請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48056
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葛煥彰(Huan-Jang Keh) | |
dc.contributor.author | Yi-Yi Wu | en |
dc.contributor.author | 吳怡怡 | zh_TW |
dc.date.accessioned | 2021-06-15T06:45:17Z | - |
dc.date.available | 2011-07-07 | |
dc.date.copyright | 2011-07-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-06-27 | |
dc.identifier.citation | 1. Henry, D. C. The cataphoresis of suspended particles. Part I.-The equation of
cataphoresis. Proc. R. Soc. London, Ser. A 1931, 133, 106. 2. Booth, F. The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc. R. Soc. London, Ser. A 1950, 203, 514. 3. Dukhin, S. S.; Derjaguin, B. V. In Surface and Colloid Science; Matijevic, E., Ed.; Wiley: New York, 1974; Vol. 7. 4. Saville, D. A. Electrical conductivity of suspensions of charged particles in ionic solutions. J. Colloid Interface Sci. 1979, 71, 477. 5. O’Brien, R. W. The electrical conductivity of a dilute suspension of charged particles. J. Colloid Interface Sci. 1981, 81, 234. 6. Ohshima, H.; Healy, T. W.; White, L. R. Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J. Chem. Soc., Faraday Trans. 2 1983, 79, 1613. 7. O'Brien, R. W. The solution of the electrokinetic equations for colloidal particles with thin double layers. J. Colloid Interface Sci. 1983, 92, 204. 8. O’Brien, R. W.; White, L. R. Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc., Faraday Trans. 2 1978, 74, 1607. 9. O’Brien, R.W.; Ward, D. N. The electrophoresis of a spheroid with a thin double layer. J. Colloid Interface Sci. 1988, 121, 402. 10. Happel, Viscous flow in multiparticle system: slow motion of fluid relative to beds of spherical particles. J. AIChE J. 1958, 4, 197. 11. Happel, Viscous flow relative to arrays of cylinders. J. AIChE J. 1959, 5, 174. 12. Kuwabara, S. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Jpn. 1959, 14, 527. 13. Levine, S.; Neale, G.; Epstein, N. The prediction of electrokinetic phenomena within multiparticle systems : II. Sedimentation potential. J. Colloid Interface Sci. 1976, 57, 424. 14. Ohshima, H. Sedimentation potential in a concentrated suspension of spherical colloidal particles. J. Colloid Interface Sci. 1998, 208, 295. 15. Keh, H. J.; Ding, J. M. Sedimentation velocity and potential in concentrated suspensions of charged spheres with arbitrary double-layer thickness. J. Colloid Interface Sci. 2000, 227, 540. 16. Carrique, F.; Arroyo, F. J.; Delgado, A. V. Sedimentation velocity and potential in a concentrated colloidal suspension: Effect of a dynamic Stern layer. Colloids Surfaces A 2001, 195, 157. 17. Lee, E.; Chou, K. T.; Hsu, J. P. Sedimentation of a concentrated dispersion of composite colloidal particle. J. Colloid Interface Sci. 2006, 295, 279. 18. Keh, H. J.; Chen, W. C. Sedimentation velocity and potential in concentrated suspensions of charged porous spheres. J. Colloid Interface Sci. 2006, 296, 710. 19. Levine, S.; Neale, G. H. The prediction of electrokinetic phenomena within multiparticle systems. I. Electrophoresis and electroosmosis. J. Colloid Interface Sci. 1974, 47, 520. 20. Zharkikh, N. I.; Borkovskaya, Yu. B. Theory of nonequilibrium electrosurface phenomena in concentrated disperse system 2. Calculation of kinetic coefficients in a system of cylindrical particles with a thin double layer. Colloid J. USSR (English translation) 1982, 43, 520. 21. Zharkikh, N. I.; Shilov, V. N. Theory of collective electrophoresis of spherical particles in the Henry approximation. Colloid J. USSR (English translation) 1982, 43, 865. 22. Kozak, M. W.; Davis, E. J. Electrokinetic phenomena in fibrous porous media. J. Colloid Interface Sci. 1986, 112, 403. 23. Ohshima, H. Electrophoretic mobility of spherical solloidal particles in concentrated suspensions. J. Colloid Interface Sci. 1997, 188, 481. 24. Ohshima, H. Electroosmotic velocity in fibrous porous media. J. Colloid Interface Sci. 1999, 210, 397. 25. Dukhin, A. S.; Shilov, V.; Borkovskaya, Yu. Dynamic electrophoretic mobility in concentrated dispersed systems. Cell model. Langmuir 1999, 15, 3452. 26. Wei, Y. K.; Keh, H. Diffusiophoresis and electrophoresis in concentrated suspensions of charged colloidal spheres. J. Langmuir 2001, 17, 1437. 27. Carrique, F.; Ruiz-Reina, E.; Arroyo, F. J.; Jimenez, M. L.; Delgado, A. V. Dynamic electrophoretic mobility of spherical colloidal particles in salt-free concentrated suspensions. Langmuir 2008, 24, 2395. 28. Kozak, M. W.; Davis, E. J. Electrokinetics of concentrated suspensions and porous media : I. Thin electrical double layers. J. Colloid Interface Sci. 1989, 127, 497. 29. Johnson, T. J.; Davis, E. An analysis of electrophoresis of concentrated suspensions of colloidal particles. J. J. Colloid Interface Sci. 1999, 215, 397. 30. Ding, J. M.; Keh, H. J. The electrophoretic mobility and electric conductivity of a concentrated suspension of colloidal spheres with arbitrary double-layer thickness. J. Colloid Interface Sci. 2001, 236, 180. 31. Carrique, F.; Arroyo, F. J.; Jimenez, M. L.; Delgado, A. V. Influence of double-layer overlap on the electrophoretic mobility and DC conductivity of a concentrated suspension of spherical particles. J. Phys. Chem. B 2003, 107, 3199. 32. Carrique, F.; Cuquejo, J.; Arroyo, F. J.; Jimenez, M. L.; Delgado, A. V. Influence of cell-model boundary conditions on the conductivity and electrophoretic mobility of concentrated suspensions. Adv. Colloid Interface Sci. 2005, 118, 43. 33. Keh, H. J.; Liu, C. P. Electric conductivity and electrophoretic mobility in suspensions of charged porous spheres. J. Phys. Chem. C 2010, 114, 22044. 34. Ohshima, H. Electrical conductivity of a concentrated suspension of spherical colloidal particles. J. Colloid Interface Sci. 1999, 212, 443. 35. Lee, E.; Chih, M. H.; Hsu, J. P. Conductivity of a concentrated cylindrical dispersion. Langmuir 2001, 17, 1821. 36. Hsu. W. T.; Keh, H. J. Electric conductivity in a fibrous porous medium with thin but polarized bouble layers. Colloid Polym. Sci. 2004, 282, 985. 37. Cuquejo, J.; Jimenez, M. L.; Delgado, A. V.; Arroyo, F. J.; Carrique, F. Numerical and analytical studies of the electrical conductivity of a concentrated colloidal suspension. J. Phys. Chem. B 2006, 110, 6179. 38. Keh, H. J.; Wei, Y. K. Osmosis through a fibrous medium caused by transverse electrolyte concentration gradients. Langmuir 2002, 18, 10475. 39. Wei, Y. K.; Keh, H. J. Diffusiophoresis in a suspension of spherical particles with arbitrary double-layer thickness. J. Colloid Interface Sci. 2002, 248, 76. 40. Hsu, J.-P.; Lou, J.; He, Y.-Y.; Lee, E. Diffusiophoresis of concentrated suspensions of spherical particles with distinct ionic diffusion velocities. J. Phys. Chem. B 2007, 111, 2533. 41. Lou, J.; Lee, E. Diffusiophoresis of concentrated suspensions of liquid drops. J. Phys. Chem. C 2008, 112, 12455. 42. Watillon, A.; Stone-Masui, J. Surface conductance in dispersions of spherical particles: Study of monodisperse polystyrene lattices. J. Electroanal. Chem. 1972, 37, 143. 43. Zukoski, C. F.; Saville, D. A. Electrokinetic properties of particles in concentrated suspensions. J. Colloid Interface Sci. 1987, 115, 422. 44. Anderson, J. L. Transport mechanisms of biological colloids. Ann. N. Y. Acad. Sci. 1986, 469 (Biochem. Eng. 4), 166. 45. Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics; Nijhoff: Dordrecht, The Netherlands, 1983. 46. Berryman, J. G. Random close packing of hard spheres and disks. Phys. Rev. A 1983, 27, 1053. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48056 | - |
dc.description.abstract | 本論文利用解析方法,研究電解質溶液在由一群相互平行且表面帶電的圓柱體所組成的均質多孔性纖維狀介質中之穩定的電滲透流及電流傳導,所施加的均勻電場,其方向垂直於圓柱體的軸線,而每個不導電的圓柱體表面之電雙層,相對於圓柱半徑可以有任意的厚度。吾人使用容許相鄰圓柱體的電雙層相互重疊之小室模型進行分析,每個小室含有一個圓柱體及其鄰近的電解質。假設系統只有稍微偏離平衡狀態,因此主導離子濃度分布、電位分布、流場分布的電動力方程式可以線性化處理。藉由正規擾動法,將圓柱的表面電荷密度(或表面電位)當作微小的擾動參數,可以得到這些線性化後方程式的解析解,並獲得電解質溶液的電滲透流速和有效導電度,表示為纖維狀介質的孔隙度及其他特徵參數的函數。吾人求解時,在小室外層邊界,使用了不同的邊界條件,進而比較其結果。在相同的條件下,由相互平行之圓柱組成的多孔性介質中,其垂直軸線方向的有效導電度小於由球形粒子組成的懸浮溶液中的導電度。在適當的情況下,圓柱間或球形粒子間的交互作用對有效導電度有相當大的影響。 | zh_TW |
dc.description.abstract | The steady electroosmosis and electric conduction in the fibrous medium constructed by a homogeneous array of parallel, identical, charged, circular cylinders filled with an electrolyte solution is analytically examined. The imposed electric field is constant and normal to the axes of the cylinders. The electric double layer surrounding each dielectric cylinder may have an arbitrary thickness relative to the radius of the cylinder. A unit cell model which allows for the overlap of the double layers of adjacent cylinders is employed. The electrokinetic equations that govern the ionic concentration distributions, the electrostatic potential profile, and the fluid flow field in the electrolyte solution surrounding the charged cylinder in a cylindrical cell are linearized assuming that the system is only slightly distorted from equilibrium. Through the use of a regular perturbation method, these linearized equations are solved with the surface charge density (or zeta potential) of the cylinder as the small perturbation parameter. Analytical expressions for the electroosmotic velocity of the fluid solution and the effective electric conductivity in the array of cylinders are obtained in closed forms as functions of the porosity of the fiber matrix and other characteristics of the porous system. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made. The cell model predicts that, under an otherwise identical condition, the electric conductivity in a porous medium composed of an array of parallel cylinders in the transverse direction in general is smaller than that of a suspension of spheres, but there exist some exceptions. The effect of interactions among the cylinders or spheres on the effective conductivity can be significant under appropriate conditions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:45:17Z (GMT). No. of bitstreams: 1 ntu-100-R98524023-1.pdf: 557348 bytes, checksum: 09751c0e79c3e39a9213062fac7e88fd (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Chapter 1 Introduction…………………………………………………1
1.1 Electrokinetics Background…………………………………………1 1.2 The Purpose of this Thesis.......................................................................3 Chapter 2 Basic Electrokinetic Equations…………………………….5 2.1 Governing Equations……………………………………………………7 2.2 Boundary Conditions……………………………………………………8 Chapter 3 Solution of the Electrokinetic Equations and Electroosmotic Velocity…………………………………...11 3.1 Solution for the Equilibrium Electrostatic Potential…………………...11 3.2 Solution to the Electrokinetic Equations and the Electroosmotic Velocity………………………………………………………………12 Chapter 4 Solution of the Electric Conductivity..................................17 4.1 Formulation for the Electric Conductivity…………………………….17 4.2 Solution for the Electric Conductivity………………………………...18 Chapter 5 Results and Discussion…………………………………….21 5.1 Electroosmotic Mobility……………………………………………….21 5.2 Effective Electric Conductivity………………………………………..22 Chapter 6 Concluding Remarks……………………………………...38 Notation......................................................................................................41 References..................................................................................................44 Appendix....................................................................................................49 Biographical Sketch..................................................................................51 | |
dc.language.iso | en | |
dc.title | 纖維狀多孔性介質中橫向之電滲透可動度及導電度 | zh_TW |
dc.title | Electroosmotic Mobility and Electric Conductivity in a Fibrous Porous Medium in the Transverse Direction | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曹恒光,詹正雄 | |
dc.subject.keyword | 電滲透,導電度,小室模型, | zh_TW |
dc.subject.keyword | Electroosmosis,Electric conductivity,Unit cell model, | en |
dc.relation.page | 51 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-06-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 544.29 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。