請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48027完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛煥彰(Huan-Jang Keh) | |
| dc.contributor.author | Li-Ju Wang | en |
| dc.contributor.author | 王藜儒 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:44:41Z | - |
| dc.date.available | 2011-07-07 | |
| dc.date.copyright | 2011-07-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-29 | |
| dc.identifier.citation | Anderson, J.L. (1985). Effect of nonuniform zeta potential on particle movement in electric fields.Journal of Colloid and Interface Science, 105, 45.
Anderson, J.L. (1989). Colloid transport by interfacial forces.Annual Reviewof Fluid Mechanics, 21, 61. Balsara, N. P., and Subramanian, R. S. (1987).The influence of buoyancy on thermophoretic deposition of aerosol particles in a horizontal tube.Journal of Colloid and Interface Science, 118, 3. Basset, A.B. (1961). In: ATreatise on Hydrodynamics, vol. 2, New York: Dover. Batchelor, G.K. (1970). Slender-body theory for particles of arbitrary cross-section in Stokes flow.Journal of Fluid Mechanics, 44, 419. Batchelor, G.K., and Shen, C. (1985).Thermophoretic deposition of particles in gas flowing over cold surfaces.Journal of Colloid and Interface Science, 107, 21. Bazant, M.Z., and Squires, T.M. (2004). Induced-charge electrokinetic phenomena: Theory and microfluidic applications.Physical Review Letters, 92, 066101. Beavers, G.S., and Joseph, D.D. (1967).Boundary conditions at a naturally permeable wall.Journal of Fluid Mechanics, 30, 197. Booth, F. (1950). The electroviscous effect for suspensions of solid spherical particles. Proceedingsof the Royal Society A, 203, 514. Brenner, H. (1964). The Stokes resistance of a slightly deformed sphere.Chemical Engineering Science,19, 519. Brock, J. R. (1962).On the theory of thermal forces acting on aerosol particles.Journal of Colloid Science, 17, 768. Cercignani, C. (2000). Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cambridge: Cambridge University Press. Chang, Y. C., and Keh, H.J.(2006). Slow motion of a slip spherical particle perpendicular to two plane walls.Journalof Fluids and Structures,22, 647. Chang, Y.C., and Keh, H.J. (2008).Diffusiophoresis and electrophoresis of a charged sphere perpendicular to two plane walls.Journal of Colloid and Interface Science, 322, 634. Chang, Y. C., and Keh, H. J. (2010). Thermophoretic motion of slightly deformed aerosol spheres. Journal of Aerosol Science, 41, 180. Chen, P. Y., and Keh, H.J.(2003).Slow motion of a slip spherical particle parallel to one or two plane walls.Journal of the Chinese Institute of Chemical Engineers,34, 123. Chen, P.Y., and Keh, H.J. (2005).Diffusiophoresis and electrophoresis of a charged sphere parallel to one or two plane walls.Journal of Colloid and Interface Science, 286, 774. Chen, S.B., andKeh,H.J. (1992).Axisymmetric electrophoresis of multiple colloidal spheres.Journal of Fluid Mechanics, 238,251. Chen, S.H., and Keh, H.J. (1995).Axisymmetric motion of two spherical particles with slip surfaces.Journal of Colloid and Interface Science,171, 63. Chen, S. H., and Keh, H. J. (1995).Axisymmetric thermophoretic motion of two spheres.Journal of Aerosol Science, 26, 429. Crawford, G.P. (2000). A bright new page in portable displays.IEEE Spectrum, 37, 40. Crowley, J.M., Sheridon, N.K., Romano, L. (2002). Dipole moments of gyricon balls.Journal of Electrostatics, 55, 247. Dahneke, B. E. (1973). Slip correction factors for nonspherical bodies-III The form of the general law. Journal of Aerosol Science, 4, 163. Davis, E. J., and Schweiger, G. (2002).The Airborne Microparticle. Berlin: Springer. Davis, M.H. (1972). Collisions of small cloud droplets: Gas kinetic effects. Journal of Atmospheric Science,29, 911. Davison, S.M., and Sharp, K.V. (2006). Boundary effects on the electrophoretic motion of cylindrical particle: Concentrically and eccentrically-positioned particles in a capillary.Journal of Colloid and Interface Science, 303, 288. DeBlois, R.W., and Bean, C.P. (1970).Counting and sizing of submicron particles by the resistive pulse technique.Review of Scientific Instruments, 41, 909. Derjaguin, B. V., Rabinovich, Ya.I., Storozhilova, A. I., and Shcherbina, G. I. (1976).Measurement of the coefficient of thermal slip of gases and the thermophoresis velocity of large-size aerosol particles.Journal of Colloid and Interface Science, 57, 451. Derjaguin, B.V., Storozhilova, A.I., and Rabinovich, Ya.I. (1966).Experimental verification of the theory of thermophoresis of aerosol particles.Journal of Colloid and Interface Science, 21, 35. Dukhin, S.S., and Derjaguin, B.V. (1974).In: (4th edition), E. Matijevic (Editor), Surface and Colloid Science, vol. 7, Wiley, New York. Edman, C.F., Swint, R.B., Gurtner, C., Formosa, R.E., Roh, S.D., Lee, K.E., Swanson, P.D., Ackley, D.E., Coleman, J.J., and Heller, M.J. (2000). Electric field directed assembly of an InGaAs LED onto silicon circuitry.IEEE Photonics TechnologyLetters, 12, 1198. Ennis, J., and Anderson, J.L. (1997).Boundary effects on electrophoretic motion of spherical particles for thick double layers and low zeta potential.Journal of Colloid and Interface Science, 185, 497. Ewing, A.G., Wallingford, R.A., and Olefirowicz, T.M. (1989).Capillary electrophoresis.Analytical Chemistry, 61, 292. Fair, M.C., and Anderson, J.L. (1989).Electrophoresis of nonuniformly charged ellipsoidal particle.Journal of Colloid and Interface Science, 127, 388. Feick, J.D.,and Velegol, D. (2002). Measurements of charge nonuniformity on polystyrene latex particle.Langmuir, 18, 3454. Feick, J.D., Chukwumah, N., Noel, A.E.,and Velegol, D. (2004). Altering surface charge nonuniformity on individual colloidal particles.Langmuir, 20, 3090. Feng, J.J., and Wu, W.Y. (1994).Electrophoretic motion of an arbitrary prolate body of revolution toward an infinite conducting wall.Journal of Fluid Mechanics, 264, 41. Friedlander, S.K. (1977). Smoke, Dust and Haze.Wiley, New York. Gogte, S., Vorobieff, P., Truesdell, R., Mammoli, A., van Swol, F., Shah, P., and Brinker, C.J. (2005).Effective slip on textured superhydrophobic surfaces.Physics of Fluids,17, 051701. Grant, M.L., and Saville, D.A. (1995).Electrostatic interactions between a nonuniformly charged sphere and a charged surface.Journal of Colloid and Interface Science, 171, 35. Haber, S., and Gal-Or, L. (1992).Deep electrophoretic penetration and deposition of ceramic particles inside porous substrates.Journal of the Electrochemical Society, 139, 1071. Hadamard, J.S.(1911). Mouvement permanent lent d’une sphere liquid et visqueuse dans un liquide visqueux, Comptes Rendus Hebdomadaires des Seances de V Academie des Sciences (Paris),152, 1735. Hao, Y.,and Haber, S. (1998). Electrophoretic motion of a charged spherical particle normal to a planar dielectric wall.International Journal of Multiphase Flow, 24, 793. Happel, J.,and Brenner, H. (1983).Low Reynolds Number Hydrodynamics. Dordrecht, The Netherland: Nijhoff. Henry, D.C. (1931).The cataphoresis of suspended particles. Part I. The equation of cataphoresis.Proceedings of the Royal SocietyLondon A, 133, 106. House, D.L., and Luo, H. (2010).Electrophoretic mobility of a colloidal cylinder between two parallel walls.Engng Anal Boundary Elements, 34, 471. Hsieh, T.H., and Keh, H.J. (2007).Boundary effects on electrohporesis of a colloidal cylinder with a nonuniform zeta potential distribution.Journal of Colloid and Interface Science, 315, 343. Hsu, J.P., and Kuo, C.C. (2006). Electrophoresis of a finite cylinder positioned eccentrically