Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48041
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊晴光(Ching-Kuang C. Tzuang)
dc.contributor.authorKai-Hsiang Changen
dc.contributor.author張凱翔zh_TW
dc.date.accessioned2021-06-15T06:44:59Z-
dc.date.available2012-07-27
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-06-28
dc.identifier.citation[1] W. Doherty, “A new high efficiency power amplifier for modulated waves,”
Proceedings of IRE, vol. 24, pp. 1163-1182, September 1936.
[2] M. J. Chiang, H. S. Wu, and C. K. C. Tzuang, “Design of synthetic Quasi-TEM
transmission line for CMOS compact integrated circuit,” IEEE Transactions on
Microwave Theory and Techniques, vol. 55, no. 12, December 2007.
[3] C. C. Chen and C. K. C. Tzuang, “Synthetic Quasi-TEM Meandered Transmission
Lines for Compacted Microwave Integrated Circuits,” IEEE Transactions on
Microwave Theory and Techniques, vol. 52, no. 6, June 2004
[4] M. J. Chiang, H. S. Wu, and C. K. C. Tzuang, “Design of CMOS Spiral Inductors
for Effective Broadband Shielding,” Proceedings of the 36th European Microwave
Conference, pp. 48-51, 2006.
[5] Design Manual of 1P8M 0.13μm CMOS, CMSC
[6] B. Wicks, E. Skafidas, and R. Evans, “A 60-GHz Fully-Integrated Doherty Power
Amplifier Based on 0.13-μm CMOS process,” IEEE Radio Frequency Integrated
Circuits Symposium, 2008.
[7] C. P. McCarroll, G. D. Alley, S. Yates, and R. Matreci, “A 20 GHz Doherty Power
Amplifier MMIC with High Efficiency and Low Distortion Designed for Broad
Band Digital Communication Systems,” IEEE MTT-S International Microwave
Symposium Digest, 2000.
[8] J. Kang, D. Yu, K. Min, and B. Kim, “A Ultra-High PAE Doherty Amplifier Based
on 0.13-μm CMOS Process,” IEEE Microwave and Wireless Components Letters,
vol. 16, no. 9, September 2006.
57
[9] Y. Yang, J. Cha, B. Shin, and B. Kim, “A fully matched N-way Doherty amplifier
with optimized linearity,” IEEE Transactions on Microwave Theory and
Techniques, vol. 51, no. 3, pp. 986-993, March 2003.
[10] David M. Pozar, Microwave Engineering, 3rd edition: Wiley
[11] P. C. Ko, “Transmission Line Based CMOS Low-Power Consumption Low-Noise
Amplifier and Variable Delay Line in K-Band,” National Taiwan University
Master Thesis, June 2010.
[12] E. J. Wilkinson, “An N-way Hybrid Power Divider,” IRE Transactions on
Microwave Theory and Techniques, vol. 8, pp. 116-118, January 1960.
[13] J. S. Lim, G. Y. Lee, Y. C. Jeong, D. Ahn, and K. S. Choi, “A 1:6 Unequal
Wilkinson Power Divider,” Proceedings of the 36th European Microwave
Conference, 2006.
[14] Y. Zhao, “High Efficiency and High Linearity Doherty Amplifiers for Portable
Wireless Communications,” University of California, San Diego PHD Thesis,
2006.
[15] S. Wang, K. H. Tsai, K. K. Huang, S. X. Li, H. S. Wu, and C. K. C. Tzuang,
“Design of X-Band RF CMOS Transceiver for FMCW Monopulse Radar,” IEEE
Transactions on Microwave Theory and Techniques, vol. 57, no. 1, January 2009.
[16] M. J. Chiang, H. S. Wu, and C. K. C. Tzuang, “A Ka-Band CMOS Wilkinson
Power Divider Using Synthetic Quasi-TEM Transmission Lines,” IEEE
Microwave and Wireless Components Letters, vol. 17, no. 12, December 2007.
