請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47932
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何國川(Kuo-Chuan Ho) | |
dc.contributor.author | Chen-Yu Chou | en |
dc.contributor.author | 周振宇 | zh_TW |
dc.date.accessioned | 2021-06-15T06:43:08Z | - |
dc.date.available | 2013-07-25 | |
dc.date.copyright | 2011-07-25 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-06 | |
dc.identifier.citation | [1] M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry 44 (2005) 6841-6851.
[2] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: The case for thin-film solar cells. Science 285 (1999) 692-698. [3] B. O'regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (1991) 737-740. [4] W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, Dye-sensitized solar cells: scale up and current-voltage characterization. Solar Energy Materials and Solar Cells 91 (2007) 1676-1680. [5] M. Gratzel, Photoelectrochemical cells. Nature 414 (2001) 338-344. [6] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B 107 (2003) 8981-8987. [7] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. S. Perera, An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications (1999) 15-16. [8] K. Sayama, H. Sugihara, H. Arakawa, Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a Ruthenium dye. Chemistry of Materials 10 (1998) 3825-3832. [9] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell Ruthenium sensitizers. Journal of the American Chemical Society 127 (2005) 16835-16847. [10] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nanowire dye-sensitized solar cells. Nature Materials 4 (2005) 455-459. [11] P. S. Archana, R. Jose, C. Vijila, S. Ramakrishna, Improved electron diffusion coefficient in electrospun TiO2 nanowires. Journal of Physical Chemistry C 113 (2009) 21538-21542. [12] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98 (2005) 041301-041103. [13] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics 75 (1994) 2042-2047. [14] N. Kopidakis, E. A. Schiff, N. G. Park, J. Van De Lagemaat, A. J. Frank, Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2. Journal of Physical Chemistry B 104 (2000) 3930-3936. [15] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nature Materials 4 (2005) 455-459. [16] Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, ZnO Nanostructures for dye-sensitized solar cells. Advanced Materials 21 (2009) 4087-4108. [17] I. Bedja, P. V. Kamat, X. Hua, A. G. Lappin, S. Hotchandani, Photosensitization of nanocrystalline ZnO films by Bis(2,2‘-bipyridine)(2,2‘-bipyridine-4,4‘-dicarboxylic acid)ruthenium(II). Langmuir 13 (1997) 2398-2403. [18] H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya, Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3−Zn2+) aggregate formation. The Journal of Physical Chemistry B 107 (2003) 2570-2574. [19] M. Gratzel, Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 4 (2003) 145-153. [20] Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, M. Gratzel, The 2,2,6,6-Tetramethyl-1-piperidinyloxy radical: an efficient, Iodine- free redox mediator for dye-sensitized solar cells. Advanced Functional Materials 18 (2008) 341-346. [21] M. Gratzel, Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research 42 (2009) 1788-1798. [22] J. B. Asbury, R. J. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, T. Lian, Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films. The Journal of Physical Chemistry B 103 (1999) 3110-3119. [23] G. Ramakrishna, D. A. Jose, D. K. Kumar, A. Das, D. K. Palit, H. N. Ghosh, Strongly coupled Ruthenium−Polypyridyl complexes for efficient electron injection in dye-sensitized semiconductor nanoparticles. The Journal of Physical Chemistry B 109 (2005) 15445-15453. [24] G. Benko, J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev, V. Sundstrom, Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. Journal of the American Chemical Society 124 (2001) 489-493. [25] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chemical Reviews 110 (2010) 6595-6663. [26] B. O'regan, J. Moser, M. Anderson, M. Graetzel, Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. The Journal of Physical Chemistry 94 (1990) 8720-8726. [27] S. Soedergren, A. Hagfeldt, J. Olsson, S. E. Lindquist, Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in