請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48062完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬(Yu-Pin Lin) | |
| dc.contributor.author | Hsiao-Hsuan Yu | en |
| dc.contributor.author | 游筱玄 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:45:23Z | - |
| dc.date.available | 2013-07-07 | |
| dc.date.copyright | 2011-07-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-27 | |
| dc.identifier.citation | 1. Abe, S., Iguchi, K., Ito, S., Uchida, Y., Ohnishi, H., Ohmori, K., 2003. Habitat use of the grazing goby (Sicyopterus japonicus) in response to spatial heterogeneity in riparian shade. Journal of Freshwater Ecology, 18, 161-167.
2. Abe, S., Yodo, T., Matsubara, N., Iguchi, K., 2007. Distribution of two sympatric amphidromous grazing fish Plecoglossus alivelis Temminck & Schlegel and Sicypoterus japonicus (Tanka) along the course of a temperate river. Hydrobiologia, 575, 415-422. 3. Akihito, S.K., Ikeda, Y., Iwata, A., 2000. Gobioidei. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the species. 2nd edn. Tokai University Press, Tokyo. 4. Allen, T.F.H., Starr, T.B., 1982. Hierarchy: perspectives for ecological complexity. The University of Chicago Press, Chicago. 5. Angermeier, P.L., Schlosser, I.J., 1989. Species-area relationships for stream fishes. Ecology, 70, 1450-1642. 6. Angermeier, P.L., Winston, M.R., 1999. Characterizing Fish Community Diversity across Virginia Landscapes: Prerequisite for Conservation. Ecological Applications, 9(1), 335-349. 7. Bailey, R.G. 1983. Delineation of ecosystem regions. Environmental Management, 7, 365-373. 8. Barbour, M.T., Gerritsen, J., Snyder, B.D., Stribling, J.B., 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. USEPA 9. Bell, K. N. I., Pepin, P., Brown, J. A., 1995. Seasonal, inverse cycling of length- and age-at-recruitment in the diadromous gobies Sicydium punctatum and Sicydium antillarum in Dominica, West Indies. Canadian Journal of Fisheries and Aquatic Sciences, 52, 1535-1545. 10. Berk, R., de Leeuw, J., 2006. Multilevel statistical models and ecological scaling. In: Scaling and Uncertainty Analysis in Ecology (eds Wu J., Jones B., Li H., Loucks O.L.) Springer, 67-88. 11. Berky, D., Hoaglin, F., Mosteller, F., Colditz, G.A., 1995. A random effects regression model for meta-analysis. Statistics in Medicine, 14, 395-411. 12. Bisson, P.A., Nielsen, J.L., Palmason, R.A., Grove, L.E., 1982. A system of naming habitat types in small streams, with examples of habitat utilization by salmonids during low stream flow. In N. B. Armantrout (ed.), Acquisition and utilization of aquatic habitat inventory information. Proceedings of a symposium, 28-30 October 1981, Portland Oregon. American Fisheries Society. 13. Bryant, M. D., 1980. Evolution of large, organic debris after timber harvest: Maybeso Creek, 1949 to 1978. US Department of Agriculture Forest Service general technical report PNW-69. 14. Chambers, P.A., Prepas, E.E., Hamilton, H.R., Bothwell, M.L., 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications, 1, 249-257. 15. Chao, Y.-C., Chen, S.-C., 2005. The analysis of Wu river basin based on stream classification system with five levels. Agriculture Engineering Conference, Taiwan Agriculture Engineers Society, 8-47. 16. Chen, S.-C., Peng, S.-H., 2002. Stream classification system with five levels in Taiwan. Journal of Chinese Soil and Water Conservation, 33(3), 175-190. 17. Cho, T.-H., 2007. Applications of geostatistical analysis and hydrological distance in spatial-temporal variation study of fish assemblage and habitat. Master Thesis, National Taiwan University, Taipei, Taiwan. 18. Chu, T.J., 2005. The Comparison Study of Evaluating the Impact of Stream Repair by Incorporating the Fish Tolerant Index into IBI. Chung Hua Journal of Architecture, (2), 43-49. 19. Chuang, L.-C., Lin, Y.-S., Liang, S.-H., 2006. Ecomorphological comparison and habitat preference of 2 Cyprinid fishes, Varicorhinus barbatulus and Candidia barbatus, in Hapen Creek of northern Taiwan. Zoological Studies, 45(1), 114-123. 