請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47950完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李琳山 | |
| dc.contributor.author | Chia-Ping Chen | en |
| dc.contributor.author | 陳佳蘋 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:43:24Z | - |
| dc.date.available | 2011-07-25 | |
| dc.date.copyright | 2011-07-25 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-06 | |
| dc.identifier.citation | [1] http://www2.sims.berkeley.edu/research/projects/how-much-info/internet.html.
[2] http://www.youtube.com/. [3] Dong Wang, Simon King, and Joe Frankel, “Stochastic pronunciation modeling for spoken term detection,” in INTERSPEECH, 2009. [4] K.Iwata, K.Shinoda, and S.Furui, “Robust spoken term detection using combination of phone-based and word-based recognition,” in INTERSPEECH, 2008. [5] Text REtrieval Conference, http://trec.nist.gov/. [6] M. Saraclar and R. Sproat, “Lattice-based search for spoken utterance,” in HLT, 2004. [7] J. Mamou, D. Carmel, and R. Hoory, “Spoken document retrieval from call-center conversations,” in SIGIR, 2006. [8] Jean-Luc Gauvain and Chin-Hui Lee, “Maximum a posterior estimation for multivariate gaussian mixture observations of markov chains,” in IEEE Transaction on Speech and Audio Processing, 1994. [9] M.J.F. Gales and P.C. Woodland, “Mean and variance adaptation within the mllr framework,” in Computer Speech and Language, 1996, vol. 10, pp. 249–264. [10] Robertson SE, “The probability ranking principle in IR,” Journal of Documentation, vol. 33(4), pp. 294–304, 1977. [11] Evgeniy Gabrilovich and Shaul Markovitch, “Computing semantic relatedness using wikipedia-based explicit semantic analysis,” in International Joint Conference for Artificial Intelligence, 2007, pp. 1606–1611. [12] Vassilis Spiliopoulos, Konstantious Kotis, and George A. Vouros, “Semantic retrieval and ranking of semantic web documents using free-form queries,” in International Journal of Metadata, Semantic and Ontologies, 2008, vol. 3, pp. 95–108. [13] Yusuke Miyao, Tomoko Onta, and Katsuya Masuda, Semantic retrieval for the accurate identification of relational concepts in massive textbases,” in International Conference on Computational Linguistics, 2006. [14] Xirong Li, Cees G.M. Snoek, and Marcel Worring, Learning tag relevance by neighbor voting for social image retrieval,” in MIR, 2008. [15] Pere Obrador, Xavier Angueta, and Robrigo de Oliverira, “The role of tags and image aesthetics in social image search,” in WSM, 2009. [16] Sare Gul Sevil, Onur Kucuktunc, and Pinar Duygulu, “Autumatic tag expansion using visual similarity for photo sharing websites,” in Multimedia Tools and Applications, 2010, vol. 49, pp. 81–99. [17] Jian Chen, Rui Ma, and Zhong Su, “Weighting visual features with pseudo relevance feedback for cbir,” in Proceedings of the ACM International Conference on Image and Video Retrieval, 2010. [18] Thomas Deselaers, Roberto Paredes, Enrique Vidal, and Hermann Ney, “Learning weighted distance for relevance feedback in image retrieval,” in ICPR, 2008. [19] David R. H. Miller, Michael Kleber, and Chia-Lin Kao, “Rapid and accurate spoken term detection,” in INTERSPEECH, 2007. [20] Jonathan Mamou, Bhuvana Ramabhadran, and Olivier Siohan, “Vocabulary independent spoken term detection,” in SIGIR, 2007. [21] Timo Mertens and Daniel Schneider, “Efficient subword lattice retrieval for german spoken term detection,” in ICASSP, 2009. [22] K. Thambiratnam and S. Sridharan, “Dynamic match phone-lattice