potoelectrochemical cells. The Journal of Physical Chemistry 98 (1994) 5552-5556. [28] P. Wang, B. Wenger, R. Humphry-Baker, J. E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, M. Gratzel, Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. Journal of the American Chemical Society 127 (2005) 6850-6856. [29] M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 3-14. [30] J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban, Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. The Journal of Physical Chemistry B 108 (2004) 8106-8118. [31] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 115 (1993) 6382-6390. [32] P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society 123 (2001) 1613-1624. [33] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-Le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, Highly efficient light-harvesting Ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3 (2009) 3103-3109. [34] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, Dye-sensitized solar cells with a high absorptivity Ruthenium sensitizer featuring a 2-(Hexylthio)thiophene conjugated bipyridine. The Journal of Physical Chemistry C 113 (2009) 6290-6297. [35] H. Arakawa, T. Yamaguchi, T. Sutou, Y. Koishi, N. Tobe, D. Matsumoto, T. Nagai, Efficient dye-sensitized solar cell sub-modules. Current Applied Physics 10 (2010) S157-S160. [36] L. Wang, X. M. Fang, Z. G. Zhang, Design methods for large scale dye-sensitized solar modules and the progress of stability research. Renewable & Sustainable Energy Reviews 14 (2010) 3178-3184. [37] Y.-L. Lee, Chang, Chi-Hsiu, Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. Journal of Power Sources 185 (2008) 584-588. [38] W. Lee, J. Lee, S. Lee, W. Yi, S.-H. Han, B. W. Cho, Enhanced charge collection and reduced recombination of CdS/TiO2 quantum-dots sensitized solar cells in the presence of single-walled carbon nanotubes. Applied Physics Letters 92 (2008) 153510. [39] H. Lee, H. C. Leventis, S.-J. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nuesch, T. Geiger, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeeruddin, PbS and CdS quantum dot-sensitized solid-state solar cells: “old concepts, new results”. Advanced Functional Materials 19 (2009) 2735-2742. [40] D. R. Baker, P. V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Advanced Functional Materials 19 (2009) 805-811. [41] M. Shalom, S. Dor, S. RuHle, L. Grinis, A. Zaban, Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. The Journal of Physical Chemistry C 113 (2009) 3895-3898. [42] L. M. Peter, D. J. Riley, E. J. Tull, K. G. U. Wijayantha, Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chemical Communications (2002) 1030-1031. [43] S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang, L. Jiang, High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. Journal of Materials Chemistry 12 (2002) 1459-1464. [44] S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, Y. M. Yang, Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Applied Physics Letters 90 (2007) 143517. [45] G. Zhu, F. Su, T. Lv, L. Pan, Z. Sun, Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells. Nanoscale Research Letters 5 (2010) 1749-1754. [46] I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society 128 (2006) 2385-2393. [47] L. J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Applied Physics Letters 91 (2007) 023116. [48] S. Gimenez, I. Mora-Sero, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gomez, L. J. Diguna, Q. Shen, T. Toyoda, J. Bisquert, Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 20 (2009) 295204. [49] L. W. Chong, H. T. Chien, Y. L. Lee, Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications. Journal of Power Sources 195 (2010) 5109-5113. [50] C. Levy-Clement, R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, CdSe-Sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Advanced Materials 17 (2005) 1512-1515. [51] W. W. Yu, L. H. Qu, W. Z. Guo, X. G. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials 15 (2003) 2854-2860. [52] R. Plass, S. Pelet, J. Krueger, M. Gratzel, U. Bach, Quantum dot sensitization of organic−inorganic hybrid solar cells. The Journal of Physical Chemistry B 106 (2002) 7578-7580. [53] H. J. Lee, P. Chen, S.