[17] F. H. Raab, “Efficiency of Doherty RF Power-Amplifier Systems,” IEEE
Transactions on Broadcasting, vol. BC-33, no. 3, September 1987.
[18] B. Kim, J. Kim, I. Kim, J. Cha, and S. Hong, “Microwave Doherty Power
Amplifier for High Efficiency and Linearity,” IEEE Invited Paper, 2006.
58
[19] N. Dubuc, C. Duvanaud, and P. Bouysse, “Analysis of the Doherty Technique and
Application to a 900 MHz Power Amplifier,” 2002.
[20] J. Moon, Y. Y. Woo, and B. Kim, “A Highly Efficient Doherty Power Amplifier
Employing Optimized Carrier Cell,” Proceedings of the 4th European Microwave
Integrated Circuits Conference, 2009.
[21] D. M. Upton, “A New Circuit Topology to Realize High Efficiency, High
Linearity, and High Power Microwave Amplifiers,” RAWCON’98 Proceedings,
1998.
[22] K. W. Kobayashi, A. K. Oki, A. Gutierrez-Aitken, P. Chin, L. Yang, E. Kaneshiro,
P. C. Grossman, K. Sato, T. R. Block, H. C. Yen, and D. C. Streit, “An 18-21 GHz
InP DHBT Linear Microwave Doherty Amplifier,” IEEE Radio Frequency
Integrated Circuits Symposium, 2000.
[23] J. H. Tsai, and T. W. Huang, “A 38-46 GHz MMIC Doherty Power Amplifier
Using Post-Distortion Linearization,” IEEE Microwave and Wireless Components
Letters, vol. 17, no. 5, May 2007.
[24] J. Cha, J. Kim, B. Kim, J. S. Lee, and S. H. Kim, “Highly Efficient Power
Amplifier for CDMA Base Stations Using Doherty Configuration,” IEEE MTT-S
Digest, 2004.
[25] N. Srirattana, A. Raghavan, D. Heo, P. E. Allen, and J. Laskar, “Analysis and
Design of a High-Efficiency Multistage Doherty Power Amplifier for Wireless
Communications,” IEEE Transactions on Microwave Theory and Techniques, vol.
53, no. 3, March 2005.
[26] B. Kim, J. Nam, and D. Yu, “Doherty Linear Power Amplifiers for Mobile
Handset Applications,” IEEE Invited Paper, 2007.
[27] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA:
59
Artech House, 1999.
[28] M. Nick, and A. Mortazawi, “A Doherty Power Amplifier with Extended
Resonance Power Divider for Linearity Improvement,” IEEE, 2008.
[29] J. Kim, J. Cha, I. Kim, S. Y. Noh, C. S. Park, and B. Kim, “Advanced Design
Methods of Doherty Amplifier for Wide Bandwidth, High Efficiency Base Station
Power Amplifiers,”
[30] J. Y. Lee, J. Y. Kim, J. H. Kim, K. J. Cho, and S. P. Stapleton, “A High Power
Asymmetric Doherty Amplifier with Improved Linear Dynamic Range,” IEEE,
2006.
[31] D. Kang, J. Choi, D. Yu, K. Min, M. Jun, D. Kim, J. Park, B. Jin, and B. Kim,
“Input Power Dividing of Doherty Power Amplifiers for Handset Applications,”
IEEE, 2009.
[32] J. Kim, J. Cha, I. Kim, and Bumman Kim, “Optimum Operation of
Asymmetrical-Cells-Based Linear Doherty Power Amplifiers – Uneven Power
Drive and Power Matching,” IEEE Transactions on Microwave Theory and
Techniques, vol. 53, no. 5, May 2005.
[33] T. Tokumitsu, T. Hiraoka, H. Nakamoto, and T. Takenaka, “Multilayer MMIC
using a 3μm × 3-layer dielectric film structure,” IEEE MTT-S International
Microwave Symposium Digest, pp. 831-834, 1990.