20. Ciesielka, I.K., Bailey, R.C., 2007. Hierarchical structure of stream: consequence of bioassesment. Hydrobiologia, 586, 57-67. 21. Clark, J.S., Gelfand, A.E. (editors), 2006. Hierarchical Modelling for the Environmental Sciences. Oxford University Press. 22. Cohen, J., 1988. Statistical power analysis for the behavioral science (2nd ed.). Hillsdale, NJ:Erbaum. 23. Coulombe-Pontbriand M., Lapointe M., 2004. Geomorphic controls, riffle substrate quality, and spawning site selection in two semi-alluvial salmon rivers in the Gaspe Peninsula, Canada. River Research and Applications, 20, 577-590. 24. Coulton, C., Irwin, M., 2009. Parental and community level correlates of participation in out-of-school activities among children living in low income neighborhoods, Children and Youth Services Review, 31, 300-308. 25. Cote, D., 2007. Measurements of salmonid population performance in relation to habitat in eastern Newfoundland streams. Journal of Fish Biology, 70, 1134-1147. 26. Chuang, L.-C., Lin Y.-S., Liang, S.-H., 2006. Ecomorphological comparison and habitat preference of 2 Cyprinid fishes, Varicorhinus barbatulus and Candidia barbatus, in Happen Creek of northen Taiwan. Zoological Studies, 45(1), 114-123. 27. Cushing D.H., 1975. Manne ecology and fisheries. Cambridge Univ. Press. New York. 28. Craven, S.W., Peterson, J.T., Freeman, M.C. Kwak, T.J., Irwin, E., 2010. Modeling the relations between flow regime components, species traits, and spawning success of fishes in warmwater streams. Environmental Management, 46, 181-194. 29. Davidian, M., 2007. Lecture Note (ST 732): Population-averaged models for nonnormal repeated measurement. 30. Deschenes, J., Rodriguez, M.A., 2007. Hierarchical analysis of relationships between brook trout (Salvelinus fontinlais) density and stream habitat features. Can. J. Aquat. Sci., 64, 777-785. 31. Dempster, A.P., Rubin, D.B., Tsutakawa, R.K., 1981. Estimation in covariance components models. J. Am. Statists. Assoc., 76, 341-353. 32. Dotu, Y., Mito, S., 1955. Life history of the gobioid fish, Sicydium japonicum Tanaka. Sci. Bull. Fac. Agric. Kyushu. Univ., 10, 120-126. 33. Douglas, I., 1977. Humid landforms. MIT Press, Cambridge, MA. 288 pp. 34. Dunham, J.B., Rieman, B.E., 1999. Metapopulation Structure of Bull Trout: Influences of Physical, Biotic, and Geometrical Landscape Characteristics. Ecological Applications, 9(2), 642-655 35. Durance, I., Lepichon, C., Ormerod, S.J., 2006. Recognizing the importance of scale in the ecology and management of riverine fish. River Res. Applic., 22, 1143-1152. 36. Elston, R.C., Grizzle, J.E., 1962. Estimation of time of time response curves and their confidence bands. Biometric, 18, 148-159. 37. Fausch, K.D., Hawkes, C.L., Parsons, M.G., 1988. Models that predict standing crop of stream fish from habitat variables: 1950–1985. Portland (OR): USDA Forest Service. General Technical Report PNW-GTR-213. 38. Fausch, K.D., Torgersen, C.E., Baxter, C.V., Li, H.W., 2002. Landscapes to riverscapes. Bridging the gap between research and conservation of stream fishes. BioScience, 52(6), 483-498. 39. Feist, B.E., Steel, E.A., Pess, G.R., Bilby, R.E., 2003. The influence of scale on salmon habitat restoration priorities. Animal Conservation, 6, 271-282. 40. Francisco, L., Lilian, C., Helena, S.G., Andre, B.D.C., Denise D.C.R., 2005. Riffle and pool fish communities in a large stream of southeastern Brazil. Neotropical Ichthyology, 3(2), 305-311. 41. Frimpong, E., Sutton, T.M., Engel, B.A., Simon, T.P., 2005. Spatial-Scale Effects on Relative Importance of Physical Habitat Predictors of Stream Health. Environmental Management, 36, 899-917. 42. Frissell, C.A., Liss, W.J., Warren, C.E., Hurley, M.D., 1986. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10(2), 199-214. 