-J. Moon, F. D. R. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Gratzel, M. K. Nazeeruddin, Regenerative PbS and CdS Quantum dot sensitized solar cells with a Cobalt complex as hole mediator. Langmuir 25 (2009) 7602-7608. [54] R. Vogel, P. Hoyer, H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. Journal of Physical Chemistry 98 (1994) 3183-3188. [55] A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, G. J. Wang, Ag2S quantum dot-sensitized solar cells. Electrochemistry Communications 12 (2010) 1158-1160. [56] A. Zaban, O. I. Mićić, B. A. Gregg, A. J. Nozik, Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14 (1998) 3153-3156. [57] P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, A. J. Nozik, Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. The Journal of Physical Chemistry B 110 (2006) 25451-25454. [58] J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, A. J. Nozik, Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Letters 7 (2007) 1779-1784. [59] G. Y. Lan, Y. W. Lin, Y. F. Huang, H. T. Chang, Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution. Journal of Materials Chemistry 17 (2007) 2661. [60] W. W. Yu, X. Peng, Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angewandte Chemie International Edition 41 (2002) 2368-2371. [61] L. Brus, Eelctronic wave-functions in semiconductor clusters - experiment and theory. Journal of Physical Chemistry 90 (1986) 2555-2560. [62] W. W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials 15 (2003) 2854-2860. [63] A. J. Nozik, Multiple exciton generation in semiconductor quantum dots. Chemical Physics Letters 457 (2008) 3-11. [64] A. J. Nozik, Quantum dot solar cells. Physica E-Low-Dimensional Systems & Nanostructures 14 (2002) 115-120. [65] W. Shockley, H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics 32 (1961) 510-519. [66] O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen, G. Hodes, Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry 181 (2006) 306-313. [67] C. H. Chang, Y. L. Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Applied Physics Letters 91 (2007) 053503. [68] Y. Tak, S. J. Hong, J. S. Lee, K. Yong, Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array. Crystal Growth & Design 9 (2009) 2627-2632. [69] R. Vogel, K. Pohl, H. Weller, Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chemical Physics Letters 174 (1990) 241-246. [70] T. Toyoda, J. Sato, Q. Shen, Effect of sensitization by quantum-sized CdS on photoacoustic and photoelectrochemical current spectra of porous TiO2 electrodes. Review of Scientific Instruments 74 (2003) 297-299. [71] D. R. Baker, P. V. Kamat, Disassembly, reassembly, andphotoelectrochemistry of etched TiO2 nanotubes. Journal of Physical Chemistry C 113 (2009) 17967-17972. [72] S. Hotchandani, P. V. Kamat, Modification of electrode surface with semiconductor colloids and its sensitization with chlorophyll a. Chemical Physics Letters 191 (1992) 320-326. [73] Y. Tak, S. J. Hong, J. S. Lee, K. Yong, Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. Journal of Materials Chemistry 19 (2009) 5945. [74] W. Lee, S. Min, V. Dhas, S. Ogale, S. Han, Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochemistry Communications 11 (2009) 103-106. [75] C. Nasr, S. Hotchandani, W. Y. Kim, R. H. Schmehl, P. V. Kamat, Photoelectrochemistry of composite semiconductor thin films. photosensitization of SnO2/CdS coupled nanocrystallites with a Ruthenium Polypyridyl complex. The Journal of Physical Chemistry B 101 (1997) 7480-7487. [76] Y. J. Shen, Y. L. Lee, Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications. Nanotechnology 19 (2008) 045602. [77] R. S. Dibbell, D. F. Watson, Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles. The Journal of Physical Chemistry C 113 (2009) 3139-3149. [78] Q. Shen, J. Kobayashi, L. J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. Journal of Applied Physics 103 (2008) 084304. [79] Y. L. Lee, B. M. Huang, H. T. Chien, Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chemistry of Materials 20 (2008) 6903-6905. [80] H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeeruddin, Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Letters 