searches for very fast and accurate unrestricted vocabulary keyword spotting,” in ICASSP, 2005. [23] Dong Wang, Simon King, and Joe Frankel, “Direct posterior confidence for out-of vocabulary spoken term detection,” in SSCS, 2010. [24] Carolina Parada, Abhinav Sethy, and Bhuvana Ramabhadran, “Query-by-example spoken term detection for OOV terms,” in ASRU, 2009. [25] Timothy J. Hazen,Wade Shen, and Christopher White, “Query-by-example spoken term detection using phonetic posteriorgram templates,” in ASRU, 2009. [26] Yaodong Zhang and James R. Glass, “Unsupervised spoken keyword spotting via segmental dtw on gaussian posteriorgrams,” in ASRU, 2009. [27] Martin Wollmer, Florian Eyben, Joseph Keshet, Alex Graves, Bjorn Schuller, and Gerhard Rigoll, “Robust discriminative keyword spotting for emotionally colored spontaneous speech using bidirectional lstm networks,” in ICASSP, 2009. [28] Chao hong Meng, Hung yi Lee, and Lin shan Lee, “Improved lattice-based spoken document retrieval by directly learning from the evaluation measures,” in ICASSP, 2009. [29] Peng Yu, Duo Zhang, and Frank Seide, “Maximum entropy based normalization ofword posteriors for phonetic and lvcsr lattice search,” in ICASSP, 2006. [30] Dong Wang, Simon King, Joe Frankel, and Peter Bell, “Term-dependent confidence for out-of-vocabulary term detection,” in INTERSPEECH, 2009. [31] Peng Liu, Frank K. Soong, and Jian-Lai Zhou, “Divergence-based similarity measure for spoken document retrieval,” in ICASSP, 2007. [32] Brett Matthews, Upendra Chaudhari, and Bhuvana Ramabhadran, “Fast audio search using vector space modelling,” in ASRU, 2007. [33] Dong Wang, Javier Tejedor, Joe Frankel, Simon King, and Jose Colas, “Posteriorbased confidence measures for spoken term detection,” in ICASSP, 2009. [34] Javier Tejedor, Dong Wang, Simon King, Joe Frankel, and Jose Colas, “A posterior probability-based system hybridisation and combination for spoken term detection,” in INTERSPEECH, 2009. [35] Timo Mertens and Daniel Schneider, “Efficient subword lattice retrieval for german spoken term detection,” in ICASSP, 2009. [36] Upendra V. Chaudhari and Michael Picheny, “Improvements in phone based audio search via constrained match with high order confusion estimates,” in ASRU, 2007. [37] Yusuke Yokota Tomoyosi Akiba, “Spoken document retrieval by translating recognition candidates into correct transcriptions,” in INTERSPEECH, 2008. [38] Timo Mertens, Daniel Schneider, and Joachim Kohler, “Merging search spaces for subword spoken term detection,” in INTERSPEECH, 2009. [39] Jean-Manuel Van Thong, Pedro J. Moreno, Beth Logan, Blair Fidler, Katrina Maffey, and Matthew Moores, SPEECHBOT: An Experimental Speech-Based Search Engine for Multimedia Content in the Web, 2001. [40] B. Logan, P. Moreno, J. M. Van Thong, and E. Whittacker, “An experimental study of an audio indexing system for the web,” in ICSLP, 2000. [41] Y.-C. Pan, H.-L. Chang, , and L.-S. Lee, “Subword-based position specific posterior lattices (s-pspl) for indexing speech information,” in INTERSPEECH, 2007. [42] Yi cheng Pan, Hung lin Chang, and Lin shan Lee, “Analytical comparison between position specific posterior lattices and confusion networks based onwords and subword units for spoken document indexing,” in ASRU, 2007. [43] Roy Wallace, Robbie Vogt, and Sridha Sridharan, “A phonetic search approach to the 2006 nist spoken term detection evaluation,” in INTERSPEECH, 2007. [44] Ville T. Turunen, “Reducing the effect of oov query