43. Garcia de Jalon, D., Mayo, M., Molles, M., 1996. Characterization of Spanish Pyrenean stream habitat: relationships between fish communities and their habitat. Regulated Rivers: Research & Management, 12 (2/3), 305-316 44. Gering, J.C., Crist, T.O., 2002. The alpha-beta-regional relationship: providing new insights into local-regional patterns of species richness and scale dependence of diversity components. Ecol. Lett., 5, 433-444. 45. Godfrey, A.E., 1977. A physiographic approach to land use planning. Environmental Geology, 2, 43-50. 46. Gorman, O. T., Karr, J. R., 1978. Habitat structure and stream fish communities. Ecology, 59, 507-515 47. Goldstein, H. , 2003. Multilevel statistical models. Oxford Univ. Press. 48. Hack, J. T., 1957. Studies of longitudinal stream profiles in Virginia and Maryland. US Geological Survey professional paper 294-B:45-97. 49. Hart, D.D., 1981. Foraging and resource patchiness: field experiments with a grazing stream insect. Oikos, 37, 46-52. 50. Hoareau, T. B., Bosc, P., Valade, P., Berrebi, P., 2007a. Gene flow and genetic structure of Sicyopterus lagocephalus in the south-western India Ocean, assessed by intron-length polymorphism. Journal of experimental Marine Biology and Ecology, 349, 223-234. 51. Hoareau, T.B., Lecomte-Finiger, R., Grondin, H.P., Conand, C., Berrebi, P., 2007b. Oceanic larval life of La Reunion‘bichiques’, amphidromous gobiid post-larvae. Marine Ecology Progress Series, 333, 303-308. 52. Hox, J., 2002. Multilevel analysis: Techniques and applications. Mahwah, NJ: Lawrence Erlbaum Associates. 53. Hurlbert, S.H., 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr., 54, 187-211. 54. Ibarra, A.A., Park, Y.S., Brosse, S., Reyjol, Y., Lim, P., Lek, S., 2005. Nested patterns of spatial diversity revealed for fish assemblages in a west European river. Ecology of Freshwater Fish, 14, 233-242. 55. Iida, M., Watanabe, S., Shinoda, A., Tsukamoto, K., 2008. Recruitment of amphidromous goby Sicypoterus japonicus to the estuary of the Ota River, Wakayama, Japan. Environ. Biol. Fish., 83, 331-341. 56. Inoue M., Miyayoshi M., 2006. Fish foraging effects on benthic assemblages along a warm-temperate stream: differences among drift feeders, benthic predators and grazers. Oikos, 114, 95-107. 57. Kareiva, P., Andersen, M., 1989. Spatial aspects of species interactions: the wedding of models and experiments. In Community Ecology, Hastings A (ed.). Springer Verlag: New York, 38-54. 58. Kawanabe, H., 1958. On the significance of the social structure for the mode of density effect in a salmonlike fish, ‘‘ayu’’, Plecoglossus altivelis Temminck et Schlegel. Memoirs of the College of Science, University of Kyoto, Series B, 25, 171–180. 59. Keller, E. A., Swanson, F.J., 1979. Effects of large organic material on channel form and fluvial processes. Earth Surface Processes, 4,361-380. 60. Kemp, J.L., Harper, D.M., Crosa, G.A., 2000. The habitat-scale ecohydraulics of rivers. Ecological Engineering, 16, 17-29. 61. Kido, H.M., 1997. Food relations between coexisting native Hawaiian stream fishes. Environmental Biology of Fishes, 49, 481-494. 62. Knapp, R.A., Vredenburg, V.T., Matthews, K.R., 1998. Effects of stream channel morphology on golden trout spawning habitat and recruitment. Ecological Applications, 8, 1104-1117. 63. Kozel, S.J., Huber, W.A., Parsons, M.G., 1989. Habitat features and trout adundance relative to stream gradient in some Wyoming streams. Northwest Science, 63, 555-582. 64. LaBar, M., 1974. Review: Pattee, H.H. (ed.) 1973. Hierarchy Theory – The Challenge of Complex systems. Ecology, 55(5), 1174-1174. 65. Labbe, T.R., Fausch, K.D., 2000. Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecological Applications, 10, 1774-1791. 66. Laird, N.M., Ware H., 1982. Random-effects models for longitudinal data. Biometric, 38, 963-974. 67. Levin, S.A., 1992. The problem of pattern and scale in ecology. Ecology, 73, 1943-1967. 68. Levin, S.A., 2000. Multiple scales and maintenance of biodiversity. Ecosystems, 3, 498-506. 69. Liang, S.-H., 2004. Fresh water biology, sampling equipment, data analysis and application description. Institute of National Kaohsiung Normal University, Taiwan. 