9 (2009) 4221-4227. [81] I. Mora-Sero, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gomez, J. Bisquert, Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology 19 (2008) 424007. [82] P. V. Kamat, Quantum Dot Solar Cells. Semiconductor nanocrystals as light harvesters. Journal of Physical Chemistry C 112 (2008) 18737-18753. [83] J. Chen, D. W. Zhao, J. L. Song, X. W. Sun, W. Q. Deng, X. W. Liu, W. Lei, Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells. Electrochemistry Communications 11 (2009) 2265-2267. [84] J. H. Bang, P. V. Kamat, Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3 (2009) 1467-1476. [85] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. V. Kamat, Quantum dot solar cells. tuning photoresponse through size and shape control of CdSe−TiO2 architecture. Journal of the American Chemical Society 130 (2008) 4007-4015. [86] B. Carlson, K. Leschkies, E. S. Aydil, X. Y. Zhu, Valence band alignment at Cadmium Selenide quantum dot and Zinc oxide (101‾0) interfaces. The Journal of Physical Chemistry C 112 (2008) 8419-8423. [87] J. Chen, J. Wu, W. Lei, J. L. Song, W. Q. Deng, X. W. Sun, Co-sensitized quantum dot solar cell based on ZnO nanowire. Applied Surface Science 256 (2010) 7438-7441. [88] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Letters 7 (2007) 1793-1798. [89] B. Farrow, P. V. Kamat, CdSe quantum dot sensitized solar cells. shuttling electrons through stacked carbon nanocups. Journal of the American Chemical Society 131 (2009) 11124-11131. [90] X. Cao, P. Chen, Y. Guo, Decoration of textured ZnO nanowires array with CdTe quantum dots: enhanced light-trapping effect and photogenerated charge separation. The Journal of Physical Chemistry C 112 (2008) 20560-20566. [91] B.-R. Hyun, Y.-W. Zhong, A. C. Bartnik, L. Sun, H. D. AbrunA, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, N. F. Borrelli, Electron injection from colloidal PbS Quantum dots into Titanium dioxide nanoparticles. ACS Nano 2 (2008) 2206-2212. [92] C. Ratanatawanate, Y. Tao, K. J. Balkus, Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. The Journal of Physical Chemistry C 113 (2009) 10755-10760. [93] J. J. Choi, Y.-F. Lim, M. E. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. C. D. AbrunA, F. W. Wise, T. Hanrath, PbSe nanocrystal excitonic solar cells. Nano Letters 9 (2009) 3749-3755. [94] K. S. Leschkies, A. G. Jacobs, D. J. Norris, E. S. Aydil, Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency. Applied Physics Letters 95 (2009) 193103. [95] S. Ruhle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. Chemphyschem 11 (2010) 2290-2304. [96] H. Jia, H. Xu, Y. Hu, Y. Tang, L. Zhang, TiO2@CdS core–shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties. Electrochemistry Communications 9 (2007) 354-360. [97] Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, D. Li, Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs). Electrochemistry Communications 12 (2010) 327-330. [98] W. Lee, S. Kang, S. Min, Y. Sung, S. Han, Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum. Electrochemistry Communications 10 (2008) 1579-1582. [99] E. M. Berea, M. Shalom, S. Gimenez, I. Hod, I. Mora-Sero, A. Zaban, J. Bisquert, Design of injection and recombination in quantum dot sensitized solar cells. Journal of the American Chemical Society 132 (2010) 6834-6839. [100] Y. L. Lee, Y. S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Advanced Functional Materials 19 (2009) 604-609. [101] S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays. Nanotechnology 21 (2010) 375201. [102] Z. S. Yang, C. Y. Chen, C. W. Liu, H. T. Chang, Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chemical Communications 46 (2010) 5485-5487. [103] Z. X. Yu, Q. X. Zhang, D. Qin, Y. H. Luo, D. M. Li, Q. Shen, T. Toyoda, Q. B. Meng, Highly efficient quasi-solid-state quantum-dot-sensitized solar cell based on hydrogel electrolytes. Electrochemistry Communications 12 (2010) 1776-1779. [104] X. M. Huang, S. Q. Huang, Q. X. Zhang, X. Z. Guo, D. M. Li, Y. H. Luo, Q. Shen, T. Toyoda, Q. B. Meng, A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). Chemical Communications 47 (2011) 2664-2666. [105] Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Physical Chemistry Chemical Physics 13 (2011) 4659-4667. [106] Y. Zhang, T. Xie, T. Jiang, X. Wei, S. Pang, X. Wang, D. Wang, Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices. Nanotechnology 20 (2009) 155707. [107] J. Chen, C. Li, J. L. Song, X. W. Sun, W. Lei, W. Q. Deng, Bilayer ZnO nanostructure fabricated by chemical bath and its application in quantum dot sensitized solar cell. Applied Surface Science 255 (2009) 7508-7511. [108] X. W. Sun, J. Chen, J. L. Song, D. W. Zhao, W. Q. Deng, W. Lei, Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode. Optics Express 18 (2010) 1296-1301. [109] K. T. Kuo, D. M. Liu, S. Y. Chen, C. C. Lin, Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency. Journal of Materials Chemistry 19 (2009) 6780. [110] G. Hodes, Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. Journal of Physical Chemistry C 112 (2008) 17778-17787. [111] G. Hodes, J. Manassen, D. Cahen, Electrocatalytic electrodes for the polysulfide redox system. Journal of the Electrochemical Society 127 (1980) 544-549. [112] Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto, S. Kuwabata, CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. Chemistry Letters 36 (2007) 88-89. [113] K. M. Lee, C. Y. Hsu, W. H. Chiu, M. C. Tsui, Y. L. Tung, S. Y. Tsai, K. C. Ho, Dye-sensitized solar cells with a micro-porous TiO2 electrode and gel polymer electrolytes prepared by in situ cross-link reaction. Solar Energy Materials and Solar Cells 93 (2009) 2003-2007. [114] C. H. Ku, J. J. Wu, Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Applied Physics Letters 91 (2007) 093117. [115] L. Han, N. Koide, Y. Chiba, T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters 84 (2004) 2433-2435. [116] L. Han, N. Koide, Y. Chiba, A. Islam, T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus Chimie 9 (2006) 645-651. [117] Y. F. Hsu, Y. Y. Xi, A. B. Djurisic, W. K. Chan, ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition. Applied Physics Letters 92 (2008) 133507. [118] K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, M. Paulose, J. A. Seabold, K. S. Choi, C. A. Grimes, Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. Journal of Physical Chemistry C 113 (2009) 6327-6359. [119] J. R. Mann, M. K. Gannon, T. C. Fitzgibbons, M. R. Detty, D. F. Watson, Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films. Journal of Physical Chemistry C 112 (2008) 13057-13061. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47932 | - |
dc.description.abstract | 本論文研究製備二氧化鈦(TiO2)或氧化鋅(ZnO)作為量子點敏化太陽能電池(QDSSC)光電極中半導體奈米結構層之應用,並探討藉由改良光電極增進元件效率之方法與其原因。
本研究第一部分(第二章)是以一定比例參雜單分散聚苯乙烯(PS)乳膠圓球粒子(約300 nm)於二氧化鈦薄膜之中,經過高溫燒結得到含有微奈米複合孔隙,團簇結構的二氧化鈦薄膜(M-TiO2)。之後利用液相之連續離子層吸附反應(SILAR),將硫化鎘量子點合成並吸附沉積於此改良結構中(M-TiO2/CdS),並與未經PS球修飾但經同樣製程製備之二氧化鈦薄膜(B-TiO2/CdS)做比較。在本研究探討沉積次數對元件效能之影響中,我們發現若使用B-TiO2結構之薄膜吸附量子點,當SILAR次數達到五層(B-TiO2/CdS5)時,可以得到1.35% 的光電轉化效率;而使用修飾後之薄膜,當SILAR次數達到六層(M-TiO2/CdS6)時,其最高效率表現可提升至1.79%。在本研究中亦首次發現硫氰酸胍(guanidine thiocyanate,GuSCN)可應用於量子點敏化太陽能電池中多硫成分電解液之添加劑,其光電轉化效率可進一步提升至2.01%。此外,本章量測了量子點敏化太陽能電池之元件穩定性。本研究使用掃描式電子顯微鏡(SEM)觀測薄膜表面及側面之型態,能量散佈分析儀用於研究M-TiO2/CdS 與 B-TiO2/CdS之化學元素組成計量比,元件中光電流變化則利用入射光子-電流轉化效率(IPCE)進一步證實。 在本論文的第二部分探討的是如何製備並組裝氧化鋅奈米線及奈米粒子之複合式半導體結構薄膜(CL-ZnO),並探討其元件效率表現。此氧化鋅奈米線(ZNW)長約6微米,直徑約100奈米,此部分藉由X光繞射儀及掃描式電子顯微鏡,探討氧化鋅奈米粒子(ZNP),ZNW,和CL-ZnO之表面型態與及晶格結構。此三種薄膜亦利用SILAR的方式沉積CdS量子點,結果在應用CL-ZnO光電極之元件中得到最高效率,其光電流大幅度的提升,為使用ZNW的2.81倍。在此基礎上,使用硒化鎘(CdSe)量子點做為CdS量子點的共敏化吸收劑,其薄膜結構為CL-ZnO/CdS/CdSe。如此得到的光電轉化效率亦超越單純使用CdS量子點之元件。最後應用硫化鋅(ZnS)作為光電極最外層之保護層,可得到此系統中最高效率0.55%。本研究之結果可藉由電化學阻抗頻譜(EIS),紫外-可見光吸收光譜(UV-vis absorbance spectra),穿透式電子顯微鏡(TEM),以及IPCE佐證。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:43:08Z (GMT). No. of bitstreams: 1 ntu-100-R98524009-1.pdf: 7107494 bytes, checksum: 18ba740c5d487604b796c5046d184ad8 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Acknowledgements……………………………………………………………….................I