words by using morph-based spoken document retrieval,” in INTERSPEECH, 2008. [45] DongWang, Joe Frankel, Javier Tejedor, and Simon King, “A comparison of phone and grapheme-based spoken term detection,” in ICASSP, 2008. [46] Yoshiaki Itoh, Kohei Iwata, Kazunori Kojima, Masaaki Ishigame, Kazuyo Tanaka, and Shi wook Lee, “An integration method of retrieval results using plural subword models for vocabulary-free spoken document retrieval,” in INTERSPEECH, 2007. [47] Alvin Garcia and Herbert Gish, “Keyword spotting of arbitrary words using minimal speech resources,” in ICASSP, 2006. [48] Shi wook Lee, Kazuyo Tanaka, and Yoshiaki Itoh, “Combining multiple subword representations for open-vocabulary spoken document retrieval,” in ICASSP, 2005. [49] Sha Meng, Peng Yu, Jia Liu, and Frank Seide, “Fusing multiple systems into a compact lattice index for chinese spoken term detection,” in ICASSP, 2008. [50] Corentin Dubois and Delphine Charlet, “Using textual information from lvcsr transcripts for phonetic-based spoken term detection,” in ICASSP, 2008. [51] Dogan Can, Erica Cooper, Abhinav Sethy, Chris White, Bhuvana Ramabhadran, and Murat Saraclar, “Effect of pronunciations on oov queries in spoken term detection,” in ICASSP, 2009. [52] Dong Wang, Simon King, and Joe Frankel, “Stochastic pronunciation modelling for spoken term detection,” in INTERSPEECH, 2009. [53] Jian Shao, Roger Peng Yu, Qingwei Zhao, Yonghong Yan, and Frank Seide, “Towards vocabulary-independent speech indexing for large-scale repositories,” in INTERSPEECH, 2008. [54] Ciprian Chelba and Alex Acero, “Position specific posterior lattices for indexing speech,” in ACL, 2005. [55] Jorge Silva, Ciprian Chelba, and Alex Acero, “Pruning analysis for the position specific posterior lattices for spoken document search,” in ICASSP, 2006. [56] Jorge Silva, Ciprian Chelba, and Alex Acero, “Integration of metadata in spoken document search using position specific posterior latices,” in SLT, 2006. [57] Takaaki Hori, I. Lee Hetherington, Timothy J. Hazen, and James R. Glass, “Openvocabulary spoken utterance retrieval using confusion networks,” in ICASSP, 2007. [58] Zheng-Yu Zhou, Peng Yu, Ciprian Chelba, and Frank Seide, “Towards spokendocument retrieval for the internet: lattice indexing for large-scale web-search architectures,” in Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Morristown, NJ, USA, 2006, pp. 415–422, Association for Computational Linguistics. [59] Frank Seide, Peng Yu, and Yu Shi, “Towards spoken-document retrieval for the enterprise: Approximateword-lattice indexing with text indexers,” in ASRU, 2007. [60] Roy Wallace, Robbie Vogt, and Sridha Sridharan, “Spoken term detection using fast phonetic decoding,” in ICASSP, 2009. [61] Peng Yu and Frank Seide, “Fast two-stage vocabulary-independent search in spontaneous speech,” in ICASSP, 2005. [62] Wei-Qiang Zhang and Jia Liu, “Two-stage method for specific audio retrieval,” in ICASSP, 2007. [63] Sha Meng, Jian Shao, Roger Peng Yu, Jia Liu, and Frank Seide, “Addressing the out-of-vocabulary problem for large-scale chinese spoken term detection,” in INTERSPEECH, 2008. [64] W. Shen, C. White, and T. Hazen, “A comparison of query-by-example methods for spoken term detection,” in INTERSPEECH, 2009. [65] Hui Lin, Alex Stupakov, and Jeff Bilmes, “Improving multi-lattice alignment based spoken keyword spotting,” in ICASSP, 2009. [66] Hui Lin, Alex Stupakov, and Jeff Bilmes, “Spoken keyword spotting via multilattice