70. Liang, S.-H., 2005. Developing models for freshwater bio-monitoring. National Park Workshop, Taipei. 71. Lin, Y.-S., Liang, S.-H., 1997. Fish resource survey technical manual. Council of Agriculture, Executive Yuan. 72. Lin, W.-L., 1998. Discussion of Varicorhinus alticorpus. Project of Conservation, Endemic Species Research Institude, Taiwan. 73. Lin, H.-D., Tzai, Q.-C., Lin, C.-J., Wang, J.-P., Jiang, J.-Y., 2005. The Phylogeography and conservation of Varicorhinus barbatulus. Nature Conservation Quarterly, 50, 66-72. 74. Lin, Y.-P., 2004. Application and feasibility analysis of rapid assessment – a case study in Datun stream. Agricultural Engineering Conference. 75. Lin, P.-J., Ni, I.-H., Huang, B.-Q., 2008. Evaluating the swimming ability of wild-caught Onychostoma barbatula (cyprindae) and application to fishway design for rapid streams in Taiwan. The Raffles Bulletin of Zoology, 19, 273-284. 76. Lin, Y.-P., Wang, C.-L., Yu, H.-H., Huang, C.-W., Wang, Y.-C., Chen, Y.-W., Wu, W.-Y., 2011. Monitoring and estimating the flow conditions and fish presence probability under various flow conditions at reach scale using Genetic algorithms and Kriging methods. Ecological Modeling, 222, 762-775. 77. Liu, C.-H., Tang, C.-L., Wang, A., Chern, K.-H., 2000. Investigation of freshwater fish resources of Lika Stream, Taitung, Taiwan. Journal of National Taitung Teachers College, 11, 219-246. 78. Longford, N., 1987. A fast scoring algorithm for maximum likelihood estimation in unbalanced models with nested random effects. Biometrika, 74(4), 817-827. 79. Luo, W.-C., 2006. Application of River Morphology on Physical Habitats in Wu River. Master Thesis. National Chung Hsing University, Taichung, Taiwan. 80. Lyu, Y.-S., Suen, J.P., 2010. Relationship between fish habitat diversity and hierarchical spatial framework and its application in river restoration. TW J. of Biodivers., 12(1), 43-60. 81. Maes, H., Musters, C.J.M., De Snoo, G.R., 2008. The effect of agri-environment schemes on amphibian diversity and abundance, Biological Conservation, 141, 635-645. 82. Magalhaes, M.F., Batalha, D.C., Collares-Pereira, M.J., 2002. Gradients in stream fish assemblages across a Mediterranean landscape: contributions of environmental factors and spatial structure. Freshwater Biology, 47(5), 1015-1031. 83. Manson, W.M., Wong, G.M., Entwistle, B., 1983. Contextual analysis through the multilevel linear model. In S. Leinhardt (Ed.), Sociology methodology (pp. 72-103). San Francisco: Jossey-Bass. 84. McCullagh, P., Nelder, J., 1989. Generalized linear models (2nd ed.). London: Chapman & Hall. 85. McDowall, R.M., 1988. Diadromy in fishes: migrations between freshwater and marine environments. Croom Helm, London. 86. McKeom, B.A., 1984. Fish Migration. Timber Press, Portland, Oregon. 224 pp. 87. McMahon, S.M., Diez, J.M., 2007. Scales of association: hierarchical linear models and the measurement of ecological systems. Ecol. Lett., 10, 437-452. 88. Montgomery, D.R., Buffington, J.M., 1998. Channel processes, classification, and response, in River Ecology and Management, edited by R. Naiman and R. Bilby, Springer-Verlag, New York, 13-42. 89. Morris, C., Normand S., 1992. Hierarchical models for combining information and for meta-analysis. Bayesian Statistics, 4, 321-344. 90. Mugogo, J. Kennard, M.J., Liston, P., Nichols, S., Linke, S., Norris, R.H., Lintermans, M., 2006. Local stream habitat variables predicted from catchment scale characteristics are useful for predicting fish distribution. Hydrobiologia, 572, 59-70. 91. Neilson, L.A., Johnson, D.L., 1983. Fisheries Techniques. American Fisheries Society Bethesda, Md. 92. Nelson, S.G., Parham, J.E., Tibbatts, R.B., Camacho, F.A., Leberer, T., Smith, B.D., 1997. Distribution and microhabitats of the amphidromous gobies in streams of Micronesia. Micronesica, 30, 83-91. 93. Noda, T., 2004. Spatial hierarchical approach in community ecology: a way beyond high phenomena. Popul. Ecol., 46, 105-117. 94. O’Neill, R.V., Deangelis, D.L., Waide, J.B., Allen, T.F.H., 1986. A Hierarchical Concept of Ecosystems. Princeton University Press, Princeton, NJ. 95. Oksanen, L., 2001. Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos, 94. 27-38. 96. Osborne, L.L., Wiley, M.J., 1992. Influence of tributary spatial position on the structure of warmwater fish communities. Canadian Journal of Fisheries and Aquatic Sciences, 49(4), 671-681. 97. Pattee, H.H. (ed.), 1973. Hierarchy theory: The challenge of complex systems. George Braziller, New York, 156 pp. 98. Pareja, M., Brown, V.K., Powell, W., 2008. Aggregation of parasitism risk in an aphid-parasitoid system: Effects of plant patch size and aphid density. Basic and Applied Ecology, 9, 701-708. 99. Parsons, M., Thoms, M.C., Norris, R.H., 2003. Scales of macroinvertebrate distribution in relation to the hierarchical organization of river systems. Journal of the North American Benthological Society, 22, 105-122. 100. Parsons, M., Thoms, M.C., Norris, R.H., 2004. Using hierarchy to select scales of measurement in multiscale studies of stream macroinvertebrate assemblages. Journal of the North American Benthological Society, 23, 157-170. 101. Parsons, M., Thoms, M.C., 2007. Hierarchical patterns of physical-biological associations in river ecosystems. Geomorphology, 89, 127-146. 102. Pegg, M.A., Taylor, R.M., 2007. Fish species diversity among spatial scales of altered temperate rivers. J. Biogeogr., 34, 549-558. 103. Poff, N.L., 1997. Landscape Filters and Species Traits: Towards Mechanistic Understanding and Prediction in Stream Ecology. Journal of the North American Benthological Society, 16(2), 391-409. 104. Poizat, G., Pont, D., 1996. Multi-scale approach to species-habitat relationships: juvenile fish in a large river section. Freshwater Biology, 36(3), 611-622. 105. Poudevigne, I., Alard, D., Leuven, R., Nienhuis, P.H., 2002. A systems approach to river restoration: a case study in the lower Seine valley, France. River research and applications, 18(3), 239-247. 106. Rabeni, C.F., Sowa, S.P., 1996. Integrating biological realism into habitat restoration and conservation strategies for small streams. Candian Journal of Fisheries and Aquatic Sciences, 53, 252-259. 107. Rabeni, C.F., 2000. Evaluating physical habitat integrity in relation to the biological potential of streams. Hydrobiologia, 422/423, 245-256. 108. Radtke, R. L., Kinzie III, R. A., Shafer, D. J., 2001. Temporal and spatial variations in length of larval life and size at settlement of the Hawaiian amphidromous goby Lentipes concolor. Journal of Fish Biology, 59, 928-938. 109. Rahel, F.J., 1990. The hierarchical nature of community persistence: a problem of scale. Am. Nat., 136, 328-344. 110. Raudenbush, S.W., Bryk, A.S. 1985. Empirical Bayes meta-analysis. J. Edu. Statist., 10, 75-98. 111. Raudenbush, S.W., Bryk, A.S., 2002. Hierarchical linear models: Applications and data analysis (2nd ed.). Thousand Oaks, CA: Sage. 112. Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., Congdon, R.T., 2004. HLM: Hierarchical and Nonlinear Modeling (Version 6.06) [computer software], 6.0 6edition. Scientific Software International, Lincolnwood, IL. 113. Roach, K.A., Thorp, J.H., Delong, M.D., 2009. The influence of later gradients of hydrologic connectivity on trophic positions of fishes in the Upper Mississippi, Freshwater Biology, 54, 607-620. 114. Rosenfeld, J., Porter, M., Parkinson, E., 2000. Habitat factors affecting the abundance and distribution of juvenile cutthroat (Oncorhynchus clarki) and coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 57, 766-774. 115. Schneider, D.C., 2001. The rise of the concept of scale in ecology. Bioscience, 51, 545-553. 116. Shao, K.-T., Taiwan Fish Database. WWW Web electronic publication. version 2009/1. http://fishdb.sinica.edu.tw, (2010-9-28) 117. Shen, S.-C. (ed.), 1993. Fishes of Taiwan. Department of Zoology, National Taiwan University, Taipei. 