[34] T. Hasegawa, Y. Tarusawa, and H. Ogawa, “Uniplanar MMIC hybrids- a proposed
new MMIC structure,” IEEE Transactions on Microwave Theory and Techniques,
vol. MTT-35, no. 6, pp. 576-581, June 1987.
[35] T. Hirota, S. Banba, and H. Ogawa, “A branch line hybrid using valley micro-strip
lines,” IEEE Transactions on Microwave and Guided Wave Letters, vol. 2, no. 2,
pp. 76-78, Feb. 1992.
60
[36] K. Sachse, A. Sawicki, and G. Jaworski, “Novel, multilayer coupled line
structures and their circuit applications,” Microwaves, Radar and Wireless
Communications. MIKON-2000. 13th International Conference on, vol. 3, pp.
131-155, 2000.
[37] C. K. C. Tzuang, H. H. Wu, H. S. Wu, and J. Chen, “CMOS active band-pass
filter using compacted synthetic quasi-TEM lines at C-band,” IEEE Transactions
on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4548-4555, December
2006.
[38] H. S. Wu, H. J. Yang, C. J. Peng, and C. K. C. Tzuang, “Miniaturized microwave
passive filter incorporating multilayer synthetic quasi-TEM transmission line,”
IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 9, pp.
2713-2720, September 2005.
[39] S. Wang, and C. K. C. Tzuang, “Compacted Ka-band CMOS rat-race hybrid using
synthesized transmission lines,” in IEEE MTT-S International Microwave
Symposium Digest, pp. 1023-1026, 2007.
[40] M. Iwamoto, A. William, P. F. Chen, A. Metzger, L. Larson, and P. Asbeck, “An
extended Doherty amplifier with high efficiency over a wide power range,” IEEE
Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp.
2472-2479, December 2001.
[41] B. Kim, Y. Yang, J. Yi, J. Nam, Y. Y. Woo, and J. H. Cha, “Efficiency
Enhancement of Linear Power Amplifier Using Load Modulation Technique,”
[42] C. W. Wang, H. S. Wu, and C. K. C. Tzuang, “A Miniaturized Power Combiner
for Compact Design of CMOS Phase Shifter at K-Band,” IMS, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48041-
dc.description.abstract這篇論文是關於10 GHz 的Doherty 微波功率放大器之設計利用0.13 微米互補性金屬氧化物半導體製程,即所謂的CMOS 製程,為了改善功率放大器的線性度以及提升放大器的附加功率效率。整個架構包括主要放大器,即所謂之carrier amplifier、輔助放大器,即所謂之peaking amplifier、1:2 功率分配器、輸入與輸出匹配電路等。
除此之外,互補式金屬傳輸線技術被引進在本論文之微波功率放大器設計當中,此技術在本論文所提出之微波功率放大器的設計當中扮演了很重要的角色。特別的是,濃縮式的互補式金屬傳輸線,此為與互補式金屬傳輸線相關的設計,也會在本論文中被討論因為這類型的傳輸線可以擁有很高的特徵阻抗,以及較高的品質因素,比起傳統的互補式金屬傳輸線來說。除此之外,此種新設計更可以節省晶片面積,讓晶片面積可以更有效率的運用。
總而言之,10 GHz 之Doherty 微波功率放大器之設計議題與流程,都將會在此篇論文做介紹與討論。
zh_TW
dc.description.abstractThis thesis deals with the design of 10 GHz Doherty power amplifier implemented
on 0.13μm RFCMOS for the linearity improvement and efficiency enhancement. The
fully integrated design implements main amplifier, which is so-called carrier amplifier,
auxiliary amplifier, which is so-called peaking amplifier, 1:2 power divider, input and
output matching networks, and so forth.
On top of that, the Complementary-Conducting-Strip Transmission Line is
introduced in this thesis, for it plays an important part in the design of power amplifier.
Especially, the latest design, Condensed Complementary-Conducting-Strip
Transmission Line, which is one of the interested designs of CCS TL, is also introduced
in the thesis owing to the fact that it exhibits higher characteristic impedance and higher
quality factor than the conventional CCS TL designs. Furthermore, it accomplishes a
great deal of size-reduction of IC-chips.
To sum up, the design issues and procedures of 10 GHz Doherty power amplifier
are discussed throughout this thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:44:59Z (GMT). No. of bitstreams: 1
ntu-100-R97942136-1.pdf: 2759218 bytes, checksum: 5e25b92138c5400cb11dd903b8a9feb3 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 ...................................................................................................... #
誌謝 ............................................................................................................................... i
中文摘要 ...................................................................................................................... ii
ABSTRACT ................................................................................................................ iii
CONTENTS ................................................................................................................ iv
LIST OF FIGURES ..................................................................................................... vi
LIST OF TABLES ..................................................................................................... viii
Chapter 1 Introduction .......................................................................................... 1
1.1 Motivation .................................................................................................. 1
1.2 Organization of This Thesis ........................................................................ 3
Chapter 2 Design of Synthetic Quasi-TEM Transmission Line ........................... 5
2.1 Introduction……………………. ................................................................ 5
2.2 Complementary-Conducting-Strip Transmission Line (CCS TL) ................ 5
2.2.1 Conventional Transmission Lines in CMOS Process .......................... 5
2.2.2 Design Methodology of CCS TL ....................................................... 7
2.2.3 CCS TL Realization ......................................................................... 11
2.3 Condensed Complementary-Conducting-Strip Transmission Line
(Condensed CCS TL) ................................................................................ 17
2.3.1 Design Consideration ....................................................................... 17
2.3.2 Condensed CCS TL Realization ....................................................... 19
2.4 Summary .................................................................................................. 23
Chapter 3 The 10 GHz Doherty Power Amplifier .............................................. 24
3.1 Introduction .............................................................................................. 24
3.2 Design Guideline and Proposed Circuitry ................................................. 25
3.2.1 Theory of the Doherty Power Amplifier ........................................... 25
3.2.2 Design Procedure and Consideration ............................................... 36
3.3 Proposed Circuitry of the 10 GHz Doherty Power Amplifier ..................... 40
3.3.1 Schematic ........................................................................................ 40
3.3.2 Simulation Results ........................................................................... 42
3.4 Layout of 10 GHz Doherty Power Amplifier ............................................. 45
3.5 Measurement ............................................................................................ 49
3.6 Summary .................................................................................................. 53
Chapter 4 Conclusion .......................................................................................... 55
REFERENCES ........................................................................................................... 56
dc.language.isoen
dc.subject附加功率效率zh_TW
dc.subjectDoherty 微波功率放大器zh_TW
dc.subject互補式金屬傳輸線zh_TW
dc.subject濃縮式的互補式金屬傳輸線zh_TW
dc.subject主要放大器zh_TW
dc.subject輔助放大器zh_TW
dc.subject線性度zh_TW
dc.subjectDoherty power amplifieren
dc.subjectCondensed Complementary-Conducting-Strip Transmission Lineen
dc.subjectComplementary-Conducting-Strip Transmission Lineen
dc.subjectpower added efficiencyen
dc.subjectlinearityen
dc.subject or peaking amplifieren
dc.subjectauxiliaryen
dc.subject or carrier amplifieren
dc.subjectmainen
dc.title使用互補式金屬傳輸線設計CMOS 10 GHz Doherty 微波功率
放大器之研究
zh_TW
dc.titleDesign of 10 GHz CMOS Doherty Power Amplifier Using
Complementary Conducting Strip Transmission Line Technology
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許博文,吳瑞北,張志揚,林清泉
dc.subject.keywordDoherty 微波功率放大器,互補式金屬傳輸線,濃縮式的互補式金屬傳輸線,主要放大器,輔助放大器,線性度,附加功率效率,zh_TW
dc.subject.keywordDoherty power amplifier,Complementary-Conducting-Strip Transmission Line,Condensed Complementary-Conducting-Strip Transmission Line,main, or carrier amplifier,auxiliary, or peaking amplifier,linearity,power added efficiency,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2011-06-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved