請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48018完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭宇軒(Yu-Hsuan Kuo) | |
| dc.contributor.author | Chung-Wei Lin | en |
| dc.contributor.author | 林忠偉 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:44:31Z | - |
| dc.date.available | 2013-07-07 | |
| dc.date.copyright | 2011-07-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-29 | |
| dc.identifier.citation | [1] International Technology Roadmap for Semiconductors (ITRS) (2010)
[2] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., New York: Wiley (2007) [3] Donald A. Neamen, Semiconductor Physics and Devices, 3rd ed., New York: McGraw-Hill (2003) [4] G. E. Stillman, Virginia M. Robbins, and Nader Tabatabaie, “III-V compound semiconductor devices: Optical detectors,” IEEE Transactions on Electron Devices, vol. ED-31, no. 11, pp. 1643-1655 (1984) [5] C. H. Huang, M. Y. Yang, Albert Chin, W. J. Chen, C. X. Zhu, B. J. Cho, M.-F. Li, and D. L. Kwong, “Very low defects and high performance Ge-On-Insulator p-MOSFETs with Al2O3 gate dielectrics,” Symposium on VLSI Technology Digest of Technical Papers, pp. 119-120 (2003) [6] M. Takai, T. Tanigawa, K. Gamo, and S. Namba, 'Thickness dependence of SiO2 capping layers on recrystallization of germanium islands on insulator,' J. J. Appl. Phys., vol. 23, pp. L357-L359 (1984) [7] M. Takai, T. Tanigawa, M. Miyauchi, Shin-ichi Nakashima, K. Gamo, and S. Namba, 'Residual strain in single crystalline germanium islands on insulator,' J. J. Appl. Phys., vol. 23, pp. L363-L365 (1984) [8] M Takai, T. Tanigawa, K. Gamo, and S. Namba, “Single crystalline germanium island on insulator by zone melting recrystallization,” J. J. Appl. Phys., vol. 22, pp. L624-L626 (1983) [9] M. Bruel, 'Silicon-on-insulator material technology,' Electronics Letters, vol. 31, no. 14, pp. 1201-1202 (1995) [10] Gianni Taraschi, Arthur J. Pitera, and Eugene A. Fitzgerald, “Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques,” Solid-State Electronics, vol. 48, pp. 1297-1305 (2004) [11] Shu Nakaharai, Tsutomu Tezuka, Naoharu Sugiyama, Yoshihiko Moriyama, and Shin-ichi Takagi, “Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique,” Appl. Phys. Lett., vol. 83, no. 17, pp. 3516-3518 (2003) [12] Masanori Tanaka, Atsushi Kenjo, Taizoh Sadoh, and Masanobu Miyao, “Stress-relaxation mechanism in ultra-thin SiGe on insulator formed by H+ irradiation-assisted Ge condensation method,” Thin Solid Films, vol. 517, pp. 248-250 (2008) [13] Hiroshi Kanno, Isao Tsunoda, Atsushi Kenjo, Taizoh Sadoh, and Masanobu Miyao, “Ge-fraction-dependent metal-induced lateral crystallization of amorphous-Si1-xGex (0≦x≦1) on SiO2,” Appl. Phys. Lett., vol. 82, no. 13, pp. 2148-2150 (2003) [14] Hiroshi Kanno, Kaoru Toko, Taizoh Sadoh, and Masanobu Miyao, “Temperature dependent metal-induced lateral crystallization of amorphous SiGe on insulating substrate,” Appl. Phys. Lett., vol. 89, pp. 182120 (2006) [15] Jin-Hong Park, Pawan Kapur, Krishna C. Saraswat, and Hailin Peng, “A very low temperature single crystal germanium growth process on insulating substrate using Ni-induced lateral crystallization for three dimensional integrated circuits” Appl. Phys. Lett., vol. 91, pp. 143107 (2007) [16] Isao Tsunoda, Ryo Matsuura, Masanori Tanaka, Hajime Watakabe, Toshiyuki Sameshima, and Masanobu Miyao, “Direct formation of strained Si on insulator by laser annealing,” Thin Solid Films, vol. 508, pp. 96-98 (2006) [17] H. Watakabe, T. Sameshima, H. Kanno, T. Sadoh, and M. Miyao, “Electrical and structural properties of poly-SiGe film formed by pulsed-laser annealing,” J. Appl. Phys., vol. 95, no. 11, pp. 6457-6461 (2004) [18] Hajime Watakabe, Toshiyuki Sameshima, Hiroshi Kanno, and Masanobu Miyao, “Electrical properties for poly-Ge films fabricated by pulsed laser annealing,” Thin Solid Films, vol. 508, pp. 315-317 (2006) [19] A. Yamashita, Y. Okamoto, S. Higashi, S. Miyazaki, H. Watakabe, and T. Sameshima, “In-situ observation of rapid crystalline growth induced by excimer laser irradiation to Ge/Si stacked structure,” Thin Solid Films, vol. 508, pp. 53-56 (2006) [20] Toshiyuki Sameshima, Hajime Watakabe, Nobuyuki Andoh, and Seiichiro Higashi, “Pulsed laser annealing of thin silicon films,” J. J. Appl. Phys., vol. 45, no. 4A, pp. 2437-2440 (2006) [21] Yaocheng Liu, Michael D. Deal, and James D. Plummer, “High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates,” Appl. Phys. Lett., vol. 84, no. 14, pp. 2563-2565 (2004) [22] Douglas J. Tweet, Jong Jan Lee, Jer-Shen Maa, and Sheng Teng Hsu, “Characterization and reduction of twist in Ge on insulator produced by localized liquid phase epitaxy,” Appl. Phys. Lett., vol. 87, pp. 141908 (2005) [23] Yaocheng Liu, Michael D. Deal, and James D. Plummer, “Rapid melt growth of germanium crystals with self-aligned microcrucibles on Si substrates,” Journal of The Electrochemical Society, vol.152, G688-G693 (2005) [24] S. Balakumar, M. M. Roy, B. Ramamurthy, C. H. Tung, Gao Fei, S. Tripathy, Chi Dongzhi, R. Kumar, N. Balasubramanian, and D. L. Kwong, “Fabrication aspects of germanium on insulator from sputtered Ge on Si-substrates,” Electrochemical and Solid-State Letters, vol. 9, G158-G160 (2006) [25] V. D. Cammilleri, V. Yam, F. Fossard, C. Renard, D. Bouchier, P. F. Fazzini, L. Ortolani, F. Houdellier, and M. Hÿtch, “Lateral epitaxial growth of germanium on silicon oxide,” Appl. Phys. Lett., vol. 93, pp. 043110 (2008) [26] Masanobu Miyao, Takanori Tanaka, Kaoru Toko, and Masanori Tanaka, “Giant Ge-on-insulator formation by Si–Ge mixing-triggered liquid-phase epitaxy,” Applied Physics Express, vol. 2, pp. 045503 (2009) [27] Masanobu Miyao, Kaoru Toko, Takanori Tanaka, and Taizoh Sadoh, “High-quality single-crystal Ge stripes on quartz substrate by rapid-melting-growth,” Appl. Phys. Lett., vol. 95, pp. 022115 (2009) [28] Kaoru Toko, Takashi Sakane, Takanori Tanaka, Taizoh Sadoh, and Masanobu Miyao, “Defect-free single-crystal Ge island arrays on insulator by rapid-melting-growth combined with seed-positioning technique,” Appl. Phys. Lett., vol. 95, pp. 112107 (2009) [29] Kaoru Toko, Takanori Tanaka, Yasuharu Ohta, Taizoh Sadoh, and Masanobu Miyao, “Defect-free Ge-on-insulator with (100), (110), and (111) orientations by growth-direction-selected rapid-melting growth,” Appl. Phys. Lett., vol. 97, pp. 152101 (2010) [30] Kaoru Toko, Takashi Sakane, Takanori Tanaka, Taizoh Sadoh, and Masanobu Miyao, “Liquid-phase epitaxial growth of Ge island on insulator using Ni-imprint-induced Si crystal as seed,” Thin Solid Films, vol. 518, pp. S182-S185 (2010) [31] T. Tanaka, M. Tanaka, M. Itakura, T. Sadoh, and M. Miyao, “Giant growth of single crystalline Ge on insulator by seeding lateral liquid-phase epitaxy,” Thin Solid Films, vol. 518, pp. S170-S173 (2010) [32] Kaoru Toko, Takanori Tanaka, Taizoh Sadoh, and Masanobu Miyao, “Formation of single-crystalline Ge stripes on quartz substrates by SiGe mixing-triggered liquid-phase epitaxy,” Thin Solid Films, vol. 518, pp. S179-S181 (2010) [33] Y. Ohta, T. Tanaka, K. Toko, T. Sadoh, and M. Miyao, “Growth-direction-dependent characteristics of Ge-on-insulator by Si-Ge mixing triggered melting growth,” Solid-State Electronics, vol. 60, pp. 18-21 (2011) [34] T. Sakane, K. Toko, T. Tanaka, T. Sadoh, and M. Miyao, “Strained single-crystal GOI (Ge on insulator) arrays by rapid-melting growth from Si (111) micro-seeds,” Solid-State Electronics, vol. 60, pp. 22-25 (2011) [35] Yaocheng Liu, Kailash Gopalafishan, Peter B. Griffin, Kai Ma, Michael D. Deal, and James D. Plummer, “MOSFETs and high-speed photodetectors on Ge-on-insulator substrates fabricated using rapid melt growth,” Electron Devices Meeting, IEDM Tech. Dig., pp. 1001-1004 (2004) [36] Jia Feng, Yaocheng Liu, Peter B. Griffin, and James D. Plummer, “Integration of germanium-on-insulator and silicon MOSFETs on a silicon substrate,” IEEE Electron Device Letters, vol. 27, no. 11 (2006) [37] Solomon Assefa, Fengnian Xia, and Yurii A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature, vol. 464, pp. 80-84 (2010) [38] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology, New Jersey: Prentice Hall (2000) [39] F.J. Humphreys, “Review grain and subgrain characterisation by electron backscatter diffraction,” Journal of Materials Science, vol. 36, pp. 3833-3854 (2001) [40] F.J. Humphreys, “Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD),” Scripta Materialia, vol. 51, pp. 771-776 (2004) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48018 | - |
| dc.description.abstract | 現今的半導體產業中,傳統的矽製程發展最成熟並且廣泛應用,因此矽材料仍為半導體產業的主流。但受限於物理上的限制,傳統矽製程終將面臨無法再縮小以求速度和成本降低的情況。所以本實驗發展了和矽同為四族半導體元素的鍺材料,其優點為遷移率較矽高,並且在光通訊波長較矽有更大的光吸收係數。因此將來可以利用其相較於矽的優點,用以結合傳統矽製程並發展更加快速之元件。
本實驗利用絕緣層上覆矽基板及純矽基板,開發出在二氧化矽絕緣層上覆多晶鍺之結構。在此我們利用低成本並且結合矽製程之液相結晶法來製作絕緣層上覆多晶鍺。此方法所憑藉的物理原理為使沉積上之非晶鍺利用一連串製程步驟來使其接觸初始材料之單晶矽,並將其快速加熱至熔點以上熔化,接著自然降溫凝固重新結晶,用以形成多晶鍺。 基於液相結晶法,本實驗成功利用兩種不同基板分別獲得鍺厚度約300nm和100nm之絕緣層上覆多晶鍺。並且其鍺區域約為5μm×5μm及10μm×10μm之陣列。另外,此實驗亦獲得長條狀約300nm厚之多晶鍺區域。藉由以上材料之製作,以期將來可使其整合在矽基板之新元件設計上,例如光偵測器。因此,此研究為將來半導體產業重要發展趨勢之一。 | zh_TW |
| dc.description.abstract | Traditional silicon technology is mature and widespread in application nowadays. Therefore, silicon is the main material in semiconductor industry. But by the limit of physics, silicon technology will finally face that it cannot reduce its scale in order to pursue high speed and low cost. Consequently, germanium as group IV as silicon is developed in this thesis. Its advantages are high mobility and larger absorption at communication wavelength than silicon. As a result, it can be combined with traditional silicon technology in order to develop more high-speed devices.
In this thesis, we developed poly-germanium on insulator (GOI) by SOI and Si substrates using a low-cost liquid phase epitaxy (LPE) method. Its principle is to anneal Ge above its melting point, and cool it rapidly in order to achieve recrystallization. We have acquired 300-nm-thick and 100-nm-thick poly-GOI respectively by two different methods in this study. Their patterns were 5μm×5μm and 10μm×10μm square arrays. In addition, we have also acquired 300-nm-thick strip GOI. By the method, it is expected to be integrated to Si substrates for new devices, such as photodetectors. Therefore, this investigation is one of the important development trends for semiconductor industry. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:44:31Z (GMT). No. of bitstreams: 1 ntu-100-R98943109-1.pdf: 2826801 bytes, checksum: 30185e22f6108dad83ac9569512881ba (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Contents
Chapter1 Introduction 1 1.1 Overview 1 1.2 Literature Review 4 1.3 Organization of the Thesis 9 Chapter 2 Fabrication Method and Analysis Based on SOI Substrate 10 2.1 Fabrication Principle and Design 10 2.2 Process Flow 12 2.3 Experiment Results 16 2.3.1 Experiment Results of Mask-1 Design 16 2.3.2 Experiment Results of Mask-2 Design 20 2.4 Key Issues in the Process 22 2.4.1 Lithography 22 2.4.2 Dry Etching 26 2.4.3 Annealing 30 2.4.4 Removing Capping Oxide 32 2.5 Analysis and Discussion 33 Chapter 3 Fabrication Method and Analysis Based on Si Substrate 37 3.1 Fabrication Principle and Design 37 3.2 Process Flow 39 3.3 Experiment Results and Analysis 42 Chapter 4 Conclusions 46 4.1 Summary 46 4.2 Future Work 48 References 49 | |
| dc.language.iso | en | |
| dc.subject | 鍺 | zh_TW |
| dc.subject | 液相結晶法 | zh_TW |
| dc.subject | 絕緣層上覆鍺 | zh_TW |
| dc.subject | Germanium on Insulator (GOI) | en |
| dc.subject | Liquid-Phase-Epitaxy (LPE) | en |
| dc.subject | Ge | en |
| dc.title | 基於絕緣層上覆矽基板及純矽基板製作絕緣層上覆多晶鍺之研究 | zh_TW |
| dc.title | The Investigation of Polycrystalline Germanium on Insulator Based on SOI and Si Substrates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),陳奕君(I-Chun Cheng) | |
| dc.subject.keyword | 鍺,絕緣層上覆鍺,液相結晶法, | zh_TW |
| dc.subject.keyword | Ge,Germanium on Insulator (GOI),Liquid-Phase-Epitaxy (LPE), | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-06-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