alignment,” in INTERSPEECH, 2008. [67] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,”Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975. [68] Chengxiang Zhai and John Lafferty, “Model-based feedback in the language modeling approach to information retrieval,” in CIKM ’01: Proceedings of the tenth international conference on Information and knowledge management, New York, NY, USA, 2001, pp. 403–410, ACM. [69] S. E. Robertson and K. Sparck Jones, “Relevance weighting of search terms,” in Journal of the American Society for Information Science, 1976. [70] S. Tong and E. Chang, “Support vector machine active learning for image retrieval,”in Proc. ACM Multimedia, 2001. [71] K.-S. Goh, E. Y. Chang, and W.-C. Lai, “Multimodal concept-dependent active learning for image retrieval,” in Proc. ACM Multimedia, 2004. [72] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang, “Mean version space: a new active learning method for content-based image retrieval,” in In Proc. MIRWorkshop, ACM Multimedia, 2004. [73] Diane Kelly and Jaime Teevan, “Implicit feedback for inferring user preference: a bibliography,” 2003, vol. 37, pp. 18–28. [74] Georg Buscher, Andreas Dengel, and Ludger van Elst, “Eye movements as implicit relevance feedback,” in CHI ’08: CHI ’08 extended abstracts on Human factors in computing systems, 2008, pp. 2991–2996. [75] Georg Buscher, Andreas Dengel, and Ludger van Elst, “Query expansion using gaze-based feedback on the subdocument level,” in SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, 2008, pp. 387–394. [76] Jarkko Salojarvi, Kai Puolamaki, and Samuel Kaski, “Implicit relevance feedback from eye movements,” in In, 2005, pp. 513–518. [77] Ioannis Arapakis, Joemon M. Jose, and Philip D. Gray, “Affective feedback: an investigation into the role of emotions in the information seeking process,” in SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, 2008, pp. 395–402. [78] S.E. Robertson, S. Walker, M.M. Beaulieu, M. Gatford, and A. Payne, “Okapi at trec-4,” 1996. [79] Victor Lavrenko and W. Bruce Croft, “Relevance based language models,” in SIGIR ’01: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, 2001, pp. 120–127. [80] D.L. Yeung, C.L.A. Clarke, G.V. Cormack, T.R. Lynam, and E.L. Terra, “Taskspecific query expansion,” in Proc. 12th Text REtrieval Conference (TREC), 2004. [81] Jinxi Xu and W. Bruce Croft, “Query expansion using local and global document analysis,” in SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, 1996, pp. 4–11. [82] Tao Tao and ChengXiang Zhai, “Regularized estimation of mixture models for robust pseudo-relevance feedback,” in SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, 2006, pp. 162–169. [83] Donald Metzler and W. Bruce Croft, “Latent concept expansion using markov random fields,” in SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, 2007, pp.311–318. [84] P. Jourlin, S. E. Johnson, K. S. Jones, and P. C. Woodland, “General query expansion techniques for spoken document retrieval,” in ISCA, 1999. [85] Steve Renals, Dave Abberley, David Kirby, and Tony Robinson, “Indexing and retrieval of broadcast news,” in Speech Communication, 2000. [86] S. E. Johnson, P. Jourlin, K. Sparck Jones, and P.C. Woodland, “Spoken document retrieval for trec-9 at cambridge university,” in Proc. TREC-7, 1999. [87] Masataka Goto, Jun Ogata, and Kouichirou Eto, “Podcastle: A web 2.0 approach to speech recognition research,” in INTERSPEECH, 2007. [88] Jun Ogata and Masataka Goto, “Podcastle: Collaborative training of acoustic models on the basis of wisdom of crowds for podcast transcription,” in INTERSPEECH, 2009. [89] Hung yi Lee, Chia ping Chen, Ching feng Yeh, and Lin shan Lee, “Improved spoken term detection by discriminative training of acoustic models based on user relevance feedback,” in INTERSPEECH, 2010. [90] Jaroslaw Balinski and Czeslaw Danilowicz, “Re-ranking method based on interdocument distances,” in Information Processing and Management, 2005, vol. 41, pp. 759–775. [91] Krishna Bharat andGeorge A. Mihaila, “When experts agree: using non-affiliated experts to rank popular topics,” in ACM Transactions on Information Systems, 2002, pp. 47–58. [92] Oren Kurland and Lilian Lee, “Pagerank without hyperlinks: Structual re-ranking using links induced by language models,” in SIGIR, 2005. [93] Giorgos Giannopoulos, Theodore Dalamagas, and Timos Sellis, “Collaborative ranking function training for web search personalization,” in Proceedings of the PersDB, 2009. [94] Giorgos Giannopoulos, Theodore Dalamagas, , and Magdalini Eirinaki andTimos Sellis, “Boosting the ranking function learning process using clustering,” in WIDM, 2008. [95] Dong Wang, Simon King, Joe Frankal, and Peter Bell, “Term-dependent confidence for out-of-vocabulary term detection,” in INTERSPEECH, 2009. [96] Jacier Tejedor, Doroteo T. Toledana, and Miguel Bautista, “Augmented set of features for confidence estimation in spoken term detection,” in INTERSPEECH, 2010. [97] Dong Wang, Simon King, and Nicholas Evans, “Crf-based stochastic pronunciation modeling for out-of-vocabulary spoken term detection,” in INTERSPEECH,2010. [98] X. Huang, A. Acero, and H.-W. Hon, “Spoken language processing,” Pearson Education Taiwan Ltd., 2005. [99] B.-Y. Liang, “Acoustic models for continuous mandarin speech recognition,” M.S. thesis, NTU, 1998. [100] Cambridge University Engineering Dept. (CUED), Machine Intelligence Laboratory, ”HTK”, http://htk.eng.cam.ac.uk/. [101] S. M. Katz, “Estimation of probabilities from sparse data for other language component of a speech recognizer,” in IEEE Trans. Acoustics, Speech and Signal Processing, 1987. [102] SRI Speech Technology and Research Laboratory, ”SRILM”, http://www.speech.sri.com/projects/srilm/. [103] Chun an Chan and Lin shan Lee, “Unsupervised spoken term detection with spoken queries using segment-based dynamic time warping,” in INTERSPEECH, 2010. [104] A. Langville and C. Meyer, “A survey of eigenvector methods for web information retrieval,” in SIAM Review, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47950 | - |
| dc.description.abstract | 一般而言,語音資訊檢索會先透過語音辨識,將語料庫中的語音轉換為文字,再對辨識出的文字進行檢索。然而,這樣的系統架構非常仰賴好的語音辨識系統。如果語音辨識的辨識率很低,檢索系統無法根據辨識出的文字來判斷查詢問句所在的語句,則語音資訊檢索的效能會大幅下降。
本論文提出兩種以聲學特徵相似度來改進語音資訊檢索的方法:虛擬相關回饋及圖學基礎之重排序; 其優點在於以非監督(Unsupervised) 的方法,透過聲學特徵的比對,有效彌補因辨識率低造成的檢索效能下降。在虛擬相關回饋部分,我們定義聲學特徵相似分數,並提出三種虛擬相關語句選擇的方法。在圖學基礎之重排序部分,我們以聲學特徵相似度建立語句關係圖,並套用隨機漫步及修 正隨機漫步演算法來重新分配相關分數。我們並結合兩種方法,達到最好的語音檢索效能。在辨識率為62:55% 的辨識系統下,語音資訊檢索的平均準確率從55:54%進步至70:61%,相對進步率為27%。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:43:24Z (GMT). No. of bitstreams: 1 ntu-100-R98942076-1.pdf: 5690299 bytes, checksum: 3c9120d4db48ada8070dc8c140ea0873 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書. . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . iii 一、緒論. . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . 1 1.3 本論文研究貢獻. . . . . . . . . . . . . . . . . . . 2 1.4 章節安排. . . . . . . . . . . . . . . . . . . . . . 3 二、背景知識. . . . . . . . . . . . . . . . . . . . . . 4 2.1 資訊檢索. . . . . . . . . . . . . . . . . . . . . . 4 2.2 語音資訊檢索. . . . . . . . . . . . . . . . . . . . 6 2.2.1 語音資訊檢索背景. . . . . . . . . . . . . . . . . 7 2.2.2 相關回饋. . . . . . . . . . . . . . . . . . . . . 10 2.2.3 重排序. . . . . . . . . . . . . . . . . . . . . . 12 2.3 資訊檢索評估機制. . . . . . . . . . . . . . . . . . 14 三、傳統語音資訊檢索. . . . . . . . . . . . . . .. . . .16 3.1 抽取聲學特徵. . . . . . . . . . . . . . . . . . . . 16 3.2 語音辨識. . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 聲學模型. . . . . . . . . . . . . . . . . . . . . 20 3.2.2 語言模型. . . . . . . . . . . . . . . . . . . . . 22 3.2.3 辨識結果. . . . . . . . . . . . . . . . . . . . . 23 3.3 檢索系統. . . . . . . . . . . . . . . . . . . . . . 23 四、實驗語料及背景介紹. . . . . . . . . . . . . . . . . 26 4.1 檢索測試語料. . . . . . . . . . . . . . . . . . . . 26 4.2 聲學特徵. . . . . . . . . . . . . . . . . . . . . . 26 4.3 語音辨識. . . . . . . . . . . . . . . . . . . . . . 27 4.3.1 聲學模型. . . . . . . . . . . . . . . . . . . . . 27 4.3.2 辭典與語言模型. . . . . . . . . . . . . . . . . . 29 4.4 查詢問句. . . . . . . . . . . . . . . . . . . . . . 30 4.5 基準實驗(Baseline). . . . . . . . . . . . . . . . . 30 五、虛擬相關回饋. . . . . . . . . . . . . . . . . . . . 32 5.1 系統架構. . . . . . . . . . . . . . . . . . . . . . 32 5.2 聲學距離. . . . . . . . . . . . . . . . . . . . . . 34 5.2.1 相符區域(Hit Region). . . . . . . . . . . . . . . 35 5.2.2 動態時軸校正(Dynamic Time Warping). . . . . . . . 36 5.3 聲學特徵相似分數. . . . . . . . . . . . . . . . . . 38 5.4 與原始相關分數整合. . . . . . . . . . . . . . . . . 40 5.5 虛擬相關語句選擇. . . . . . . . . . . . . . . . . . 41 5.5.1 依原始相關分數選擇. . . . . . . . . . . . . . . . 41 5.5.2 依聲學距離向量選擇. . . . . . . . . . . . . . . . 41 5.5.3 依最小距離選擇. . . . . . . . . . . . . . . . . . 43 5.6 實驗與分析. . . . . . . . . . . . . . . . . . . . . 43 5.6.1 虛擬相關回饋. . . . . . . . . . . . . . . . . . . 43 5.6.2 參數影響. . . . . . . . . . . . . . . . . . . . . 45 六、圖學基礎之重排序. . . . . . . . . . . . . . . . . . 50 6.1 系統架構. . . . . . . . . . . . . . . . . . . . . . 50 6.2 聲學分佈關係圖. . . . . . . . . . . . . . . . . . . 52 6.3 圖學基礎演算法. . . . . . . . . . . . . . . . . . . 53 6.3.1 隨機漫步演算法(Random Walk) . . . . . . . . . . . 53 6.3.2 修正隨機漫步演算法. . . . . . . . . . . . . . . . 54 6.4 與原始相關分數整合. . . . . . . . . . . . . . . . . 55 6.5 實驗與分析. . . . . . . . . . . . . . . . . . . . . 55 6.5.1 圖學基礎之重排序. . . . . . . . . . . . . . . . . 56 6.5.2 參數影響. . . . . . . . . . . . . . . . . . . . . 58 6.6 與虛擬相關回饋整合. . . . . . . . . . . . . . . . . 62 七、結論與展望. . . . . . . . . . . . . . . . . . . . . 64 7.1 總結. . . . . . . . . . . . . . . . . . . . . . . . 64 7.2 未來展望. . . . . . . . . . . . . . . . . . . . . . 65 7.2.1 考慮語者變異. . . . . . . . . . . . . . . . . . . 65 7.2.2 考慮音框比重. . . . . . . . . . . . . . . . . . . 66 7.2.3 考慮語言資訊. . . . . . . . . . . . . . . . . . . 66 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 語音資訊檢索 | zh_TW |
| dc.subject | 虛擬相關回饋 | zh_TW |
| dc.subject | 口語詞彙偵測 | zh_TW |
| dc.subject | Pseudo-Relevance Feedback | en |
| dc.subject | Speech Information Retireval | en |
| dc.subject | Spoken Term Detection | en |
| dc.title | 以聲學特徵相似度改進語音資訊檢索 | zh_TW |
| dc.title | Improved Speech Information Retrieval by Acoustic Feature Similarity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信宏,鄭秋豫,王小川,簡仁宗 | |
| dc.subject.keyword | 語音資訊檢索,口語詞彙偵測,虛擬相關回饋, | zh_TW |
| dc.subject.keyword | Speech Information Retireval,Spoken Term Detection,Pseudo-Relevance Feedback, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