960 p. 118. Shen, K.N., Lee, Y.C., Tzeng, W.N., 1998. Use of otolith microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zoological Studies, 37, 322-329. 119. Shen, K.N., Tzeng, W.N., 2002. Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology-Progress Series, 228, 205-211. 120. Shiao, J. -C., 1998. Early life history and fry resources of amphidromous gobies in Hsuikuluan River. Master Thesis, National Tsing Hua University, Hsinchu, Taiwan. 121. Shreve, R. L., 1967. Infinite topologically random channel networks. Journal of Geology, 75, 178-186. 122. Singer, J.D., 1998. Using SAS PROC: MIXED to fit multilevel models hierarchical models and individuals growth models. J. Educ. Behav. Statist., 23, 323-355. 123. Smiley, P. C. Jr., Dibble, E. D., 2005. Implications of a hierarchical relationship among channel form, instream habitat, and stream communities for restoration of channelized streams. Hydrobiologia, 548, 279-292. 124. Smith, J.J., Li, H.-W., 1983. Energetic factors influencing foraging tactics of juvenile steelhead trout, Salmo gairdneri. Pages 173-180 in L.G. Noakes and others (eds.), Predator and prey in fishes. W. Junk, The Hague, Netherlands 125. Snijders, T.A.B., Bosker, R.J., 1999. Multilevel analysis: an introduction to basic and advanced multilevel modeling. Sage Publications, London, U.K. 126. Storch, D., Evans, K.L., Gaston, K.J., 2005. The species-area energy relationship. Ecol. Lett., 8, 487-492. 127. Strahler, A. N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63, 1117-1141. 128. Strahler, A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. Pages 40-74 in V.T. Chan (ed.), Handbook of applied hydrology. McGraw-Hill, New York. 129. Swanson, F.J., Leinkaemper, G.W., 1978. Physical consequences of large organic debris in Pacific Northwest streams. US Department of Agriculture Forest Service general technical report PNW-69. 12 pp. 130. Thompson, C.M., McGarigal, K., 2002. The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landscape Ecology, 17(6), 569-586. 131. Thomson, J.R., Taylor, M.P, Fryirs, K.A., Brierley, G.J., 2001. A geomorphological framework for river characterization and habitat assessment. Mar. Freshw. Ecosyst., 11, 373-389. 132. Torgersen, C.E., Close, D.A., 2004. Influence of habitat heterogeneity on the distribution of larval Pacific lamprey (Lampetra tridentata) at two spatial scales. Freshwater Biology, 49, 614-630. 133. Triska, F.J., Sedell, J.R., Gregory, S.V., 1982. Coniferous forest streams. Pages 293-332 in R. L. Edmonds (ed.), Analysis of coniferous forest ecosystems in the western United States. US/IBP synthesis series 14. Hutchison Ross, Stroudsburg, Pennsylvania. 134. Tzeng, C.S., 1986. The freshwater fishes of Taiwan. Ministry of Education, Taiwan. 183 pp. 135. Tzeng, C.S., 2002. Science development-Migratory fish species in Taiwanese rivers. National Science Council, Taiwan. 352, 4-11. 136. van de Pol, M., Verhulst, S., 2006. Age-dependent traits : a new statistical model to separate within- and between-individual effects. Am. Nat., 167, 766-776. 137. Vasquez, D.P., Simberloff, D., 2004. Indirect effects of an introduced ungulate on pollination and plant reproduction. Ecol. Monogr., 74, 281-308. 138. Vaughan, I.P., Ormerod, S.J., 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology, 42(4), 720-730 139. Watanabe, S., Iida, M., Kimura, Y., Feunteun, E., Tsukamoto, K., 2006. Genetic diversity of Sicyopterus japonicus as revealed by mitochondrial DNA sequencing. Coastal Marine Science, 30(2), 473-479. 140. Wang, H.-C., 2002. Indicator fish species for water quality of freshwater stream in Taiwan. Annual Report of the National Institute of Environmental Analysis (NIEA) Taiwan R.O.C. 9, 207-236. 141. Wang, L., Lyons, J., Rasmussen, P., Simon, T.,Wiley, M.J., Kanehl, P., Baker, E., Niemela, S., Stewart, P.M., 2003. Watershed, reach and riparian influences on stream fish assemblages in the Northern Lakes and Forest Ecoregion, USA. Canadian Journal of Fisheries and Aquatic Sciences, 60, 491-505. 142. Wang, C.-L., 2009. Flow condition preference study using kriging and sequential indicator simulation: The case of Sicyopterus japonicus in Datuan stream. Master Thesis, National Taiwan University, Taipei, Taiwan. 143. Warren, C.E. 1979. Toward classification and rationale for watershed management and stream protection. USEPA ecological research series EPA-600/3-79-059. 143 pp. 144. Weinberg, G.M., 1975. An Introduction to General Systems Thinking. New York: Wiley. 145. Wenger, S.J., Peterson, J.T., Freeman, M.C., Freeman, B.J., Homans, D.D., 2008. Stream fish occurrence in response to impervious cover, historic land use, and hydrogeomorphic factors. Can. J. Fish. Aquat. Sci., 65, 1250-1264. 146. West, E., 1978. The equilibrium of natural streams. Geo Abstracts, Norwich, UK. 205 pp. 147. Wiens, J.A., 2002. Riverine landscapes: taking landscape ecology into the water. Freshwater Biology, 47, 501-515. 148. Whittaker, R.J., Willis, K.J., Field, R., 2001. Scales and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr., 28, 453-470. 149. Wu, J.-G., David, J.L., 2002. A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol. Modell., 153, 7-26. 150. Yu, H.-H., Lin, Y.-P., Wang, C.-L., 2011. Monitoring and estimating scale-dependent hierarchical relationships between Sicyopterus japonicas density and stream habitat features in difference seasons in northern Taiwan. Environ. Monit. Assess., DOI 10.1007/s10661-010-1867-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48062 | - |
| dc.description.abstract | 在自然界中,尺度可視為人們藉以透視、觀察生態系統的視窗。科學家可藉由生物於生態系統中所的活動模式,邏輯性的推理生物與其生存棲地環境間之關係。在自然界中,物理性與生物性過程兩者於某一特定之時空尺度進行,兩者之交互作用可對於生態格局有決定性之影響。於Frissell et al. (1986)將河川棲地建立層級分類系統之後,尺度於生態系統相關研究中的重要性便日趨漸增。本研究的主要研究魚類及環境的跨尺度層級關聯性,更進一步探討這些跨尺度關係在不同魚種的差異性。研究中主要採用大屯溪流域常見的兩種洄游性魚類–日本禿頭鯊及台灣鏟頷魚,其中日本禿頭鯊在大屯溪為全流域分布,台灣鏟頷魚(又稱台灣鯝魚)主要分布為中上游河段。除空間分布上有明顯差異外,此兩種魚類皆佔總調查魚類的大多數,因此將其選為研究物種。魚類密度及環境變數多數由現地採樣取得。採樣時間始自2007年秋季至2008年夏季,共四季為期一年。研究中採用流況、水質以及地理相關等共16個跨尺度環境變數,對魚類進行層級迴歸分析。接續採用廣義階層線性模式(HGLM)及階層線性模式(HLM)分別對兩種魚類的出現機率及密度之相關跨尺度環境變數進行季節性和年平均模式建立以及分析。廣義階層模式之結果顯示,台灣鏟頷魚的出現機率與大尺度環境因子(高程、鹽度、水溫)的作用關係較為明顯。由階層線性模型之結果可知,日本禿頭鯊的魚類密度與小尺度(流速、水深)及大尺度(河寬、水溫、坡降、水文距離、土壤)的環境變數均有相關性,且於冬季模型中可見跨尺度交互作用關係(水深與河寬、水深與土壤)。結果顯示,魚類與環境變數的關係會隨著物種不同而改變,兩者之關聯性所在之尺度亦會隨著魚種而有差異。根據階層模式結果,日本禿頭鯊對於小尺度(section尺度)之棲地流況變數關聯性較強;反之,台灣鏟頷魚對於較大尺度(reach尺度)之地理形貌相關變數的連結性較強。為表現魚類與環境變數之間的跨時空尺度交互作用關係,本研究於最後提出一概念性示意圖,展示日本禿頭鯊在四季與全年的時間尺度下與環境之關係,更對於在保育或施行生態工法時須重視的環境因子。總論之,本研究提供一個概念性的方法,以得知魚類與其生存之環境在不同時空尺度下之交互作用關係。提醒工程師在設計河道進行魚類保育時,除考量微棲地之流速水深外,須注意到大尺度因子如高程、坡降等對於魚類的影響。除此之外,同時也證實在魚類與環境交互作用相關研究中,考量時空尺度之跨層級關聯性及季節性變化差異的重要性。 | zh_TW |
| dc.description.abstract | Scales could be regarded as windows for viewing through an ecosystem. Patterns enable scientists to view through systems with logical perspectives and thus are considered as key elements for illustrating natural conjunctions in an ecosystem. Yet, physical and biological patterns operating over a rage of spatial and temporal scales are able to determine the ecological patterns. To emphasize the importance of scaling in ecological fields, this study elucidates how fish and environment are associated through spatial and temporal scales under a hierarchical structure and also examined how the relationships differ among species. Sicyopterus japonicus and Varicorhinus barbatulus are fishes chosen as survey species on account of their characteristics and distributions. Both species are migratory fishes with identical movement patterns among seasons in a year. Density of the fishes and environment variables were investigated and quantified at 70 stream sections distributed among 14 reaches in the Datun stream catchment of northern Taiwan during the autumn and winter of 2007, as well as the spring and summer of 2008. Hierarchical linear generalized models (HGLMs) and hierarchical linear models (HLMs) were applied to describe the relationships between 16 environment variables and the fish density of each species. The HGLM result suggests that V. barbatulus are dependent to larger-scale, migratory-related variables – elevation, salinity