along the axis of along cylindrical pore.Journalof Physical Chemistry B, 110, 17607. Hutchins, D.K., Harper, M.H.,and Felder, R.L. (1995). Slip correction measurements for solid spherical particles by modulated dynamic light scattering. Aerosol Science and Technology,22, 202. Ivchenko, I. N., Loyalka, S. K., and Tompson, R. V. (2007).Analytical Methods for Problems of Molecular Transport.Springer, Berlin. Jeffery, G.B. (1922). The rotation of two circular cylinders in a viscous fluid.Proceedings of the Royal Society of London A,101, 169. Jorgenson, J.W. (1986). Electrophoresis.Analytical Chemistry, 58, 743. Keh, H.J., and Anderson, J. L. (1985).Boundary effects on electrophoretic motion of colloidal spheres.Journalof Fluid Mechanics, 153, 417. Keh, H.J., and Chang, J.H.(1998).Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity.Chemical Engineering Science,53, 2365. Keh, H. J., and Chang, Y. C. (2006).Thermophoresis of an aerosol sphere perpendicular to two plane walls. AIChE Journal, 52, 1690. Keh, H.J., and Chen, J.B. (1993).Particle interactions in electrophoresis. V. Motion of multiple spheres with thin but finite electrical double layers.Journal of Colloid and Interface Science, 158,199. Keh, H. J., and Chen, P. Y. (2003). Thermophoresis of an aerosol sphere parallel to one or two plane walls. AIChE Journal, 49, 2283. Keh, H.J., and Chen, S.B. (1988).Electrophoresis of a colloidal sphere parallel to a dielectric plane.Journal of Fluid Mechanics, 194, 377. Keh, H.J.,and Chen, S.B. (1993). Diffusiophoresis and electrophoresis of colloidal cylinders.Langmuir, 9, 1142. Keh, H.J., and Chiou, J.Y. (1996).Electrophoresis of a colloidal sphere in a circular cylindrical pore.AIChE Journal,42, 1397. Keh, H.J., Horng, K.D., and Kuo J. (1991).Boundary effects on electrophoresis of colloidal cylinders.Journal of Fluid Mechanics,231, 211. Keh, H.J.,and Hsieh, T.H. (2007). Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions.Langmuir, 23, 7928. Keh, H.J., and Huang, C.H. (2004).Slow motion of axisymmetric slip particles along their axes of revolution.International Journal of Engineering Science,42, 1621. Keh, H.J., and Huang, T.Y. (1993).Diffusiophoresis and electrophoresis of colloidal spheroids.Journal of Colloid and Interface Science, 160, 354. Keh, H.J., and Huang, T.Y. (1994).Diffusiophoresis and electrophoresis of elliptic cylindrical particles.Colloid and Polymer Science, 272,855. Keh, H.J.,and Jan, J.S. (1996).Boundary effects on diffusiophoresis and electrophoresis: motion of a colloidal sphere normal to a plane wall.Journal of Colloid and Interface Science, 183, 458. Keh, H.J., and Lien, L.C. (1989).Electrophoresis of a dielectric sphere normal to a large conducting plane.,Journalof Chinese Instituteof Chemical Engineers, 20, 283. Keh, H.J.,and Lien, L.C. (1991). Electrophoresis of a colloidal sphere along the axis of a circular orifice or a circular disk.Journal of Fluid Mechanics, 224, 305. Keh, H. J., and Ou, C. L. (2004).Thermophoresis of aerosol spheroids.Aerosol Science and Technology, 38, 675. Keh, H.J., and Tseng, Y.K. (1992).Slow motion of multiple droplets in arbitrary three-dimensional configurations.AIChE Journal,38, 1881. Keh, H. J., and Tu, H. J. (2001).Thermophoresis and photophoresis of cylindrical particles.Colloids and Surfaces A, 176, 213. Keh, H. J., and Wang, L. R. (2008).Slow motion of a circular cylinder experiencing slip near a plane wall.Journal of Fluids and Structures, 24, 651. Keh, H.J., and Yu, J.L. (1995). Migration of aerosol spheres under the combined action of thermophoretic and gravitational effects.Aerosol Science and Technology, 22, 250. Kennard, E.H. (1938).Kinetic Theory of Gases. New York: McGraw-Hill. Kim, J. Y., and Yoon, B.J. (2002).Electrophoretic motion of a