請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48050
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 於幼華 | |
dc.contributor.author | Chung-Yi Chou | en |
dc.contributor.author | 周宗毅 | zh_TW |
dc.date.accessioned | 2021-06-15T06:45:09Z | - |
dc.date.available | 2011-07-07 | |
dc.date.copyright | 2011-07-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-06-28 | |
dc.identifier.citation | 網頁部份
1. 內政部營建署,http://www.cpami.gov.tw/chinese/index.php。 2. 行政院環保署,(2011),http://www.epa.gov.tw/。 3. 經濟部水利署,(2009),水文統計,http://www.wra.gov.tw/。 4. 臺北市工程處,http://www.sso.taipei.gov.tw/。 5. 新加坡公共事業局 (2011),http://www.pub.gov.sg/。 中文部份 1. Park原著,吳家宏、李文瑞、林亭兒、曾懷恩、蔣寬和、蔡澄雄編譯 (2004) ,《現代工程經濟》,普林斯頓國際有限公司。 2. Sullivan, W.G., Bontadelli, J.A. and Wicks, E.M.原著,李克聰編譯(2002) ,《工程經濟學》,華泰文化事業股份有限公司。 3. 王偉信 (2000) ,以光氧化技術處理半導體製程有機廢水,國立清華大學,原子科學研究所,碩士論文。 4. 日本建設省 (1981) ,日本下水處理循環利用技術指針 (案),昭和56年。 5. 內政部營建署 (2009) ,98年營建統計年報,內政部營建署。 6. 內政部營建署 (2011) ,中華民國99年版污水下水道統計要覽,內政部營建署。 7. 李崑池 (1996) ,以離子交換程序處理含酚類水溶液反應行為之研究,國立台灣工業技術學院,化學工程技術研究所,博士論文。 8. 於幼華 (2005) ,都市水資源循環回收利用前瞻技術之研究--子計畫一:建立生活污水處理廠放流水再利用之處理技術,行政院國家科學委員會專題研究計劃成果報告 (NSC 93-2218-E-002-112)。 9. 胡思璁 (2002) ,台灣地區水資源利用現況與自來水合理水價探討,財團法人國家政策研究基金會,永續(析)091-020號。 10. 陳鎮坤 (2005) ,水回收再利用之經濟效益研究-以印刷電路板業為例,國立中央大學,環境工程研究所,碩士論文。 11. 張文章 (2005) ,電廠雨水水質調查分析與回用可行性評估,國立臺灣海洋大學,河海工程學系,碩士論文。 12. 黃政平 (2003) ,台灣半導體製程技術現況與趨勢之研究--以技術地圖探討,國立台北大學,企業管理學系,碩士論文。 13. 黃煌洲 (2004) ,以離子交換樹脂法回收導線架氰系水洗廢水之研究,朝陽科技大學,環境工程與管理系,碩士論文。 14. 陳永森、陳章波 (2000) ,臺灣水資源環境空間永續利用,社團法人台灣環境資訊協會。 15. 經濟部水利署 (2005) ,《多元化水源開發綱領計畫報告》,經濟部水利署。 16. 經濟部水利署 (2010) ,《農田排水再生利用技術參考》,經濟部水利署。 英文部份 1. Adin, A. and Asano, T. (1998), “The Role of Physical-Chemical Treatment In Wastewater Reclamation And Reuse,” Water Sci. Technol., 37(10), 79-90. 2. Anderson, R.E. and Hansen, R.D. (1955), “Phenol sorption on ion exchange resins”, Ind. Eng. Chem., 47, 71. 3. Andreozzi, R., Insola, A., Caprio, V. and D’Amore, M.G. (1992), “The kinetics of Mn(II)-catalyzed ozonation of oxalic acid in aqueous solution”, Wat. Res., 26(7), 917-921. 4. Andreozzi, R., Caprio, V., Insola, A. and Marotta, R. (1999), “Advanced oxidation processes (AOP) for water purification and recovery”, Catalysis Today, 53, 51-59. 5. Azbar, N., Yonar, T. and Kestoglu, K. (2004), “Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent.” Chemosphere, 55, 35-45. 6. Lin, A. Y. C., Lin, C. F., Tsai, Y. T., Lin, H. H. H., Chen, J., Wang, X. H. and Yu, T. H. (2010), “Fate of selected pharmaceuticals and personal care products after secondary wastewater treatment processes in Taiwan,” Waster Science & Technology – WST, 62(10), 2450-2458. 7. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001), “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, 293(13), 269-271. 8. Beltran, F.J., Rivas, F.J. and Montero-de-Espinosa, R. (2002), “Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor,” Appl. Catal. B: Environ., 39, 221-231. 9. Beltran, F. J., Rivas, F. J. and Gimeno, O. (2005), “Comparison between photocatalytic ozonation and other oxidation processes for the removal of phenols from water,” J. Chem. Technol. Biotechnol., 80, 973-984. 10. Buxton, G. V., Greenstock, C. L., Helman, W. P. and Ross, A. B. (1988), “Critical review of data constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (.OH/.O-) in aqueous solution”, J. Phys. Chem. Ref. Data, 17, 513-886. 11. Choubert, J.M., Martin Ruel, S., Esperanza, M., Budzinski, H., Miege, C., Lagarrigue, C. and Coquery, M. (2011), “Limiting the emissions of micro-pollutants: What efficiency can we expect from wastewater treatment plants?” Water Science & Technology, 63(1), 57-65. 12. Ciardelli, G. and Ranieri, N. (2001), “The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation”, Wat. Res., 35(2), 567-572. 13. Danckwerts, P.V. (1951), “Significance of liquid-film coefficients in gas absorption,” Ind. Eng. Chem., 43, 1460. 14. Flyborg, L., Bjorlenius, B. and Persson, K. M. (2010), “Can treated municipal wastewater be reused after ozonation and nanofiltration? Results from a pilot study of pharmaceutical removal in Henriksdal WWTP, Sweden,” Water Science & Technology-WST, 61(5), 1113-1120. 15. Freundlich, H. (1907), Physik Chem., 57. 16. Gabet-Giraud, V., Miege, C., Choubert, J.M., Martin Ruel, S. and Coquery, M. (2010), “Occurrence and removal of estrogens and beta blockers by various processes in wastewater treatment plants,” Science of the Total Environment, 408, 4257-4269. 17. Glaze, W.H. and Kang, J.K. (1988), “Advance oxidation process for treating groundwater contaminated with TCE and PCE : laboratory studies,” J. AWWA, 88(5), 57. 18. Gurol, M.D. and Singer, P.C. (1982), “Kinetic of ozone decomposition: a dynamic approach,” Envir. Sci. Technol., 16, 377. 19. Hartz, C.L., Bevan, J.W., Jackson, M.W., and Wofford, B.A. (1998). Innovative surface wave plasma reactor technique for PFC abatement. Environmental Science and Technology, 32 (5), 682-687. 20. Hedstrom, A. and Amofah, L.R. (2008), “Adsorption and desorption of ammonium by clinoptilolite adsorbent in municipal wastewater treatment systems,” J. Environ. Eng. Sci., 7, 53-61. 21. Hewes, C.G. and Davison, R.R. (1971), “Kinetics of ozone decomposition and reaction with organics in water,” AIChE J., 17, 141. 22. Higbie, R. (1935), “The rate of absorption of a pure gas into a still liquid during short periods of exposure,” Trans. Am. Inst. Chem. Eng., 31, 365. 23. Huang, T.C. and Chen, D.H. (1993), ”Kinetics of ozone decomposition in aqueous solution with and without ultraviolet radiation,” J. Chin. I. Ch. E. (Taiwan), 24(4), 207. 24. Hoigne, J. and Bader, H. (1976), “The role of hydroxyl radical reaction in ozonation processes in aqueous solution,” Water Res., 10, 377. 25. Hoigne, J. and Bader, H. (1983), “Rate constants of reactions of ozone with organic and inorganic compounds in water -Ⅰ. Non-dissociating organic compounds,” Water Res., 17, 173. 26. Hoigne J. (1998), “Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes,” The Handbook of Environmental Chemistry, Vol. 5, Part C, Springer-Verlag Berlin Heidelberg. 27. Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O. and Sugihara, S. (2003), “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and nitrogen doping,” Appl. Catal. B: Environ., 42(4), 403-409. 28. Kabouzi, Y., Moisan, M., Rostaing, J.C., Trassy, C., Guerin, D., Keroack, D., and Zakrzewski, Z. (2003). “Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure,” Journal of Applied Physics, 93 (12), 9483-9496. 29. Kiehlbauch, M.W., and Graves, D.B. (2001). “Temperature resolved modeling of plasma abatement of perfluorinated compounds,” Journal of Applied Physics, 89 (4), 2047-2057. 30. Kasprzyk-Hordern, B., Ziołek, M. and Nawrocki, J. (2003), “Catalytic ozonation and methods of enhanceing molecular ozone reactions in water treatment”, Appl. Catal. B: Environ., 46, 639-669. 31. Ku, Y., Su, W.J. and Shen, Y. S. (1996), “Decomposition Kinetics of Ozone in Aqueous Solution,” Ind. Eng. Chem. Res., 35, 3369-3374. 32. Kuo, C.H., Li, K.Y., Wen, C.P. and Weeks, J.L. (1976), “Absorption and decomposition of ozone in aqueous solution,” AIChE Symp., 73, 230. 33. Langlats, B. et al. (1989), “Improvement of biological treatment by prior ozonation”, Ozone. Sci. & Eng., 11, 155. 34. Langmuir, I. (1918), “The adsorption of gases on plane surface of glass, mica and platinum”, J. Am. Chem. Soc., 40, 1361. 35. Legube, B. and Karpel Vel Leitner, N. (1999), “Catalytic ozonation: a promising advanced oxidation technology for water treatment”, Catalysis Today, 53, 61-72. 36. Lin, A.Y.C., Lin, C.F., Tsai, Y.T., Lin, H.H.H., Chen, J., Wang, X.H. and Yu, T.H. (2010), “Fate of selected pharmaceuticals and personal care products after secondary wastewater treatment processes in Taiwan,” Water Science & Technology – WST, 62(10), 2450-2458. 37. Lin, S.H. and Chen, M.L. (1997), “Purification of textile wastewater effluents by a combined Fenton process and ion exchange,” Desalination, 109, 121-130. 38. Lin, S.H. and Lan, W.J. (1998), “Treatment of waste oil/water emulsion by ultrafiltration and ion exchange,”Wat. Res., 32(9), 2680-2688. 39. Liu, S.X., Qu, Z.P., Han, X.W. and Sun, C.L. (2004), “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today, 93-95, 877-884. 40. Martin, B.D., Parsons, S.A. and Jefferson, B. (2009), “Removal and recovery of phosphate from municipal wastewaters using a polymeric anion exchanger bound with hydrated ferric oxide nanoparticles,” Water Science & Technology-WST, 60(10), 2637-2645. 41. Masschelein, W.J. (1992), “Unit processes in drinking water treatment”, Marcel Dekker, New York. 42. Mohindra, V., Chae, H., Sawin, H.H., and Mocella, M.T. (1997). Abatement of perfluorocompounds in a microwave tubular reactor using O2 as an additive gas. IEEE Transactions on Semiconductor Manufacturing, 10 (3), 399-411. 43. Neale, P.A., Mastrup, M., Borgmann, T. and Schafer, A.I. (2010), “Sorption of micropollutant estrone to a water treatment ion exchange resin,” J. Environ. Monit., 12, 311-317. 44. Paxeus, N. (1996), “Organic pollutants in the effluents of large wastewater treatment plants in Sweden.” Wat. Res., 30(5), 1115-1122. 45. Peyton, G.R. and Glaze, W.H. (1998), “Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. photolysis of aqueous ozone”, Environ. Sci. & Technol., 22, 761. 46. Ried, A. and Mielcke, J. (2006), “Ozone and UV - a tool for “multi-barrier concepts” in water treatment”, Water Sci. Technol.: Water Supply, 6(4), 17-25. 47. Rivas, J., Gimeno, O. and Beltran, F. (2009), “wastewater recycling: Application of ozone based treatments to secondary effluents.” Chemosphere, 74, 854-859. 48. Rosal, R., Rodriguez, A. and Zerhouri, M. (2006), “Enhancement of gas-liquid mass transfer during the unsteady-state catalytic decomposition of ozone in water,” Appl. Catal. A: General, 305, 169-175. 49. Rosal, R., Rodriguez, A., Perdigon-Melon, J. A., Mezcua, M., Hernando, M. D., Leton, P., Garcia-Calvo, E. Aguera, A. and Fernandez-Alba, A. R. (2008), “Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater,” Water Research, 42, 3719-3728. 50. Sallanko, J. and Okkonen, J. (2009), “Effect of ozonation on treated municipal wastewater,” Journal of Environmental Science and Health Part A, 44, 57-61. 51. Sato, S. (1986), “Photocatalytic activity of Nox-doped TiO2 in the visible light region,” Chem. Phys. Lett., 123(1-2), 126-128. 52. Selcuk H. (2005), “Decolorization and detoxification of textile wastewater by ozonation and coagulation process”, Dyes and Pigments, 64, 217-222. 53. Sevimli, M. F. and Sarikaya, H. Z. (2002), “Ozone treatment of textile effluents and dyes: effect of applied ozone dose, pH and dye concentration,” J. Chem. Technol. Biotechnol., 77, 842-850. 54. Song, H., Addison, J. W., Hu, J. and Karanfil, T. (2010) “Halonitromethanes formation in wastewater treatment plant effluents,” Chmosphere, 79, 174-179. 55. Sotelo, J.L., Beltran, F.J., Benitez, F.J. and Beltran-Heredia, J. (1987), “Ozone decomposition in water: kinetic study,” Ind. Eng. Chem. Res., 26, 39. 56. Sotelo, J.L. (1990), “Ozonation of aqueous solutions of resorcinol and phloroglucinol. 1. Stoichiometry and adsorption kinetic regime”, Indu. & Eng. Chem. Res., 29, 2358-2367. 57. Staehelin, J. and Hoigne, J. (1982), “Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide”, Environ. Sci. Technol., 16, 676-681. 58. Staehelin, J., Btuhler, R. E. and Hoigne, J. (1984), “Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates,” J. Phys. Chem., 88, 5999. 59. Sullivan, D.E. and Roth, J.A. (1979), “Kinetics of ozone self-decomposition in aqueous solution,” AIChE Symp. Ser., 76(197), 142. 60. Schweitzer, P. A. (1996), Handbook of Separation Techniques for Chemical Engineers, McGraw-Hill. 61. Suty, H., De Traversay, C. and Coste, M. (2004), “Application of advanced processes: present and future”, Water Sci. Technol., 49(4), 227-233. 62. Villaseńor, J., Reyes, P. and Pecchi, G. (2002), “Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts.” Catalysis Today, 76, 121-131. 63. Vogelpohl, A. (2007), “Applications of AOPs in wastewater treatment”, Wat. Sci. Technol., 55(12), 207-211. 64. Wada, H., Yanaga, K., Kuroda, Y., Hanela, S. and Hirayama, Y. (2005), “Recycling of Wastewater Containing Iron-Complex Cyanides Using UV Photodecomposition and UV Ozone Oxidation in Combination with an Ion-Exchange Resin Method,” Bull. Chem. Soc. Jpn., 78(3), 512-518. 65. Wang, Z.P., Cai, W.M., Hong, X.T., Zhao, X.L., Xu, F. and Cai, C.G. (2005), “Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources,” Appl. Catal. B: Environ., 57(3), 223-231. 66. Warmadewanthi, B. and Liu, J. C. (2009), “Selective separation of phosphate and fluoride from semiconductor wastewater,” Water Sci. Technol., 59(10), 2047-2053. 67. Weiss, J. (1935), “Investigation on the radical HO2 in solution,” Trans. Faraday Soc., 31, 668. 68. Wert, E. C., Rosario-Ortiz, F. L., Drury, D. D. and Snyder, S. A. (2007), “Formation of oxidation byproducts from ozonation of wastewater”, Water Res., 41, 1481-1490. 69. Williams J. D. (1997). “Environmental issues of perfluorocompounds in the semiconductor industry,” Environmental, Safety, and Health Issues in IC Production, 447, 43-48. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48050 | - |
dc.description.abstract | 降雨是臺灣水資源的主要來源,在水資源的供給及需求漸漸出現失衡的現在,都市污水處理廠之放流水可做為傳統水源外的多元水源之一,然而放流水若無經適當處理即作為水源之用將可能造成多種風險,值得注意。本研究主題為:放流水再生處理之技術,利用離子交換程序置於臭氧程序後,以離子交換機制去除經臭氧程序產生較難處理的氧化副產物,藉此增進整體水再生處理之效率,另外,本研究亦針對合併處理程序(臭氧結合離子交換)之可能缺陷與操作成本進行評估,探討此合併處理科技之可行性。
研究結果顯示單獨以臭氧程序處理放流水之效果並不理想,初始pH = 3或7之1小時臭氧處理分別得到9%及43%的TOC去除率,最佳的處理效果為初始pH = 11之情況,但亦僅得TOC去除率49%,以一階反應模擬臭氧處理放流水之實驗結果得到欲使TOC去除率為95%需時長達10小時;以合併程序處理放流水之結果顯示:在初始pH = 3、7及11時30分鐘預臭氧的合併程序處理可得77%、94%及95%之TOC去除率,且臭氧處理確實可提昇其後離子交換程序對TOC之吸附能力,10分鐘之預臭氧處理可使離子交換程序增加去除約25% ~ 28% 的TOC,然而更長的預臭氧反應時間卻無法繼續增加離子交換程序所吸附的TOC;針對合併程序處理後之水質分析除TOC可得更進一步的處理外,水中陰陽離子(如NO3-N、Mg、Ca及Na等)亦可經由離子交換程序被移除,因而增加該合併程序的全面處理成效。 陰離子交換樹脂與臭氧反應後之體密度(濕)有縮小之趨勢,較原樹脂減少約10%,含水量或揮發性物質成份比例亦較原樹脂高,因此烘乾後重量較原樹脂減少20%;對甲酸、乙酸及草酸的吸附能力經由Langmuir等溫吸附模式之驗證,與臭氧反應後的樹脂對甲酸及乙酸的最大吸附容量顯有降低之趨勢,分別減少36%及24%,但對草酸則不明顯(僅5%)。 多種方式消減溶解臭氧以減少樹脂破壞之實驗結果顯示,臭氧消減速率之排序為:UV光照 > 外力消減(曝氣或超音波震盪)> 自然消減(初始pH為7及3),分別可得反應速率常數為:UV光照-1.3344 s-1、外力消減-0.2 ~ 0.4 s-1之間、自然消減-0.01 ~ 0.02 s-1之間,且溶解臭氧之消減均符合一階反應模式。 合併程序處理放流水至TOC去除率為94%時,操作成本經估算約為NT$ 17.7 ~ 49.8元/m3,較純以臭氧處理放流水節省NT$ 22 ~ 88.3元/ m3,平均約可節省操作成本達NT$ 49.8元/ m3,證實合併程序之經濟可行性。 | zh_TW |
dc.description.abstract | Rainfall is the primary water resources for Taiwan. Under the unbalance between demand and supply of water, the effluents from municipal wastewater treatment plant could be alternative for water resources. However, risks will increase if people contact with the untreated effluents. The aim of this study is focused on the wastewater recovery technology of ozonation coupled with ion-exchange process to treat TOC in the effluents. The influences for the sorption abilities of ion-exchange resin following by ozonation and the economic analysis for the combined process have also been done.
The results show that ozonation, which provide the best of 49% TOC removal under 1 hr of reaction, is not a good choice for treating the effluent. The ozonation dynamics fitting with the first-order kinetic model show that almost 10 hr are needed for ozonating the effluent to 95% TOC removal. For the combined process, the treatment efficiency of the ion-exchange process in treating with TOC is indeed improved by the pre-ozonation treatment. 10 min pre-ozonation could improve 25% ~ 28% TOC removal by ion-exchange process. However, the difference in initial pH and more reaction time for the pre-ozonation, which increases the treatment efficiency of the combined process, show no improvements for the ion-exchange process in removing TOC. The analysis for the effluents treated by the combined process shows that not only TOC but also all the ions in effluents are removed, reflecting on the removal of conductivity from effluent. The resin shrinks 10% in wet bulk density after reacting with ozone and 20% after it was dried under 105℃. The maximum sorption capacities for ormic acid and acetic acid of ozonated resin decrease 36% and 24% while only 5% decreasing is found in the sorption for oxalic acid of the ozonated resin. Few kinds of method are used in decomposing dissolved ozone in water: UV irradiation, forced decomposition (including gas dispersion and ultrasonic vibration) and nature decomposition (under initial pH of 3 and 7). The reactions following the first-order kinetic model have the reaction rate constant of 1.3344 s-1 for UV irradiation, 0.2 ~ 0.4 s-1 for forced decomposition and 0.01 ~ 0.02 s-1 for nature decomposition. In economic analysis, the operation cost of combined process is about NT$ 17.7 ~ 49.8 for treating 1 ton of effluent. Comparing with the operation cost of ozonation, NT$ 22 ~ 88.3 per ton of effluent are saved. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:45:09Z (GMT). No. of bitstreams: 1 ntu-100-F93541102-1.pdf: 1845789 bytes, checksum: f11d6033034cf7b97967239d351a5e4c (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT IV 第一章、緒論 1 1.1 研究緣起 1 1.2 研究內容 3 1.3 研究項目 4 第二章、文獻回顧 6 2.1 臺灣水資源概況 6 2.1.1 水資源概況 6 2.1.2 污水處理概況 9 2.1.3 臺灣污水再生現況 10 2.1.4 水回收再利用用途及標準 15 2.2 臭氧之基本反應行為 20 2.2.1 臭氧分子直接反應 (Direct Reactions of Molecular Ozone) 20 2.2.2 臭氧分子所衍生之自由基反應 (OH Radical Reactions and Reactions of Secondary Oxidants) 21 2.2.3 pH值對臭氧反應特性之影響 21 2.3 離子交換程序 22 2.3.1 離子交換樹脂性質 22 2.3.2 離子交換程序基本原理 23 2.3.3 離子交換吸附模式 24 2.4 都市污水之再生研究 27 2.4.1 污水處理廠之放流水性質 27 2.4.2 放流水之高級氧化處理 31 2.4.3 氧化副產物 34 2.4.4 放流水之離子交換處理 36 2.5 經濟分析 38 2.5.1 成本概念與決策 38 2.5.2 臭氧及離子交換程序操作成本分析 40 第三章、實驗方法與設備 42 3.1 實驗程序 42 3.1.1 水樣前處理 42 3.1.2 臭氧反應 44 3.1.3 離子交換程序 45 3.1.4 離子交換樹脂與臭氧反應 46 3.1.5 樹脂之等溫吸附實驗 46 3.1.6 溶解臭氧消減實驗 47 3.1.7 經濟評估 47 3.2 分析項目及方法 49 3.3 水樣、設備及藥品 51 3.3.1 水樣 51 3.3.1 臭氧反應設備 51 3.3.2 離子交換實驗設備 53 3.3.3 化學分析設備 54 3.3.4 化學藥品 56 第四章、結果與討論 60 4.1 內湖廠放流水水質特性 60 4.2 基礎實驗 62 4.2.1 分光光度計量測臭氣氣體濃度之校正 62 4.2.2 臭氧進氣及尾氣的量測 64 4.3 臭氧處理及離子交換程序 66 4.3.1 內湖廠放流水之1小時臭氧處理 66 4.3.2 臭氧氧化結合離子交換程序(合併處理程序) 72 4.3.3 單位臭氧的TOC處理量 80 4.3.4 小結 81 4.4 臭氧對離子交換樹脂之影響 83 4.4.1 樹脂形態之改變 83 4.4.2 陰離子交換樹脂吸附有機酸 87 4.4.3 溶解臭氧之去除 92 4.4.4 一階反應模擬溶解臭氧之濃度消減 96 4.4.5 小結 98 4.5 經濟分析 100 4.5.1 臭氧氧化程序 100 4.5.2 臭氧處理結合離子交換程序 102 4.5.3 綜合討論 103 4.5.4 小結 104 第五章、結論與建議 105 參考文獻 108 | |
dc.language.iso | zh-TW | |
dc.title | 臭氧結合離子交換程序再生廢污水之研究 | zh_TW |
dc.title | Wastewater Recovery Using Ozonation Coupled with Ion-Exchange Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 林正芳 | |
dc.contributor.oralexamcommittee | 張慶源,張添晉,商能洲 | |
dc.subject.keyword | 臭氧,離子交換,再生水,放流水,經濟評估, | zh_TW |
dc.subject.keyword | ozone,ion exchange,wastewater recovery,effluent,economic assessment, | en |
dc.relation.page | 120 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-06-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。