4
2-2-2. Other Causes of Bacteria Infection ............................................. 5
2-3. Diagnosis and Treatment for Peptic Ulcers ............................................ 5
2-3-1. Urea Breath Test for Detecting H. pylori Infection .................... 5
2-3-2. Antibiotics Treatment for H. pylori Infection ............................. 6
3. Helicobacter pylori ............................................................................................ 7
3-1. History .................................................................................................... 7
3-2. The Morphology and Culture Conditions of H. pylori ........................... 8
3-3. The Mechanisms of H. pylori Infection ................................................. 9
3-3-1. The “Leaking Roof” Concept ..................................................... 9
3-3-2. The Virulence Factors of H. pylori ............................................. 9
3-3-3. The Type IV Secretion Systems of H. pylori ............................ 10
3-4. The Virulence Factors of H. pylori ....................................................... 11
3-4-1. Adhesion Lipoprotein ............................................................... 11
3-4-2. Vacuolatingcytotoxin (VacA) .................................................... 12
3-4-3. Cytotoxin Associated Gene A (CagA) ...................................... 13
3-4-4. Urease ....................................................................................... 14
3-5. The Relationship between H. pylori and Gastric Cancer ..................... 15
3-6. The Effects of H. pylori on Proliferation and Apoptosis ...................... 16
3-6-1. H. pylori Can Increase Cancer Cell Viability ........................... 16
3-6-2. H. pylori Can Increase Antiapoptosis Response ....................... 17
3-7. Gastric Cancer Invasion and H. pylori Infection ................................. 17
3-8. H. pylori Treatments Nowadays ........................................................... 18
4. Hormone .......................................................................................................... 19
4-1. Overview .............................................................................................. 19
4-2. Steroid Hormones ................................................................................. 20
4-3. The Role of Estradiol in the Human Body ........................................... 20
4-4. Estrogen Receptors and Estrogen-Responsive Elements ..................... 21
4-4-1. Estrogen Receptors α and β ...................................................... 21
4-4-2. Estrogen-Responsive Elements ................................................. 22
5. Relationship between Estrogen, Gastric Cancer, and H. pylori ...................... 24
5-1. Estrogen and Gastric Cancer ................................................................ 24
5-2. Estrogen Receptors and Gastric Cancer ............................................... 25
5-3. Estrogen and H. pylori Infection .......................................................... 27
6. Research Purpose ............................................................................................. 28
II. Materials and Methods ........................................................................................ 30
1. The Construction of cDNA Microarray........................................................... 30
2. Using GeneSpring to Normalize Genes .......................................................... 31
3. Investigating GeneSpring Results with SAM .................................................. 31
4. Finding Over-Two-Fold Genes in H. pylori-infected Patients ........................ 32
5. Building Possible H. pylori-infected Networks by IPA .................................. 33
6. Estrogen Receptors and GAPDH Expression in Microarray ........................... 34
7. AGS Subculture and Freezing / Defreezing .................................................... 34
7-1. AGS Subculture .................................................................................... 34
7-2. Freezing of AGS ................................................................................... 35
7-3. Defreezing of AGS ............................................................................... 36
8. Helicobacter pylori Culture and Freezing / Defreezing .................................. 36
8-1. Helicobacter pylori Culture ................................................................. 36
8-2. Freezing and Defreezing of H. pylori................................................... 37
9. Verification of Possible H. pylori-infected Gastric Cancer Networks by Quantitative Polymerase Chain Reaction (q-RT-PCR) ................................... 37
9-1. q-RT-PCR Experiment ......................................................................... 37
9-2. Seeding of AGS .................................................................................... 38