slightly deformed sphere with a nonuniform zeta potential distribution.Journal of Colloid and Interface Science, 251, 318. Kim, J.Y., and Yoon, B.J. (2003).High-order field electrophoresis theory for a nonuniformly charged sphere.Journal of Colloid and Interface Science, 262, 101. Laucks, M. L., Roll, G., Schweiger, G., and Davis, E. J. (2000). Physical and chemical (Raman) characterization of bioaerosols: Pollen. Journal of Aerosol Science, 31, 307. Leong, K. H. (1984). Thermophoresis and diffusiophoresis of large aerosol particles of different shapes.Journal of Aerosol Science, 15, 511. Li, W., and Davis, E. J. (1995). Measurement of the thermophoretic force by electrodynamic levitation: Microspheres in air. Journal of Aerosol Science, 26, 1063. Lienhard, J. H. (1987). A Heat Transfer Textbook (2nd edition). Englewood Cliffs, New Jersey: Prentice-Hall. Liu, H., Bau, H.H., and Hu, H.H. (2004).Electrophoresis of concentrically and eccentrically positioned cylindrical particles in a long tube.Langmuir, 20, 2628. Loewenberg, M., and Davis, R.H. (1995).Near-contact electrophoretic particle motion.Journal of Fluid Mechanics, 288, 103. Loyalka, S. K. (1990). Slip and jump coefficients for rarified gas flows: Variational results for Lennard-Jones and n(r)-6 potentials. Physica A, 163, 813. Lu, S.Y., and Lee, C.T. (2001).Boundary effects on creeping motion of an aerosol particle in a non-concentric pore.Chemical Engineering Science,56, 5207. Lu, S. Y., and Lee, C. T. (2003).Thermophoretic motion of a spherical aerosol particle in a cylindrical pore.Aerosol Science and Technology, 37, 455. McCormick, N. J. (2005). Gas-surface accommodation coefficients from viscous slip and temperature jump coefficients. Physics of Fluids, 17, 107104. Messerer, A., Niessner, R., and Pöschl, U.(2004). Miniature pipe bundle heat exchanger for thermophoretic deposition of ultrafine soot aerosol particles at high flow velocities.Aerosol Science and Technology, 38, 456. Miklavic, S.J., Chan, D. Y.C., White, L.R., and Healy, T.W. (1994). Double layer forces between heterogeneous charged surfaces.The Journal of Physical Chemistry, 98, 9022. Montassier, N., Boulaud, D., and Renoux, A. (1991).Experimental study of thermophoretic particle deposition in laminar tube flow.Journal of Aerosol Science, 22, 677. Morrison, F.A. (1970). Electrophoresis of a particle of arbitrary shape.Journal of Colloid and Interface Science, 34, 210. Morrison, F.A. Stukel, J.J. (1970). Electrophoresis of an insulating sphere normal to a conducting plane.Journal of Colloid and Interface Science, 33, 88. Nir, A. (1976). Linear shear flow past a porous particle.Applied Scientific Research,32, 313. Oberbeck, A. (1876). Uber stationare flussigkeitsbewegungen mit berucksichtigung der inner reibung,Journal für die Reine und Angewandte Mathematik,81, 62. O’Brien, R. W., and White, L.R. (1978).Electrophoretic mobility of a spherical colloidal particle.Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 274, 1607. O’Brien, R.W. (1983). The solution of the electrokinetic equations for colloidal particles with thin double layers.Journal of Colloid and Interface Science, 92, 204. O’Brien, R.W., and Ward, D.N.(1988).The electrophoresis of a spheroid with a thin double layer.Journal of Colloid and Interface Science, 121,402. Payne, L. E., and Pell, W. H. (1960).The Stokes flow problem for a class of axially symmetric bodies.Journal of Fluid Mechanics, 7, 529. Reed, L.D., and Morrison, F.A. (1974). Particle interactions in viscous flow at small values of Knudsen number. Journal of Aerosol Science,5, 175. Rybczynski, W. (1911). Uber die fortschreitende bewegung einer flussigen kugel in einem zahenmedium.Bulletin of the Academic of Science Cracovie Series A,1, 40. Saffman, P.G. (1971). On the boundary condition at the surface of a porous medium.Studies in Applied Mathematics,50, 93. Schadt, C. F., and Cadle, R. D. (1961).Thermal forces on aerosol particles.Journal of Physical Chemistry,65, 1689. Senchenko, S., and Keh, H.J. (2006).Slipping Stokes flow around a slightly deformed sphere.Physics of Fluids, 18, 088104. Senchenko, S., and Keh, H. J. (2007).Thermophoresis of a slightly deformed aerosol sphere. Physics of Fluids, 19, 033102. Sharipov, F., Kalempa, D. (2003). Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient. Physics of Fluids,15, 1800. Sharipov, F., Kalempa, D. (2004).Velocity slip and temperature jump coefficients for gaseous mixtures. II. Thermal slip coefficient.Physicsof Fluids, 16, 759. Shoemaker, D. P., Garland, C. W., Steinfeld, J. I., and Nibler, J. W. (1981).Experiments in Physical Chemistry (4th edition). New York: McGraw-Hill. Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J.,and Mallouk, T.E. (2000). Electric-field assisted assembly and alignment of metallic nanowires.Applied Physics Letters, 77, 1399. Solomentsev, Y.E., Pawar, Y., and Anderson, J.L. (1993).Electrophoretic mobility of nonuniformly charged spherical particles with polarization of the double layer.Journal of Colloid and Interface Science, 158, 1. Sone, Y. (2002).Kinetic Theory and Fluid Dynamics. Boston: Birkhauser. Stigter, D. (1978). Electrophoresis of highly charged colloidal cylinders in univalent salt solutions. 2. Random orientation in external field and application to polyelectrolytes.Journal of Physical Chemistry, 82, 1424. Stigter, D. (1979). Kinetic charge of colloidal electrolytes from conductance and electrophoresis. Detergent micelles, poly(methacrylates), and DNA in univalent salt solutions.Journal of Physical Chemistry, 83, 1670. Stokes, G.G. (1851).On the effect of the internal friction of fluid on pendulums.Transaction of the Cambridge Philosophy Society,9, 8. Talbot, L., Cheng, R. K., Schefer, R. W., and Willis, D. R. (1980).Thermophoresis of particles in heated boundary layer.Journal of Fluid Mechanics, 101, 737. Teubner, M. (1982). The motion of charged colloidal particles in electric fields.Journal of Physical Chemistry, 76, 5564. Tretheway, D.C., Meinhart, C.D. (2002). Apparent fluid slip at hydrophobic microchannel walls.Physics of Fluids,14, L9. Unni, H.N., Keh, H.J., Yang, C. (2007). Analysis of electrokinetic transport of a spherical particle in a microchannel, Electrophoresis, 28, 658. Van Der Drift, W.P.J.T., De Keizer, A., and Overbeek, J.Th.G. (1979).Electrophoretic mobility of a cylinder with high surface charge density.Journal of Colloid and Interface Science, 71, 67. Velegol, D., Anderson, J.L., and Garoff, S.(1996). Probing the structure of colloidal doublets by electrophoretic rotation.Langmuir, 12, 675. Velegol, D., Feick, J.D., and Collins, L.R. (2000).Electrophoresis of spherical particles with a random distribution of zeta potential or surface charge.Journal of Colloid and Interface Science, 230, 114. Venema, P. (1995). The viscous flow of charged particles through a charged cylindrical tube.Journal of Fluid Mechanics, 282, 45. Wakiya, S. (1975). Application of bipolar coordinates to the two-dimensional creeping motion of a liquid. II. Some problems for two circular cylinders in viscous fluid. Journal of the Physical Society of Japan,39, 1603. Waldmann, L., and Schmitt, K. H. (1966).Thermophoresis and diffusiophoresis of aerosols.Aerosol Science, edited by C. N. Davies. New York: Academic. Weinberg, M.C. (1982). Thermophoretic efficiency in modified chemical vapor deposition process.Journal of the American Ceramic Society, 65, 81. Williams, M. M. R. (1986). Thermophoretic forces acting on a spheroid. Journal of Physics D: Applied Physics, 19, 1631. Williams, M. M. R., and Loyalka, S. K. (1991).Aerosol Science: Theory and Practice, with Special Applications to the Nuclear Industry. Oxford: Pergamon. Yamamoto, K., and Ishihara, Y. (1988).Thermophoresis of a spherical particle in a rarefied gas of a transition regime.Physics of Fluids, 31, 3618. Yariv, E., andBrenner, H. (2002). The electrophoretic mobility of an eccentrically positioned spherical particle in a cylindrical pore.Physics of Fluids, 14, 3354. Yariv, E., andBrenner, H. (2003). Near-contact electrophoreticmotion of a sphere parallel to a planar wall,Journal of Fluid Mechanics, 484, 85. Yariv,E., Brenner, H., andSiam (2003). The electrophoretic mobility of a closely fitting sphere in a cylindrical pore.Journal on Applied Mathematics, 64, 423. Ye, C., Sinton, D., Erickson, D., andLi, D. (2002). Electrophoretic motion of a circular cylindrical particle in a circular cylindrical microchannel. Langmuir, 18, 9095. Ye, Y., Pui, D. Y. H., Liu, B. Y. H., Opiolka, S., Blumhorst, S., and Fissan, H. (1991). Thermophoretic effect of particle deposition on a free standing semiconductor wafer in a clean room.Journal of Aerosol Science, 22, 63. Yoon, B.J. (1991). Electrophoretic motion of spherical particles with a nonuniform charge distribution.Journal of Colloid and Interface Science, 142, 575. Yoon, B.J., Kim, S. (1989). Electrophoresis of spheroidal particles.Journal of Colloid and Interface Science, 128,275. Zheng, F., and Davis, E. J. (2001). Thermophoretic force measurements of aggregates of micro-spheres. Journal of Aerosol Science, 32, 1421. Zydney, A.L. (1995).Boundary effects on the electrophoretic motion of a charged particle in a spherical cavity.Journal of Colloid and Interface Science, 169, 476. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48027 | - |
| dc.description.abstract | 本論文對圓柱形粒子在一連續相中的擬穩態緩慢運動、熱泳及電泳運動之邊界效應作理論探討。考慮單一圓柱形膠體粒子垂直或平行於單一平板之緩慢運動或泳動,利用雙圓柱座標系統求解二維主導方程式,計算粒子之運動速度。
第二章探討平板的存在對一圓柱形粒子緩慢運動所產生的邊界效應。針對單一表面滑移圓柱形粒子接近一固定不動的平板之擬穩態移動與轉動來分析,考慮粒子表面上的摩擦滑移效應,在低Reynolds數的條件下,可求解主導流速分佈的動量方程式,以半解析半數值之方式,計算單一圓柱形粒子之移動及轉動速度,得到粒子移動速度與轉動速度彼此不相互影響之結果。圓柱形粒子接近平板進行緩慢運動時,流體施加的拖曳力及扭力隨著粒子表面摩擦滑移係數增加而減少。當粒子垂直平板運動時所受到平板之阻礙效應最大,而當粒子平行平板運動時所受到平板之阻礙效應則最小。在粒子與平板間的相對距離相同時,平板存在而造成對圓柱形粒子的流力阻礙效應比球形粒子所受到的流力阻礙效應顯著。 第三章探討平板的存在,對一圓柱形氣膠粒子熱泳運動所產生的邊界效應。考慮單一圓柱形氣膠粒子在忽略流體慣性項與溫度對流效應下之擬穩態熱泳運動。由於Knudsen數較小,因此粒子周圍之流體可視為連續體,在粒子表面考慮有溫度躍差、熱滑移及摩擦滑移的現象。平板之邊界效應,其一來自於氣膠粒子與平板間產生的溫度梯度交互作用,另一為流體之黏滯阻礙作用。在低Peclet數與低Reynolds數的假設下,求解系統之能量及動量主導方程式,可求得溫度場與流場,以半解析半數值之方式,計算單一圓柱形氣膠粒子之熱泳速度。由於氣膠粒子與粒子周圍流體之熱傳導性差異、氣膠粒子之表面特性、氣膠粒子與平板的相對距離及外界所施加的溫度梯度方向之不同,平板之邊界效應可降低或增加氣膠粒子的運動速度。當粒子與平板的相對距離相同時,平板的存在對圓柱形氣膠粒子的熱泳運動影響比球形氣膠粒子熱泳運動所受到的邊界效應顯著。 第四章探討平板的存在,對一表面帶電不均勻之圓柱形膠體粒子電泳運動所產生的邊界效應。針對一表面存在隨角度變化之帶電分佈圓柱形粒子在外加一均勻電場下之擬穩態電泳,外加電場方向為平行平板,假設電雙層厚度相較於粒子半徑與粒子到邊界之距離皆為非常薄。平板之邊界效應來自於以下三個影響:(1) 膠體粒子表面之電場會因邊界存在而增強或減弱;(2)邊界存在會增強粒子運動時所受之黏滯阻礙力;(3)邊界表面上之電荷與邊界切線方向之電場作用使流體進行電滲透流動。求解二維主導方程式,可求得電場與流場,以半解析半數值之方式,計算粒子電泳移動及轉動速度。計算粒子所帶不均勻表面電位之multipole moments,即可利用本研究結果所得之關係式,求得圓柱形膠體粒子電泳移動與轉動速度。吾人發現當粒子鄰近邊界時,邊界效應可使得無邊界存在時不進行移動或轉動運動之粒子產生移動或轉動速度。 第五章探討平板的存在,對一表面均勻帶電之圓柱形膠體粒子之電泳運動所產生的邊界效應。考慮圓柱形膠體粒子表面電雙層存在極化現象時,粒子於電解質溶液中在外加一均勻電場下之擬穩態電泳,電雙層厚度相較於粒子半徑與粒子到邊界之距離皆為非常薄。平板之邊界效應,其一來自於膠體粒子與平板間產生的離子電化學電位梯度交互作用,另一為流體之黏滯阻礙作用。求解系統之能量及動量主導方程式,可求得電化學電位場與流場,以半解析半數值之方式,計算單一圓柱形膠體粒子之電泳移動速度及轉動速度。在不同極化參數下,由於膠體粒子之表面特性、電解質溶液性質、膠體粒子與平板的相對距離以及外界所施加的電場方向之不同,平板之邊界效應可降低粒子的運動速度。當粒子與平板間的相對距離相同時,平板的存在對圓柱形膠體粒子的電泳運動影響比球形膠體粒子電泳運動所受到的邊界效應顯著。 | zh_TW |
| dc.description.abstract | In this thesis, boundary effects on the two-dimensionalcreeping motion, thermophoresis and electrophoresis of cylindrical particles in a continuous medium are theoretically studied. Through the use of cylindrical bipolar coordinates, the transport governing equations are solved to calculate the various velocities of acylindrical particle migrating normal or parallel to a plane wall.
In Chapter 2, an analytical study is presented for the creeping flow caused by a long circular cylindrical particletranslating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at thesurface of the particle. The Stokes equations for the fluid velocity field are solved in the quasisteady limit. Semi-analytical solutions for the drag force and torque acting on the particle by thefluid are obtained for various values of the slip coefficient associated with the particle surface and of the relativeseparation distance between the particle and the wall. The results indicate that the translation and rotation of theconfined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, ourhydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. Theboundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for anotherwise specified condition. The plane wall exerts the greatest drag on the particle when the migration occurs normalto it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on atranslating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere. In Chapter 3, an analytical study is presented for the thermophoretic motion of a circular cylindrical particle in a gaseous medium with a transversely imposed temperature gradient near a large plane wall parallel to its axis in the quasisteady limit of negligible Peclet and Reynolds numbers. The Knudsen number is assumed to be small so that the fluid flow is described by a continuum model with a temperature jump, a thermal slip, and a frictional slip at the particle surface. The presence of the confining wall causes two basic effects on the particle velocity: first, the local temperature gradient on the particle surface is altered by the wall, thereby speeding up or slowing down the particle; secondly, the wall enhance the viscous retardation of the moving particle. The transport equations governing this problem are solved and the wall effects on the thermophoresis of the aerosol cylinder are computed for various cases. The presence of the plane wall can reduce or enhance the particle velocity, depending upon the relative thermal conductivity and surface properties of the particle, the relative particle-wall separation distance, and the direction of the applied temperature gradient. The direction of the thermophoretic motion of a cylindrical particle near a plane wall is different from that of the prescribed thermal gradient, except when it is oriented parallel or perpendicular to the wall. The effects of the plane wall on the thermophoresis of a cylinder are found to be much more significant than those for a sphere at the same separation. In Chapter 4, an analytical study is presented for the steady, transverse electrophoretic motion of a circular cylindrical particle with an arbitrary angular distribution of its surface potential parallel to a plane wall prescribed with the potential distribution consistent with the applied electric field. The electric double layers adjacent to the solid surfaces are assumed to be very thin with respect to the particle radius and spacing between the surfaces. The electrostatic and hydrodynamic governing equations are solved, and the typical electric field line, equipotential line, and streamline patterns are exhibited. The explicit formulas for the electrophoretic and angular velocities of the particle are obtained with the contribution from the electroosmotic flow produced by the interaction between the applied electric field and the thin double layer adjacent to the plane wall. To apply these formulas, one only has to calculate the leading multipole moments of the zeta potential distribution at the particle surface. The existence of a plane wall can cause the translation or rotation of the particle, which does not occur in an unbounded fluid with the same applied electric field. The boundary effects on the electrophoretic motion of a uniformly or nonuniformly charged particle resulting from the parallel plane wall prescribed with the far-field potential distribution are quite different from those produced by a corresponding insulating wall. In Chapter 5, an analytical study is presented for the electrophoretic motion of a circular cylindrical particle in an electrolyte solution with a transversely imposed electric field near a large plane wall parallel to its axis in the quasisteady limit. The electric double layers at the solid surfaces are assumed to be thin relative to the particle radius and to the particle-wall gap width, but the polarization effect of the diffuse ions in the double layer surrounding the particle is incorporated. The presence of the confining wall causes two basic effects on the particle velocity: first, the local ionic electrochemical potential gradients on the particle surface are altered by the wall, thereby affecting the motion of the particle; secondly, the wall enhances the viscous retardation of the moving particle. The transport equations governing this problem are solved and the wall effects on the electrophoresis of the cylinder are determined for various cases. The presence ofthe plane wall prescribed with the ionic electrochemical potentials consistent with the far-field distributionsreduces the electrophoretic mobility of the particle, which depends upon the properties of the particle–solutionsystem, the relative particle–wall separation distance, and the direction of the applied electric field relativeto the plane wall. The direction of the electrophoretic migration of a cylindrical particle near a plane wall isdifferent from that of the prescribed electric field, except when it is oriented parallel or perpendicular to thewall. The effects of the plane wall on the electrophoresis of a cylinder are found to be much more significantthan those for a sphere at the same separation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:44:41Z (GMT). No. of bitstreams: 1 ntu-100-F94524048-1.pdf: 8916315 bytes, checksum: c430f8d40151f6d2f6953b9ffea1bdb9 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Chapter 1 Introduction---------------------- 1
1.1. Slow Motion of Particles------- ---------1 1.2. Thermophoresis-------------------------- 5 1.3. Electrphoresis-------------------------- 10 1.3.1. A Particle with a Nonuniform Zeta Potential Distribution--------------------------------- 12 1.3.2. A Particle with a Thin but Polarized Electric Double Layer---------------------------------------- 13 Chapter 2 Slow Motion of a Slip Cylinder near a Plane Wall---------------------------------------------- 19 2.1. Analysis-------------------------------- 19 2.2. Results and Discussion ------------------26 Chapter 3 Thermophoresis of an Aerosol Cylinder near a Plane Wall-------------------------- ---------39 3.1. Thermophoresis Normal to a Plane Wall--- 39 3.1.1. Temperature Distribution-------------- 41 3.1.2. Fluid Velocity Distribution----------- 44 3.1.3. Thermophoretic Velocity--------------- 46 3.2. Thermophoresis Parallel to a Plane Wall- 48 3.2.1. Temperature Distribution-------------- 49 3.2.2. Fluid Velocity Distribution----------- 51 3.2.3. Thermophoretic Velocity--------------- 53 3.3. Results and Discussion ------------------56 Chapter 4 Electrophoresis of a Colloidal Cylinder with a Nonuniform Zeta Potential Distribution Parallel to a Plane Wall----------------------------------------- 79 4.1. Electric Potential Distribution ---------81 4.2. Fluid Velocity Distribution------------- 82 4.3. Electrophoretic Velocity---------------- 85 4.4. Results and Discussion------------------ 86 4.4.1. Electrophoresis of a Cylinder with a Uniform Zeta Potential------------------------------------ 87 4.4.2. Electrophoresis of a Cylinder with a Zeta Potential Distribution--------------------------------- 92 Chapter 5 Electrophoresis of a Colloidal Cylinder near a Plane Wall with the Double-Layer Polarization Effect101 5.1. Electrophoresis Normal to a Plane Wall-- 101 5.1.1. Electrochemical Potential Distribution 102 5.1.2. Fluid Velocity Distribution----------- 106 5.1.3. Electrophoretic Velocity-------------- 109 5.2. Electrophoresis Parallel to a Plane Wall 110 5.2.1. Electrochemical Potential Distribution 112 5.2.2. Fluid Velocity Distribution----------- 113 5.2.3. Electrophoretic velocity-------------- 115 5.3. Results and Discussion ------------------116 Chapter 6 Concluding Remarks---------------- 139 Lists of Symbols----------------------------- 145 References--------------------------------- 149 Appendix A Bipolar Cylindrical Coordinates-- 163 Appendix B Coefficients in Eq. (3.14) Satisfying Boundary Conditions Given by Eq. (3.13)--------------- 167 Appendix C Coefficients in Eq. (3.14) Satisfying Boundary Conditions Given by Eqs. (3.13b) and (3.32)-- 169 Appendix D Coefficients in Eq. (4.11) Satisfying Boundary Conditions Given by Eq. (4.8)---------------- 171 Appendix E Coefficients in Eq. (5.13) Satisfying Boundary Conditions Given by Eq. (5.11)--------------- 175 Appendix F Coefficients in Eq. (5.13) Satisfying Boundary Conditions Given by Eq. (5.23)--------------- 177 Biographical Sketch---------------------------179 | |
| dc.language.iso | en | |
| dc.subject | 熱泳 | zh_TW |
| dc.subject | 表面滑移 | zh_TW |
| dc.subject | 緩慢運動 | zh_TW |
| dc.subject | 圓柱形粒子 | zh_TW |
| dc.subject | 平板 | zh_TW |
| dc.subject | 邊界效應 | zh_TW |
| dc.subject | 不均勻表面電位 | zh_TW |
| dc.subject | 有極化之薄電雙層 | zh_TW |
| dc.subject | 電泳 | zh_TW |
| dc.subject | Cylinderical particle | en |
| dc.subject | Boundary effect | en |
| dc.subject | Plane wall | en |
| dc.subject | Creeping flow | en |
| dc.subject | Slip-flow surface | en |
| dc.subject | Thermophoresis | en |
| dc.subject | Electrophoresis | en |
| dc.subject | Nonuniform zeta potential distribution | en |
| dc.subject | Thin but polarized double layer | en |
| dc.title | 圓柱形膠體粒子泳動之邊界效應 | zh_TW |
| dc.title | Boundary Effects on Phoretic Motions of colloidal Cylinders | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王大銘(Da-Ming Wang),廖英志(Ying-Chih Liao),呂世源,曹恆光,詹正雄 | |
| dc.subject.keyword | 邊界效應,平板,圓柱形粒子,緩慢運動,表面滑移,熱泳,電泳,不均勻表面電位,有極化之薄電雙層, | zh_TW |
| dc.subject.keyword | Boundary effect,Plane wall,Cylinderical particle,Creeping flow,Slip-flow surface,Thermophoresis,Electrophoresis,Nonuniform zeta potential distribution,Thin but polarized double layer, | en |
| dc.relation.page | 179 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-06-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 8.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