摘要(Chinese Abstract)………………………………………………………………….......II Abstract………………………………………………………………………………….......IV Table of contents…………………………………………………………………………….VI List of tables…………………………………………………………………………………IX List of figures………………………………………………………………………………..XI Frequent abbreviations and symbols………………………………………………………..XV Chapter 1 Introduction…………………………………………………………………….1 1.1 Background……………………………………………………………………1 1.2 Dye-sensitized solar cells…………………………………………………......3 1.2.1 Materials development and basic working principles of DSSCs………...3 1.2.2 The factors that determine overall conversion efficiency of DSSCs…….9 1.2.3 Measurements and Instrumentation of DSSCs’ Performance……………13 1.2.4 Recent Advances in Efficiencies of DSSCs……………………………...14 1.3 Quantum Dot-sensitized Solar Cells………………………………………….14 1.3.1 Semiconductor QD……………………………………………………….15 1.3.2 QD synthesis and sensitization…………………………………………...20 1.3.3 Literature review of QDSSCs in power conversion efficiencies and the flow sheet of this research………...............................................................22 Chapter 2 Efficient Quantum Dot-sensitized Solar Cell with Polystyrene-modified TiO2 Photoanode and with GuSCN in Its Polysulfide Electrolyte…………………..30 2.1 Motivation and objectives…………………………………………………….30 2.2 Experimental……………………………………………………………..........31 2.2.1 Materials………………………………………………………………….31 2.2.2 Preparation of photoanodes for QDSSCs and the corresponding SILAR process…………………………………………………………………...32 2.2.3 Assembly of the QDSSCs………………………………………………..33 2.2.4 Instrumentation…………………………………………………………...33 2.3 Results and discussion………………………………………………………...34 2.3.1 SEM analyses of polystyrene particles, bare TiO2 film, and modified TiO2 film………………………………………………………………...34 2.3.2 Photovoltaic parameters of QDSSCs with B-TiO2/CdS1 to B-TiO2/CdS6……………………………………………………………36 2.3.3 SEM analysis of B-TiO2/CdS5, B-TiO2/CdS6, and M-TiO2/CdS6…….40 2.3.4 EDX analysis of B-TiO2/CdS5, B-TiO2/CdS6, and M-TiO2/CdS6…….43 2.3.5 Photovoltaic parameters of QDSSCs with B-TiO2/CdS5, B-TiO2/CdS6, M-TiO2/CdS5, and M-TiO2/CdS6………………………………………46 2.3.6 Correlation of EDX data with the photovoltaic performance………….48 2.3.7 Incident photon-to-current conversion efficiencies of the QDSSCs……48 2.3.8 Photovoltaic parameters of the QDSSC with GuSCN………………….49 2.3.9 Durability of the QDSSC……………………………………………….51 2.4 Summary……………………………………………………………………....53 Chapter 3 ZnO nanowire/nanoparticles composite films for the photoanodes of quantum dot-sensitized solar cells....................................................................................54 3.1 Motivation and objectives…………………………………………………….54 3.2 Experimental…………………………………………………………………..55 3.2.1 Materials………………………………………………………………….55 3.2.2 Preparation of the ZNP film……………………………………………...56 3.2.3 Preparation of the ZNW and CL-ZnO film………………………………56 3.2.4 Deposition of QDs on the ZnO films by SILAR process………………...56 3.2.5 Assembly of the ZnO-based QDSSCs……………………………………57 3.2.6 Instrumentation and measurements………………………………………57 3.3 Results and discussion………………………………………………………...58 3.3.1 SEM analyses of ZNW, CL-ZnO, and ZNP films………………………..58 3.3.2 Characterization of ZNW, ZNP, and CL-ZnO(50) films by XRD analyses…………………………………………………………………...62 3.3.3 Photovoltaic parameters and EIS spectra of QDSSCs with ZNW/CdS, CL-ZnO(25)/CdS, CL-ZnO(50)/CdS, and ZNP/CdS…………………......64 3.3.4 UV-vis absorption spectra and IPCE spectra……………………………….68 3.3.5 The role of ZNWs in the film of CL-ZnO(50)………………………….......71 3.3.6 CdSe QDs as the co-sensitizer………………………………………………72 3.4 Summary…………………………………………………………………………75 Chapter 4 Conclusions and suggestions……………………………………………………..77 References……………………………………………………………………………….......79 Appendix…………………………………………………………………………………….92 Curriculum Vitae………………………………………………………………………….....94 | |
dc.language.iso | en | |
dc.title | 量子點敏化太陽能電池:以聚苯乙烯模板之二氧化鈦及氧化鋅奈米線/奈米粒子光電極研究 | zh_TW |
dc.title | Quantum Dot-sensitized Solar Cells: Investigation on Polystyrene-templated TiO2 and ZnO Nanowire/Nanoparticle Photoanodes | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周澤川(Tse-Chuan Chou),吳嘉文(Chia-Wen Wu),楊明長(Ming-Chang Yang),林正嵐(Cheng-Lan Lin) | |
dc.subject.keyword | 單分散聚苯乙烯,多硫成分電解液,硫化鎘量子點,量子點敏化太陽能電池,連續離子層吸附反應,氧化鋅奈米線,硒化鎘量子點, | zh_TW |
dc.subject.keyword | Monodispersed polystyrene (PS),Polysulfide electrolyte,Cadmium sulfide quantum dots,Quantum dot-sensitized solar cell (QDSSC),Successive ionic layer adsorption and reaction (SILAR),ZnO nanowires,Cadmium selenide quantum dots, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 6.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。