and water temperature. HLM result shows that S. japonicus relates to the habitat variables at both section (current velocity and water depth) and reach (stream width, water temperature, slope, river mile and soil erosion index) levels. Cross-level interactions (depth and river width, depth and soil) could be found in winter HLM. In general, the results indicate that each species responds to the environment majorly under a specific or a range of scale according to their characteristics and life cycles. S. japonicus respond to a spatially smaller-scale habitat environment; in contrast, V. barbatulus respond to relatively greater spatial scale environment features. Eventually, a diagram explicitly illustrating the cross-level relationships between fish and environment was then provided for conceptualizing the biotic-abiotic interaction in Datun stream. In conclusion, this research has provided a measurement for discovery the potential environment variables that might have caused influence on fish distribution in streams under different spatial and temporal scales; meanwhile, yielded the essentiality of considering seasonal changes while observing patterns of certain species. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:45:23Z (GMT). No. of bitstreams: 1 ntu-100-R98622005-1.pdf: 3045236 bytes, checksum: b6e280da2cd154870955822af0a8a97a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III Table of Contents V List of Figures VIII List of Tables X I. Introduction 1 1. Motivation and Objectives 3 2. Chapter Description 5 II. Literature Review 10 1. Hierarchy Theory and Stream System – History and Application 10 1.1 Hierarchical Stream Habitat Classification (Frissell et al., 1986) 13 1.2 Hierarchy Theory Application in Stream Ecology 22 2. Hierarchical Stream Systems and Fish 27 3. Species Characteristics 31 3.1 Sicyopterus japonicus 32 3.2 Varicorhinus barbatulus 34 4. Hierarchical Linear Models (HLMs) 36 III. Materials and Methods 40 1. Study area 40 1.1 Datun Stream 40 1.2 Ecological Reference Site Determination 43 2. Field Survey and Sampling 44 2.1 Sampling Site 44 2.2 Fish sampling 50 2.3 Habitat environment variables collection and data management 52 3. Statistical Analysis Tool 57 3.1 Hierarchical Linear Modeling 57 3.2 Hierarchical Generalized Linear Modeling 61 IV. Result and Discussion 65 1. General Description of Fish Distribution 65 1.1 Representative Identification and Fish Distribution 65 1.2 Ordinary Least Squares Regression 73 1.3 Seasonal Changes Identification 80 2. Hierarchical Generalized Linear Models 82 2.1 HGLMs of Sicyopterus japonicus 83 2.2 HGLMs of Varicorhinus barbatulus 87 3. Hierarchical Linear Models 90 3.1 HLMs of Sicyopterus japonicus 91 3.2 HLMs of Varicorhinus barbatulus 99 3.3 Comparison of HLMs of S. japonicus and V. barbatulus 105 V. Conclusion and Recommendation 113 VI. Reference 119 | |
| dc.language.iso | en | |
| dc.subject | 台灣鏟頷魚 | zh_TW |
| dc.subject | 層級理論 | zh_TW |
| dc.subject | 階層線性模式 | zh_TW |
| dc.subject | 魚類與環境關係 | zh_TW |
| dc.subject | 日本禿頭鯊 | zh_TW |
| dc.subject | Fish-environment relations | en |
| dc.subject | Hierarchy Theory | en |
| dc.subject | Hierarchical linear models (HLMs) | en |
| dc.subject | Varicorhinus barbatulus | en |
| dc.subject | Sicyopterus japonicus | en |
| dc.title | 利用階層線性模式探討魚類與棲地環境尺度相依關係之研究 – 以大屯溪為例 | zh_TW |
| dc.title | Conceptualizing the Scale-dependent Relationships between Fish and Habitat Environment by Hierarchical Linear Models – A Case Study in Datun Stream | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明旭(Ming-Hsu Li),陳彥璋(Yen-Chang Chen),童慶斌(Ching-Pin Tung),任秀慧(Rita Sau-wai Yam) | |
| dc.subject.keyword | 層級理論,階層線性模式,魚類與環境關係,日本禿頭鯊,台灣鏟頷魚, | zh_TW |
| dc.subject.keyword | Hierarchy Theory,Hierarchical linear models (HLMs),Fish-environment relations,Sicyopterus japonicus,Varicorhinus barbatulus, | en |
| dc.relation.page | 134 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-06-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