9-3. Starvation of AGS ................................................................................ 39
9-4. H. pylori-infected AGS at Different Time Points (MOI) ..................... 39
9-5. Total RNA Extraction of AGS .............................................................. 41
9-5-1. RNA Extraction with TRIzol Reagent ...................................... 41
9-5-2. Extracting Total RNA from AGS .............................................. 41
9-6. Total RNA Electrophoresis of AGS...................................................... 43
9-7. Reverse Transcription (RT) of AGS ..................................................... 43
9-8. q-RT-PCR and Gene Analysis of H. pylori-infected AGS Cells .......... 44
9-8-1. Primers Designed and Synthesis ............................................... 44
9-8-2. The Process of q-RT-PCR……………………….………………...….44
10. Analyzing AGS Viability Influenced by H. pylori and Estradiol.................. 45
10-1. Phenol Red Free Medium and Charcoal Stripped FBS ...................... 45
10-2. β-Estradiol .......................................................................................... 45
10-3. Using MTT Assay to Measure AGS Viability .................................... 46
11. Analyzing AGS Cell Cycle by Flow Cytometry and PI Staining ................. 46
12. Analyzing AGS Oxidative Stress Resistance Influenced by H. pylori and Estradiol by Flow Cytometry and PI Staining ............................................... 47
13. Analyzing AGS Invasion Influenced by H. pylori and Estradiol Using in vitro Invasion Assay ............................................................................................... 48
14. Validating H. pylori-infected ER Network by q-RT-PCR ............................ 49
15. Fulvestrant Experiments ................................................................................ 50
15-1. Using MTT Assay to Analyze AGS Viability Influenced by Fulvestrant ..................................................................................................................... 50
15-2. The Fulvestrant Concentration Gradient Test by Western Blot .......... 51
15-2-1. Fulvestrant Treatment and AGS Total Protein Extraction ...... 51
15-2-2. SDS PAGE .............................................................................. 51
15-2-3. Protein Transfer and Blocking Process ................................... 52
15-2-4. Primary and Secondary Antibody Hybridization .................... 53
15-2-5. Protein Image Analysis ........................................................... 54
15-3. Using Western Blot to Analyze AGS ER α and β Influenced by H. pylori and Fulvestrant ........................................................................ 54
15-4. Using q-RT-PCR to Validate the H. pylori-infected Network Related Genes Influenced by Fulvestrant ....................................................... 55
III. Results .................................................................................................................. 56
1. The Normalization Processes of cDNA Microarray........................................ 56
1-1.The Normalization Results of 8 cDNA Microarray Data ...................... 56
1-2. Outliers Exclusion after Normalization………………………………..…....56
2. GeneSpring Results with SAM Analysis ........................................................ 57
2-1. Using FDR Value at 0.05 % ................................................................. 57
2-2. Using FDR Value at 32.06 % ............................................................... 57
3. Finding H. pylori-infection Genes with Over Two-Fold Change ................... 58
4. Constructing a Possible H. pylori-infected Network with the 82 Significant Genes by IPA ................................................................................................... 58
4-1. Estradiol was a Central Hub in Network 1 ........................................... 58
4-2. Merging Networks 1, 2, 3 and 4 ........................................................... 59
5. Estrogen Receptors and GAPDH Expression in Microarray ........................... 60
5-1. Estrogen Receptors (ERs) .................................................................... 60
5-2. GAPDH ................................................................................................ 60
6. Validating Genes in the New Network by q-RT-PCR .................................... 61
6-1. 14 Array Genes were Up-regulated ...................................................... 61
6-2. Both ER α and β Genes were Up-regulated ......................................... 62
7. Constructing an H. pylori-infected Network by ERE Database Mining ......... 62
8. AGS Viability Influenced by H. pylori and Estradiol ..................................... 63
9. AGS Cell Cycle Influenced by H. pylori and Estradiol .................................. 64
10. AGS Oxidative Stress Resistance Influenced by H. pylori and Estradiol ..... 64
10-1. AGS Cell Morphology ....................................................................... 64
10-2. PI Staining Results ............................................................................. 65
11. AGS Invasion Influenced by H. pylori and Estradiol .................................... 65
12. Genes in H. pylori-infected ERs Network Influenced by Estradiol .............. 66
13. AGS Viability Influenced by Fulvestrant ...................................................... 66
14. Fulvestrant Inhibition to ERs at Different Dosages....................................... 67
15. AGS ER α and β Protein Influenced by H. pylori and Fulvestrant ............... 67
16. Genes in H. pylori-infected ERs Network Influenced by Fulvestrant ........... 68
IV. Discussion ............................................................................................................. 69
1. New Treatments for H. pylori Infection .......................................................... 69
2. The FDR Value of SAM Filtering Result ........................................................ 70
3. An H. pylori-infected Gastric Cancer Network ............................................... 71
3-1. Metallothionein 1X, 1F, and 1G (MT1X, MT1F, and MT1G) ............. 72
3-2. Left-Right Determination Factor 2 (LEFTY2)..................................... 73
3-3. Immunoglobulin J Polypeptide (IGJ) ................................................... 73
3-4. Cyclin D2 (CCND2) ............................................................................ 74
3-5. Insulin-Like Growth Factor Binding Protein 5 (IGFBP5) ................... 75
3-6. Interferon Regulatory Factor 4 (IRF4) ................................................. 76
3-7. Metallophosphoesterase Domain Containing 2 (MPPED2) ................ 77
3-8. Quiescin Q6 Sulfhydryl Oxidase 1 (QSOX1) ...................................... 77
3-9. Wolfram Syndrome 1 (wolframin, WFS1) ........................................... 78
3-10. ATPase Na+/K+ Transporting Beta 1 Polypeptide (ATP1B1) ............. 79
3-11. Anterior Gradient Homolog 2 (AGR2) .............................................. 80
3-12. Kallikrein-Related Peptidase 11 (KLK11) ......................................... 81
4. The Constructed Network was Highly Related to Gastric Cancer .................. 82
5. AGS Viability, Cell Cycle, and Invasion Influenced by H. pylori and Estradiol…. ...................................................................................................... 83
6. AGS Oxidative Stress Resistance Influenced by H. pylori and Estradiol ....... 84
7. Estradiol Protects Human Against H. pylori-infected Gastric Cancer ............ 86
8. H. pylori Infection was Estrogen Receptor Dependent ................................... 87
9. The Hypothesis for H. pylori Infection and Protective Role of Estradiol against H. pylori-infected Gastric Cancer .................................................................... 88
V. Future Works ......................................................................................................... 90
1. Finding Estradiol Analogues or Upstream ER-regulated Pathways ................ 90
2. Verifying Whether ERs Undergo Conformational Changes or are Activated by H. pylori ........................................................................................................... 91
3. Estradiol Treatment for H. pylori Infection ..................................................... 92
4. The Animal Model for Long-term H. pylori Infection and Estradiol Treatment………………………………………………………………..………………….93
VII. List of Figures and Tables ............................................................................... 117
VIII. Publications .................................................................................................... 172
Figure 1. The incidence of gastric and cardia gastric adenocarcinoma in Sweden between 1970 and 2005…………………………………….………….……….117
Figure 2. The inflammation in the stomach (gastritis)…………………………..…..…118
Figure 3. Carbon-14-urea breath Test………………...…………………………….....…119
Figure 4. Gastric acid is secreted by parietal cells of the stomach in response to stimulation…………………………...…………………...………...…...…….....120
Figure 5. Morphologies of H. pylori………………………..………..…………..…........121
Figure 6. H. pylori causes stomach ulcers………………………..……………....….......122
Figure 7. Models of the assembly process and the assembled structure of the T4SS machinery…………………….…………………………….…………………....123
Figure 8. Helicobacter pylori-induced signaling to the nucleus and the actin cytoskeleton…………………………………………………….…………….....124
Figure 9. H. pylori activates pathways that down-regulate apoptosis………....….......125
Figure 10. Steroid hormones response………………………..…………………….…...126
Figure 11. The structural formula of human 17-β estradiol…………...…………….....127
Figure 12. Distributions of estrogen receptor α and β (ER α and β) in different tissues………………………...……………..………..……………………...…127
Figure 13. Estradiol response………………………...……………………………....…...128
Figure 14. The structural formula of estradiol antagonist: fulvestrant…..……...….....129
Figure 15. Incidence of gastric cancer male-to-female (M/F) ratio………..…….…...129
Figure 16. Annual age-group-specific incidences of gastric cancer…………...……...130
Figure 17. Modes of action of estradiol, tamoxifen, and fulvestrant……...……...…..131
Figure 18. H. pylori signaling pathways………………………………..………….…....132
Figure 19. The experimental flowchart………………………..………………………...133
Figure 20. The normalization results of 8 gastric cancer patients’ tissue cDNA microarray data………………………………..………………………..…..…134
Figure 21. Eliminating genes intensities lower than 500...…………………..……...…135
Figure 22. SAM operating window……………………………………………..…..…...136
Figure 23. SAM analyzed results with different FDR value…………………..…...….137
Figure 24. The distance tree clustering result of 7 genes………………………...........138
Figure 25. The clustering results of 8 cDNA microarray data from H. pylori-infected gastric cancer patients………...…………………………..………………......139
Figure 26. The IPA networks of 82 genes………………………..………..………….....140
Figure 27. The IPA Network1…………………...……………………………..……..…..141
Figure 28. IPA Networks 2, 3, and 4……………………………………..………............142
Figure 29. Functional analysis of IPA Network1 ~ 4…………..…….……………...…143
Figure 30. The merging result of IPA Network 1 ~ 4……………………..….…..…….144
Figure 31. The fold changes of estrogen receptors and GAPDH in microarray…......145
Figure 32. The example of total RNA electrophoresis………………..…………......…146
Figure 33. Results of 16 genes time course q-RT-PCR experiments……...…......147-148
Figure 34. q-RT-PCR time-course analysis of H. pylori infection…..…………..….....149
Figure 35. The ERs related network of H. pylori infection……………..………..……150
Figure 36. The novel network was highly cancer related………………………....…...151
Figure 37. The cancerous functions of the novel H. pylori infection network……....151
Figure 38. AGS viability influenced by H. pylori and estradiol…...…….…………....152
Figure 39. AGS cell cycle influenced by H. pylori and estradiol…...…………...…....153
Figure 40. AGS oxidative stress resistance influenced by H. pylori and estradiol……………………………………………………………...…………154
Figure 41. AGS oxidative stress resistance influenced by H. pylori and estradiol (2)………......…….……………………...………………………………...……155
Figure 42. AGS invasive ability influenced by H. pylori and estradiol………....…....156
Figure 43. Genes in the H. pylori-infected network influenced by estradiol…………...………..………………………………………………......157
Figure 44. AGS viability influenced by fulvestrant…….………..……………..………158
Figure 45. The ERs inhibition ability of different fulvestrant concentration…..….....159
Figure 46. AGS ERs protein expression influenced by H. pylori and fulvestrant……………...………………………..…………………………..…160
Figure 47. Genes in the H. pylori-infected ERs network influenced by fulvestrant………...…………………………..……………………………......161
Figure 48. The novel hypothesis for H. pylori infection and the protective role of estradiol against H. pylori-infected gastric cancer……..………..……..…..162
Table 1. 118 up-regulated genes filtered by SAM……….…………..……………..........163
Table 2. 82 two-fold up-regulated genes filtered by GeneSpring……...……..............164
Table 3. Interactions between estradiol and other molecules in Network 1 merged with Networks 2, 3, and 4…………….………………………..…………….…….165
Table 4. The cellular functions of 20 genes in Network 1 (merged)…………..….....166
Table 5. Primer sequences and information of 22 genes in merged
Network 1.……………………...……………………………………………….167-168
Table 6. ERE information of genes in the novel H. pylori-infected gastric cancer network……………………….…………..………..………………………………..…169
Table 7. cDNA microarray data of gastric cancer tissues and H. pylori……..…..….170
Table 8. The maximum fold change and time points of 20 genes in H. pylori infected network…………..………...………………...………………..……………171
dc.language.isozh-TW
dc.subject胃癌zh_TW
dc.subject幽門螺旋桿菌zh_TW
dc.subject雌激素zh_TW
dc.subject雌激素受器zh_TW
dc.subject互補去氧核醣核酸微陣列晶片zh_TW
dc.subject調控機制zh_TW
dc.subjectcDNA microarrayen
dc.subjectestrogen receptorsen
dc.subjectGastric canceren
dc.subjectregulatory mechanismen
dc.subjectestradiolen
dc.subjectHelicobacter pylorien
dc.title探討胃幽門螺旋桿菌感染後所誘導的雌激素受器調控路徑zh_TW
dc.titleElucidating Regulatory Pathway of Estrogen Receptors in Helicobacter pylori-infected Gastric Canceren
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃宣誠(Hsuan-Cheng Huang),陳炯年(Chiung-Nien Chen),應靜雯(Ching-Wen Ying),周涵怡(Han-Yi Elizabeth Chou)
dc.subject.keyword胃癌,幽門螺旋桿菌,雌激素,雌激素受器,互補去氧核醣核酸微陣列晶片,調控機制,zh_TW
dc.subject.keywordGastric cancer,Helicobacter pylori,estradiol,estrogen receptors,cDNA microarray,regulatory mechanism,en
dc.relation.page178
dc.rights.note有償授權
dc.date.accepted2011-06-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved