請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48065完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬 | |
| dc.contributor.author | Wei-Yao Wu | en |
| dc.contributor.author | 武為瑤 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:45:27Z | - |
| dc.date.available | 2013-07-07 | |
| dc.date.copyright | 2011-07-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-27 | |
| dc.identifier.citation | 1. Aadland L.P. (1993) Steram habitat types: their fish assemblages and relationship to flow. North American Journal of Fisheries Management 13(4): 790-806.
2. Abe S., Iguchi K., Ito S., Uchida Y., Ohnishi H. & Ohmori K. (2003) Habitat use of the grazing goby (Sicyopterus japonicus) in response to spatial heterogeneity in riparian shade. Journal of Freshwater Ecology 18: 161-167. 3. Abe S., Yodo, T., Matsubara N. & Iguchi K. (2007) Distribution of two sympatric amphidromous grazing fish Plecoglossus alivelis Temminck & Schlegel and Sicypoterus japonicus (Tanka) along the course of a temperate river. Hydrobiologia 575: 415-422. 4. Ahmadi-Nedushan, B., St-Hilaire, A., Bérubé, M., Robichaud, É., Thiémonge, N. & Bobée, B. (2006) A review of statistical methods for the evaluation of aquatichabitat suitability for instream flow assessment. River Research and Applications 22: 503–523. 5. Akihito, S.K., Ikeda, Y. & Iwata, A. (2000) Gobioidei. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the species. 2nd edn. Tokai University Press, Tokyo. 6. Allan, J.D. (1995) Physical factors of importance to the biota. Stream ecology: structure and function of running waters. Chapman and Hall, London. 7. Angermeier P.L. & Schlosser I.J. (1989) Species-area relationships for stream fishes. Ecology 70: 1450-1642. 8. Angermeier, P.L. & Karr, J.R. (1983) Fish communities along environmental gradients in a system of tropical streams. Environmental Biology of Fishes 9: 117-135. 9. Azzellin, A. & Vismara, R. (2001) Pool Quality Index: New Method to Define Minimum Flow Requirements of High-Gradient, Low-Order Streams. Journal of Environmental Engineering 127: 1003-1013. 10. Baltz D.M., Vondracek B., Moyle L.R. & Moyle P.B. (1987) Influence of temperature on microhabitat choice by fishes in a California stream. Transactions of the American Fisheries Society 116: 12-20. 11. Barmuta L.A. (1990) Interaction between the effects of substratum, velocity and location on stream Benthos: an experiment. Australian Journal of Marine and Freshwater Research 41: 557-573. 12. Beecher H.A., Caldwell B.A. & Demond S.B. (2002) Evaluation of depth and velocity preferences of juvenile coho salmon in Washington streams. North American Journal of Fisheries Management 22: 785-795. 13. Bovee, K.D. (1982) A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology. U.S. Fish and Wildlife Service, Washington, DC, FWS/OBS-82/26. 14. Buhrnheim, C.M. & Cox-Fernandes, C. (2003) Structure of fish assemblages in Amazonian rain-forest streams: effects of habitats and locality. Copeia 2003(2): 255–262. 15. Burrough, P. A. (1986) Principles of geographical information systems for land resources assessment / P.A. Burrough Clarendon Press, Oxford. 16. Chambers, P.A., Prepas, E.E., Hamilton, H.R. & Bothwell, M.L. (1991) Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1: 249-257. 17. Cooper, S.D., Walde, S.J., Peckarsky, B.L. (1990) Prey exchange rates and the impact of predators on prey populations in streams. Ecology 71: 1503-1514. 18. Coulibaly, P. (2004) Downscaling daily extreme temperature with genetic programming. Geophisical Research Letter 31 L16203. 19. Creuze des Chatelliers M. & Reygrobellet J.L. (1990) Interactions between geomorphological processes, benthic and hyporheic communities: first results on a by-passes canal of the French upper Rhone river. Regulated Rivers-Research and Management 5: 139-158. 20. Dahl, J. (1998) Effects of a benthivorous and a drift-feeding fish on a benthic stream assemblage. Oecologia 116: 426-432. 21. Dahl, J., Greenberg, L. (1996) Effects of habitat structure on habitat use by Gammarus pulex in artificial streams. Freshwater biology 36(3): 487-495. 22. David, J.P. & Wesley, J.B. (2005) Effectiveness of stream restoration following highway reconstruction projects on two freshwater streams in Kentucky. Ecological Engineering 25(1): 73-84. 23. Dawson, F.H. & Kern-Hansen, U. (1978) Aquatic weed management in natural streams: the effect of shade by marginal vegetation. Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie 20: 1451-1456. 24. Dôtu Y. & Mito S. (1955) Life history of the gobioid fish, Sicydium japonicum Tanaka. Science Bulletin of the Faculty of Agriculture Kyushu University 10: 120-126. 25. Francisco L., Lilian C., Helena S.G., Andre B.D.C. & Denise D.C.R. (2005) Riffle and pool fish communities in a large stream of southeastern Brazil. Neotropical Ichthyology 3(2): 305-311. 26. Fretwell S. D. (1972) Population in changing environments.Princeton University Press, Princeton, NJ. 27. Fukuda, S. & Hiramatsu, K. (2008) Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka (Oryzias latipes). Ecological Modelling 215(4): 301-313. 28. García de Jalón, D. & Gortázar, J. (2007) Evaluation of instream habitat enhancement options using fish habitat simulations: case-studies in the river Pas (Spain). Aquatic Ecology 41: 461–474. 29. Gelwick, F.P. (1990) Longitudinal and temporal comparisons of riffle and pool fish assemblages in a Northeastern Oklahoma Ozark stream. Copeia 1990: 1072-1082. 30. Gorman, O.T. & Karr, J.R. (1978) Habitat structure and stream fish communities. Ecology 59: 507-515. 31. Guay J.C., Boisclair D., Leclerc M. & Lapointe M. (2003) Assessment of the transferability of biological habitat models for Atlantic salmon parr (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 60: 1398–1408, doi:10.1139/F03-120. 32. Guay J.C., Boisclair D., Rioux, D. & Leclerc M. (2000) Development and validation of numerical habitat models for juveniles of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 57: 2065-2075. 33. Guisan, A. & Zimmermam, N.E. (2000) Predictive habitat distribution models in ecology. Journal of Applied Ichthyology 135 (2–3): 147–186. 34. Hudson, McMillan & Grey (2005) Proposed Wairau Valley Hydroelectric Power Scheme. Environmental Management Associates Report 05-05. 35. Hynes, H.B.N. (1970) The ecology of running waters. Liverpool University Press, Liverpool. 36. Iida M., Watanabe S., Shinoda A. & Tsukamoto K. (2008) Recruitment of amphidromous goby Sicypoterus japonicus to the estuary of the Ota River, Wakayama, Japan. Environmental Biology of Fishes 83: 331-341. 37. Inoue, M., Miyayoshi, M. (2006) Fish foraging effects on benthic assemblages along a warm-temperate stream: differences among drift feeders, benthic predators and grazers. Oikos 114: 95-107. 38. Jay Lacey, R.W., & Robert, G. Millar. (2004) Reach scale hydraulic assessment of instream salmonid habitat restoration. The Journal of the American Water Resources Association. No. 01214. 39. Jorde K., Schneider M., Peter A. & Zoellner F. (2001) Fuzzy based Models for the Evaluation of Fish Habitat Quality and Instream Flow Assessment. 3rd International Symposium on Environmental Hydraulics, Tempe, AZ, Dec. p. 5-8. 40. Jowett, I.G. (1993) A method for identifying pool, run, and riffle habitats from physical measurements. New Zealand Journal of Marine and Freshwater Research, 27: 241-248. 41. Kemp, J.L., Harper, D.M. & Crosa, G.A. (2000) The habitat-scale ecohydraulics of rivers. Ecological Engineering 16: 17-29. 42. Koza, J. (1992) Genetic programming: on the programming of computers by natural selection, MIT Press, Cambridge, Mass. 43. Leclerc M., St-Hilaire A & Bechara J.A. (2003) State-of-the-art and perspectives of habitat modelling. Canadian Water Resources Journal 28(2): 153–172. 44. Lee, J.H., Kil, J.T., Jeong, S. (2010) Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecological Engineering 36: 1251–1259. 45. Leopold, L.B. (1969) The rapids and the pools-Grand Canyon. United States Geological Survey Professional Paper 669-D: 131-145. 46. Liefferinge, C.V., Seeuws., P., Meire, P. & Verheyen, R.F. (2005) Microhabitat use and preferences of the endangered Cottus gobio in the River Voer, Belgium. Joarnal of Fish Biology 67: 897–909. 47. Lin, Y.P., Wang, C.L., Yu, H.H., Huang, C.W., Wang, Y.C., Chen, Y.W., Wu, W.Y. (2011) Monitoring and estimating the flow conditions and fish occurrence probability under various flow conditions at reach scale using Genetic algorithms and Kriging methods. Ecological Modeling 222(3): 762-775. 48. Madsen, T.V. & Søndergaard, M. (1993) The effects of current velocity on the photosynthesis of Callitriche stagnalis scop. Aquatic Botany, 15, 187-193. 49. Madsen, T.V., Enevoldsen, H.O. & Jorgensen, T.B. (1993) Effects of water velocity on photosynthesis and dark respiration in submerged stream macrophytes. Plant Cell Environment 16, 317-322. 50. Matthews, W.J. (1998) Patterns in freshwater fish ecology. Chapman and Hall, New York, USA, 756p. 51. McDowall, R.M. (1988) Diadromy in Fishes. Migrations between Freshwater and Marine Environments. Croom Helm, London. 52. Moody, L.F. (1944) Friction factor for pipe flow. ASME Trans 66: 671-683. 53. Moore, K., Furniss, M., Firor, S. & Love, M. (1999) Fish Passage Through Culverts an Annotated Bibliography. USDA Forest Service, Six Rivers National Forest Watershed Interactions Team, Eureka, CA, http://www.stream.fs.fed.us/fishxing/biblio.html. 54. Morita, K. & Yokota, A. (2002) Population viability of stream-resident salmonids after habitat fragmentation: a case study with whitespotted charr (Salvelinus leucomaenis) by an individual based model. Ecological Modeling 155: 85-94. 55. Moutona A.M., Schneiderb M., Depestelea J., Goethalsa P.L.M. & Pauwa N.D. (2007) Fish habitat modelling as a tool for river management. Ecological Engineering 29 (3): 305–315. 56. Moyle P. B., & Vondracek B. (1985) Persistence and structure of the fish assemblage in a small California stream. Ecology 66: 1-13. 57. Muttil, N. & Lee, J. H. W. (2005). Genetic Programming for Analysis and Real-Time Prediction of Coastal Algal Blooms. Ecological Modelling 189(3–4): 363–376. 58. National Research Council NRC (1992) Restoration of Aquatic Ecosystems: Science, Technology, and Public Policy. National Academy Press:Washington, DC. 59. Nelson, S.G., Parham, J.E., Tibbatts, R.B., Camacho, F.A., Leberer, T., Smith, B.D. (1997) Distribution and microhabitats of the amphidromous gobies in streams of Micronesia. Micronesica 30: 83-91. 60. Nielsen, L.A. & Johnson, D.L. (1983) Fisheries Techniques. American Fisheries Society Bethesda, Md. 61. Nykänen M. & Huusko A. (2004) Transferability of habitat preference criteria for larval European grayling (Thymallus thymallus). Canadian Journal of Fisheries and Aquatic Sciences 61: 185–192, doi:10.1139/F03-156. 62. Oberdorff T., Pont D., Hungueny B. & Chessel D. (2001) A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment. Freshwater Biology 46: 399-415. 63. Orth D.J. & Maughan O.E. (1982) Evaluation of the incremental methodology for recommending instream flows for fishes. Transactions of the American Fisheries Society 111: 413–445. 64. Orth D.J. & Maughan O.E. (1983) Microhabitat preferences of benthic fauna in a woodland stream. Hydrobiologia 106: 157-168. 65. Rosenfeld, J. (2000) Effects of fish predation in erosional and depositional habitats in a temperate stream. Canadian Journal of Fisheries and Aquatic Sciences 57: 1369-1379. 66. Sagnes, P., Mérigoux, S. & Péru., N. (2008) Hydraulic habitat use with respect to body size of aquatic insect larvae: Case of six species from a French Mediterranean type stream. Limnologica 38(1): 23-33. 67. Scruton, D.A., Clarke, K.D., Ollerhead, N.L.M., Perry, D., McKinley, R.S., Alfredsen, K. & Harby, A. (2002a) Use of telemetry in the development and application of biological criteria for habitat hydraulic modeling. Hydrobiologia 483:71–82. 68. Shen K.N. & Tzeng W.N. (2002) Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecological Progress Series 228: 205-211. 69. Sheppard J.D. & Johnson J.H. (1985) Probability of use for depth, velocity and substrate by subyearling coho salmon and steelhead in Lake Ontario tributary streams. North American Journal of Fisheries Management 5(2B): 277–282. 70. Shih, S.S., Lee, H.Y. & Chen, C.C.(2008) Model-based evaluations of spur dikes for fish habitat improvement: A case study of endemic species Varicorhinus barbatulus (Cyprinidae) and Hemimyzon formosanum (Homalopteridae) in Lanyang River, Taiwan. Ecological Engineering 34(2): 127-136. 71. Silva, S. & Tseng, Y.T. (2005) Classification of Seafloor Habitats using Genetic Programming. In Rothlauf F (ed), Late Breaking Papers at Genetic and Evolutionary Computation Conference. 72. Statzner B., Gore J.A. & Resh V.H. (1988) Hydraulic stream ecology-observed patterns and potential applications. Journal of the North American Benthological Society 7: 307-360. 73. Steffler, P. & Blackburn, J. (2002) River2D, Two-Dimensional Depth Averaged Model of River Hydro-dynamics and Fish Habitat, Introduction to Depth Averaged Modeling and User’s Manual. University of Alberta. 74. Takahashi, D. & Kohda, M. (2001) Females of a stream goby choose mates that court in fast water currents. Behaviour 138: 937-946. 75. Thorp, J.H. (1986) Two distinct roles for predators in freshwater assemblages. Oikos 47: 75-82. 76. Tsai, W.S., Dai, C.F., Yang, I.C., Tung & C.P. (2005) Using genetic programming to modeling spatial distribution of corals and the impacts of climatic changes: a case study from Taiwan. Proceedings of the 10th International Coral Reef Symposium, Okinawan, Japan: 1441-1444. 77. Tung, C.P., Lee, T.Y., Yang, Y.C. & Chen, Y.J. (2009) Application of genetic programming to project climate change impacts on the population of Formosan landlocked salmon. Environmental Modelling & Software 24: 1062-1072. 78. U.S. Fish and Wildlife Service (1980) Habitat Evaluation Procedures (HEP). USDI Fish and Wildife Service. Division of Ecological Services. ESM 102. 79. USGS. (2002) 2D Hydrodynamic/Habitat Modeling Workshop. National Conservation Traning Center. 80. Vadas R.L.& Orth D.J. (2001) Formulation of habitat suitability models for stream fish guilds: do the standard methods work? Transactions of the American Fisheries Society 130: 217–235. 81. Vanderploeg, H.A. & Scavia, D. (1979a) Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Research Board of Canada 36: 362-365. 82. Vanderploeg, H.A. & Scavia, D. (1979b) Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecological Modeling 7: 135-149. 83. Vehanen T., Huusko A.,Yrjana T., Lahti M. & Maki-Petays A. (2003) Habitat preference by grayling (Thymallus thymallus) in an artificially modified, hydropeaking riverbed: a contribution to understand the effectiveness of habitat enhancement measures. Journal of Applied Ichthyology 19: 15-20. 84. Vismara R., Azzellino A., Bosi R., Crosa G. & Gentili G. (2001) Habitat suitability curves for brown trout (Salmo trutta fario L.) in the River Adda, northern Italy: comparing univariate and multivariate approaches. Regulated Rivers: Research and Management 17: 37–50. 85. Waddle, T. (2010) Field evaluation of a two-dimensional hydrodynamic model near boulders for habitat calculation. River Research and Applications 26: 730–741. 86. Wadeson, R.A. (1994) A geomorphological approach to the identification and classification of instream flow environments. South African Journal of Aquatic Sciences 20: 38-61. 87. Xu, Z.U., Ito, K., Shultz, G.A. & Li, J.Y. (2001). Integrated hydrologic modeling and GIS in water resources management. Journal of Computing in Civil Engineering 15(3): 217-223. 88. Yu S.L. & Lee T.W. (2002) Habitat preference of the stream fish, Sinogastromyzon Puliensis (Homalopteridae). Zoological Studies 41(2): 183–187. 89. Yu, S.L. & Peters, E.J. (1997) Use of froude number to determine habitat selection by fish. Rivers 6(1): 10-18. 90. 王承龍,2008。以空間統計及水文距離概念分析溪流生態水文之一維空間分布,國科會大專學生餐與專題研究計畫研究成果報告。 91. 王承龍,2010。應用克利金與逐步模擬分析魚類喜好流況之時空變異-以大屯溪日本禿頭鯊為例。國立台灣大學生農學院生物環境系統工程學研究所碩士論文。 92. 王漢泉,2002。環境檢驗所環境調查研究年報 9:207-236。 93. 朱達仁,2005。台北縣后番仔坑溪應用生態工法整治之生態評估。台灣水利53(3): 90-101。 94. 行政院農業委員會水土保持局全球資訊網。http://www.swcb.gov.tw/ 95. 余燕妮,2006。台灣河川特有魚種之分區適合度曲線研訂。國立中央大學土木工程研究所碩士論文。 96. 吳振欣,2008。利用河川棲地二維模式評估防砂壩、魚道對河川棲地之影響-以北勢溪為例。中華大學土木與工程資訊學系碩士論文。 97. 吳富春、胡通哲、李國昇、李德旺,1998。應用棲地模式估算台灣河川之生態流量,第九屆水利工程研討會論文集。 98. 李永安,2007。大漢溪上游河川魚類棲地適合度曲線之研究。國立中央大學土木工程研究所碩士論文。 99. 李宗祐,2003。氣候變遷對櫻花鈎吻鮭棲地水溫及族群數量之影響。臺灣大學生物環境系統工程研究所碩士論文。 100. 李訓煌、吳瑞賢、莊明德、陳有祺、溫博文、廖光正、周文杰、李德旺、張世倉、陳榮宗,2007、2008。河川棲地二維模式(River 2D)之應用研究(1/2~2/2)。經濟部水利署水利規劃試驗所。 101. 李德旺、于錫亮,2005。埔里中華爬岩鰍棲地環境之需求。特有生物研究7(2):13-22。 102. 李德旺、邱建介、林維玲、于錫亮,1998。卑南溪流域高身鏟頜魚之分布與環境因子的關係。中華林學季刊31(3):219-225。 103. 汪靜明,2000。大甲溪水資源環境教育,經濟部水資源局,30-45。 104. 汪靜明,2002。台北縣大屯溪河川生態調查及溪流生態工法教育宣導計畫成果報告:中華民國生態資訊協會。 105. 林曜松、梁世雄,1997。魚類資源調查技術手冊,行政院農業委員會。 106. 林裕庭,2008。八寶圳試驗站豎孔式魚道水理試驗與階段式魚道上溯試驗之研究探討。中華大學土木與工程資訊學系碩士論文。 107. 梁世雄,2004。淡水水域生物監測之採樣器材介紹及資料分析與應用,高雄師範大學生物科學研究所。 108. 梁麗芬,2003。河川棲地及歧異度之變化與時空因素之探討。國立中央大學土木工程研究所碩士論文。 109. 郭一羽,2001。水域生態工程。中華大學水域生態環境研究中心。314頁。 110. 陳伸安,2006。二維水理棲地模式運用於南崁溪生態規劃之研究。國立中央大學土木工程研究所碩士論文。 111. 陳芳瑜,2007。台灣河川棲地型態之研究。國立中央大學土木工程研究所碩士論文。 112. 陳昶憲、鍾侑達、方唯鈞,2005。遺傳規劃在河川演算之應用。台灣水利季刊,第五十三卷,第四期。 113. 陳義雄、方力行,1999。台灣淡水及河口魚類誌。 114. 游筱玄,2009。地理資訊系統於河川系統層級分析之研究,國科會大專學生參與專題研究計畫研究成果報告。 115. 童慶斌,2008。啟發式演算法上課講義,台灣大學生物環境系統工程學系。 116. 楊承峰,2002。河川低水流量分流演算推估魚類棲地之研究-以烏溪上游為例。國立中央大學土木工程研究所碩士論文。 117. 楊奕岑,2004a。模擬氣候變遷對櫻花鈎吻鮭域外放流棲地水溫與潛在族群數之衝擊。臺灣大學生物環境系統工程研究所碩士論文。 118. 楊奕岑,2005。遺傳規劃模式 3.0 版使用手冊。 119. 溫博文,2005。台灣中部河川生態棲地分布特性及時空變化之研究。國立中央大學土木工程研究所碩士論文。 120. 葉明峰,2002。河川魚類棲地適合度調查技術。河川生態基準流量評估技術研討會,p.1。 121. 葉明峰、李訓煌、張世倉,2000。台灣鏟頷魚及台灣石魚賓游泳能力之研究(1/2)。行政院農業委員會特有生物研究保育中心八十八下半年度及八十九年度試驗研究計畫執行成果(棲地生態組)。 122. 賴建盛,1996。防砂壩對櫻花鉤吻鮭物理棲地影響之研究,國立台灣大學地理學系暨研究所碩士論文。 123. 賴進松、譚義績、郭文達,2007。河川生物通道流場模擬與虛擬實境展示系統建置(2/2)。經濟部水利署水利規劃試驗所。 124. 謝暻椲,2002。大漢溪中游生態基流量推估與棲地改善之研究。國立中央大學土木工程研究所碩士論文。 125. 羅義碩,2005。以生態觀測建立河川魚類棲地適合度曲線。國立中央大學土木工程研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48065 | - |
| dc.description.abstract | 河川水利工程規劃對於生態保育逐漸重視,許多研究將魚類與棲地因子(如流速、水深)間之關係量化,藉此評估工程的生態效益。魚類棲地喜好性反應於多項棲地因子非線性、複雜的交互關係,傳統使用單一因子建立之棲地適合度曲線被認為不再適用,因此找尋改良的新方法顯得相當重要。
本研究針對大屯溪下游河段,調查日本禿頭鯊出現頻度與物理棲地因子發生頻度,計算複合因子之第三型棲地適合度指數,並利用遺傳規劃法建立魚類出現頻度與棲地因子之最佳關係方程式,同時與傳統的棲地適合度曲線進行比較,驗證兩種方法預測魚類出現頻度,以及分析其對於各棲地因子的敏感度。應用二維水理棲地模式River2D,模擬流況與魚類權重可用棲地面積之空間分布,並進一步將流況分類,探討魚類對於流況的偏好,將分析結果比對文獻論述,判斷兩種方法於評估魚類棲地之適用性。 研究結果顯示,傳統與遺傳規劃複合棲地適合度曲線所反應之魚類最佳棲地狀態大不相同,後者於預測春夏兩季魚類出現頻度時,效率係數與判定係數皆達到0.87與0.61以上,具有較高的準確度。敏感度分析結果指出,兩種方法所反應之顯著敏感因子不盡相同。此外,於最佳棲地狀態時,傳統棲地適合度曲線對於流速因子之敏感程度相當大,應用於工程規劃需更審慎考量。將兩種適合度曲線輸入River2D模擬魚類棲地空間分布的結果有明顯差異,進一步加入分類流況探討魚類之偏好,遺傳規劃複合棲地適合度曲線所反應之結果與文獻描述較為符合。本研究證明將物理棲地因子發生頻度納入量化魚類棲地喜好性考量之必要,以及遺傳規劃法於建立環境變數與魚類之間關係的可行性,並且提供改良傳統量化魚類棲地喜好性的方法,作為未來河川生態工程規劃更具價值的考量準則。 | zh_TW |
| dc.description.abstract | The river ecological conservation concept became important, the living right and diversity maintenance were main topics on river engineering and water resources development. The relationship between fishes and environmental factors had been quantified to assess the efficiency of the conservation projects. Some studies concluded that habitat suitability curves (HSC) can’t describe fish occurrence appropriately. This failure would be ascribed to non-linear and complex interactions between environmental factors affecting the habitat selection and to uncertainty in ecology. Therefore, it was important to find a new method to improved.
The study validated the HSC built by linear regression and genetic programming (GP) respectively, and then the accuracy of Sicyopterus Japonicus habitat preference in Datuan stream was predicted. Sensitivity analysis was applied for the relationship between the frequency of fish occurrence, current velocity and depth. River2D was considered as an efficient tool for simulating the flow condition of constant discharge here and then used to calculate the weighted usable area (WUA) for assessing the fish habitat distributions. Finally, discussed with flow conditions and compared the result with various of literatures. The results showed that the best fish habitat condition described by the GP HSC and the traditional one were different. The traditional HSC was accurate and reliable to predict the frequency of occurrence of fish. Two type HSC reacted differently in sensitive analysis. In the best state, current velocity was so sensitive for traditional HSC as to be unsuitable for ecological engineering planning. For the result obtained from River2D, the WUA of downstream habitat from two type HSC were divergent. Furthermore, discussing with flow conditions and found out the results of GP habitat suitability curve were more in line with literatures. This study showed up an improved method for the traditional fish habitat suitability estimation and also makes the prediction of Sicyopterus Japonicus more convincible. This confirms the fact that suitability could not be constructed through a linear process, which means the fish habitat preference could not be described through a simple linear trend. The nonlinear genetic programming could be a better tool for searching the relationship for suitability curve construction. All the consequences showd that the consideration for habitat factors frequency distribution was essential in a study of habitat suitability for fishes. This study aimed to apply the hydraulic simulation and habitat assessment measurement in reality and could provide information for ecological engineering design in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:45:27Z (GMT). No. of bitstreams: 1 ntu-100-R98622028-1.pdf: 3480060 bytes, checksum: 59fc4d83054530eab44769ee5ebcdae4 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的 3 1-3 研究流程圖 4 第二章 文獻回顧 7 2-1 河川物理因子與生物棲地之交互作用 7 2-1-1 日本禿頭鯊行為與分布條件 7 2-1-2 魚類棲地適合度之相關研究 10 2-1-3 分類流況與魚類棲地 14 2-3 遺傳規劃法於環境生態之應用 19 2-4 水理棲地模式之應用 20 第三章 理論與方法 26 3-1 研究區域 26 3-1-1 大屯溪流域 26 3-1-2 研究河段 30 3-2 現地調查方法 31 3-2-1 魚類採集方式 31 3-2-2河床地形調查 33 3-2-3 物理棲地參數收集 34 3-3 棲地適合度與魚類出現頻度預測 35 3-3-1 棲地適合度指數 35 3-3-2 遺傳規劃法 37 3-4 二維水理棲地模式RIVER 2D 42 3-5-1 River2D 模式基本主要理論 42 3-5-2 流體方程式之數值模式 45 3-5-3魚類棲地模式 47 3-5-4邊界抽取單元 47 3-5-5數值高程模型原理與應用 48 3-5-6棲地類型與河床底質 49 3-5 地理資訊系統 51 第四章 結果與討論 53 4-1生物與物理棲地調查 53 4-1-1魚類資源與目標魚種選擇 53 4-1-2研究河段水文資料 58 4-1-3魚類出現頻度與流況發生頻度 62 4-2研究河段棲地適合度曲線建製 66 4-2-1棲地適合度曲線 66 4-2-2遺傳規劃複合棲地適合度曲線 68 4-2-3預測能力比較 71 4-2-4敏感度分析 74 4-3二維水理棲地模式建立 76 4-3-1 River2D模式建立 77 4-3-2 模式驗證 80 4-3-3水理模擬結果 82 4-3-4魚類棲地模擬結果 84 4-4分類流況與魚類權重可用棲地面積 86 第五章 結論與建議 90 5-1結論 90 5-2建議 93 參考文獻 94 附錄一 遺傳規劃模式使用說明 103 附錄二 大屯溪研究河段魚類資源調查資料 109 附錄三 大屯溪研究河段河床地形調查資料 110 | |
| dc.language.iso | zh-TW | |
| dc.subject | 大屯溪 | zh_TW |
| dc.subject | 棲地適合度指數 | zh_TW |
| dc.subject | 日本禿頭鯊 | zh_TW |
| dc.subject | 遺傳規劃法 | zh_TW |
| dc.subject | River2D | zh_TW |
| dc.subject | 分類流況 | zh_TW |
| dc.subject | 河川棲地評估 | zh_TW |
| dc.subject | Sicyopterus Japonicus | en |
| dc.subject | habitat suitability index | en |
| dc.subject | genetic programming | en |
| dc.subject | River2D | en |
| dc.subject | flow condition | en |
| dc.subject | habitat assessment | en |
| dc.subject | Datun Stream | en |
| dc.title | 應用遺傳規劃法與二維水理模式評估河川魚類棲地-以大屯溪日本禿頭鯊為例 | zh_TW |
| dc.title | Application of genetic programming and River2D to assess the habitat preference of riverine fish: A case of Sicyopterus japonicus in Datuan stream | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明旭,任秀慧,童慶斌,陳彥璋 | |
| dc.subject.keyword | 棲地適合度指數,遺傳規劃法,River2D,分類流況,河川棲地評估,大屯溪,日本禿頭鯊, | zh_TW |
| dc.subject.keyword | habitat suitability index,genetic programming,River2D,flow condition,habitat assessment,Datun Stream,Sicyopterus Japonicus, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-06-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
