請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47919
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王一雄 | |
dc.contributor.author | Ching-Shu Chang | en |
dc.contributor.author | 張靜淑 | zh_TW |
dc.date.accessioned | 2021-06-15T06:42:58Z | - |
dc.date.available | 2011-07-25 | |
dc.date.copyright | 2011-07-25 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-06 | |
dc.identifier.citation | 參考文獻
林宗岐,2004。入侵紅火蟻國蒐集情報。向入侵紅火蟻宣戰研討會論文集。台北。台灣大學生物資源暨農學院論壇系列活動。 徐爾烈,2003。入侵紅火蟻之危害及防治。「認識入侵紅火蟻及其防治」專題演講。行政院環境保護署。 行政院農委會農業藥物毒物試驗所公告,2004。新農藥之使用方法。防檢三字第0931484262號公告。 行政院農委會農業藥物毒物試驗所公告,2004。新農藥之使用方法。防檢三字第0931484428號。 張仲民,1987。普通土壤學。國立編譯館出版。茂昌圖書有限公司發行。pp.335。 黃德昌、呂斯文,2004。入侵紅火蟻生態及其防治要領。行政院農業委員會動植物防疫檢疫局。火蟻資訊網。 國家紅火蟻防治中心。2009。入侵紅火蟻發生地區一覽表。(http://www.fireant-tw.org/fireant/?todowhat=docwizard&classification=資源下載�發生地區一覽表)(2009.06.19線上資料) Amann, R. I., W.Ludwig and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial. Rev. 59(1): 143-169. Barr, C. L. and R. L. Best. 2003. Comparison of different formulations of broadcast fipronil for the control of red imported fire ants. Result Demonstration Hand book 1999-2003. Tex. Ag. Extension Serv, Bryan, TX. Available at : http// fireant. tamu.edu Bobe, A., Coste C. M. and J. Copper. 1997. Factors Influencing the Adsorption of Fipronil on Soils. J. Agric. Food Chem. 45: 4861-4865. Boivin, M. Y., B. Massieux, A. M. Breure, F. P. van den Ende, G. D. Greve, M. Rutgers and W. Admiraal. 2005. Effects of copper and temperature on aquatic bacterial communities. Aquat. Toxico. 71: 345-356. Chiu. T. C., J. H. Yen, Y. N. Hsieh and Y. S. Wang. 2005. Reductive transformation of dieldrin under anaerobic sediment culture. Chemosphere 60: 1182-1189. Connelly, P. 2001. Environmental fate of fipronil. Sacramento, California Environmental Protection Agency, Department of Pesticide Regulation. Environmental Monitoring and Pest Management Branch. Environmental Fate Review. Available at http://www.cdpr.ca.gov/docs/empm/pubs/fatememo. Cowan, D. A. 2000. Microbial genomes- the untapped resource. Trends in biotechnology. 18:14-16. Dave, S., K. Verthe, D. Reheul, R. Bulcke, S. D. Siciliano, W. Verstraete and E. M. Top. 2003. Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil. FEMS Microbiol. Ecol. 46: 139-146. Dhadialla, T.S.; G. R. Carlson and D. P. Le. 1998. New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 43: 545-569. Department of Pesticide Regulation. 1995. (1)Photolysis of XDE-105 factors A and D on soil; (2)The aerobic soil metabolism of (14C)-XDE-105. Volume No.52050-013, Department of Pesticide Regulation, Sacramento, California. Erwin, G. Z., A. D. L. Akkermans and W. M. de Vos. 1998.Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microl.64:3854-3859. Fathulla, R. N. 1994. Aerobic Soil Metabolism of 14C-pyriproxyfen. Sumitomo Chemical Company Data Package Report No. 156629-N. DPR No. 52080-030. Food and Agriculture Organization of the United Nations. 1999. Pesticide residues in food-1999, Pyriproxyfen. Environmental fate in soil. 717-718. Gianfreda, L., F. Sannino and A. Violante. 1995. Pesticide effects on the free, immobilized and soil invertase. Soil Biol. Biochem. 27(9): 1201-1208. Hatakoshi, M.; N. Agui, and I. Nakayama. 1986. 2-[1-Methyl-2-(4-Phenoxyphenoxy) Ethoxy] Pyridine as a new insect juvenile hormone analogue: induction of supernumerary larvae in Spodoptera litura (Lepidoptera: Noutuidae). Appl. Ent. Zool. 21: 351-353. Hatzinger, P. B. and M. Alexander. 1995. Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 29: 537-545. Ishaaya, I. and A. R. Horowitz. 1992. Novel phenoxy hormone analog(pyriproxyfen) suppresses embryogenesis and adult emergence of sweet potato whitefly. J. Econ. Entomol. 85: 2113-2117. Jacobson, B. and M. Gresham. 1995. Terrestrial Field Dissipation of Pyriproxyfen in California. Sumitomo Chemical Company. Data Package Report No. 156629-N. DPR No. 52080-039. Jeong, H., H. Yi, Y. Sekiguchi, M. Muramatsu, Y. Kamagata and J. Chun. 2004. Clostridium jejuense sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 54: 1465-1468. Li, W.J.; Y.Q. Zhang, D.J. Park, C.T. Li, L.H. Xu, C.J. Kim and C.L. Jiang. 2004. Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 54: 1811-1814. Liu Q. and X. Li. 2004. Photolysis of spinosyns in seawater, stream water and various aqueous solutions. Chemosphere 56: 1121-1127. Muyzer, G.., E. C. De Waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. Ngim K. K. and D. G. Crosby 2001. Abiotic processes influencing fipronil and desthiofipronil dissipation in California, USA, rice fields. Environ. Toxicol. Chem. 20. 972-977. Pérez C. M., C. F. Marina, J. G. Bond, J. C. Rojas, J. Valle and T. Williams. 2007. Sponosad, a naturally derived insecticide, for control of Aedes aegypti (Diptera: Culicidae): efficacy, persistence, and elicited oviposition response. J. Med. Entomol. 44 (4): 631-638. Ranjard, L., F. Poly and S. Nazaret. 2000. Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res. Microbiol. 151:167-177. Riddiford, L. M. 1994. Cellular and molecular actions of juvenile hormone: general considerations and premetamorphic actions. Advance in Insect Physiology. 24: 213-274. Sallivan, Jonathan. 2000. Environmental fate of pyriproxyfen. Sacramento, California Environmental Protection Agency, Department of Pesticide Regulation. Environmental Monitoring and Pest Management Branch. Red Imported Ant Project-Environmental Fate Review. Available at http://www.cdpr.ca.gov/docs/empm/pubs/fatememo/pyrprxfn.pdf. Sannino, F. and L. Gianfreda. 2001. Pesticide influence on soil enzymatic activities. Chemosphere 45: 417-425. Schabereiter-Gurtner, C., G. Piñar, W. Lubitz and D. Rölleke. 2001. An advanced molecular strategy to identify bacterial communities on art objects. J. Microbiol. Methods. 45: 77-87. Singh, B.K. A. Walker and D. J. Wright. 2006. Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: influence of different environment conditions. Soil Biol. Biochem. 38: 2682- 2693. Stevens M. M., S. Helliwell and G. N. Warren. 1998. Fipronil seed treatments for the control of chironomid larvae (Diptera: Chironomidae) in aerially-sown rice crops. Field Corp Res. 57: 195-207. Tassou, K.T. and R. Schulz. 2009. Effect of insect growth regulator pyriproxyfen in two-generation test with Chironomus riparius. Ecotoxicol. Environ. Saf., 72: 1058-1062. Tatarazako, N., S. Oda, H. Watanabe, M. Morita, T. Iguchi. 2003. Juvenile hormone agonists affect the occurrence of male Daphnia. Chemosphere 53: 827-833. Thompson, D. G., B. J Harris, T. M. Busarini and D. T. Chartrand. 2002. Fate of spinosad in litter and soils of a white spruce plantation in central Ontario. Pest Manag Sci. 58: 397-404. Tingle, C. C., J. A. Rother, C. F. Dewhust, S. Lauer and W. J. King. 2003. Reviews of environmental contamination and toxicology. 176: 1-66. U. S Environment Protection Agency. 1994-1996. EPA Reviews of fipronil (Frontline). U. S. EPA Office of Prevention. Pesticides and Toxic Substances. U. S Environment Protection Agency. 1996. New Pesticide Fact Sheet. PB96-181516.EPA737-F-96-005. U. S. EPA Office of Prevention. Pesticides and Toxic Substances. Ward, D. M., R. Weller and M. M. Bateson. 1990. 16S rDNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 62:1353-1370. WHO. 2004. Pyriproxyfen in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WAH/03.04/113). WHO. 2008. Guidelines for drinking-water Quality. 3rd-edition, incorporating the first and second addenda. Vol. 1-Recommendations. Geneva, World Health Organization (WHO/Publications/Programmes and projects/WSH/Drinking water quality) Wilmes, P. and L. B. Philip. 2006. Metaproteomics: studying functional gene expression in microbial ecosystem. Trends in Microbiology. 14(2): 92-97. Weon, H. Y., B. Y. Kim, J. A. Son, M. H. Song, S. W. Kwon, S. J. Go and E. Stackebrandt. 2008. Nevskia soli sp. nov., isolated from soil cultivated with Korean ginseng. Int. J. Syst. Evol. Microbiol. 58: 578-580. Woese, C. R. 1987. Bacterial evolution. Microbial. Rev. 51: 221-271. Wynatta S. K. 2002. Environmental fate of spinosad. Republication of Department of Pesticide Regulation. Environmental Monitoring Branch. Sacramento, California. Volume No. 52050-001: 1-16. Ying, G. G. and R. Kookana. 2002. Laboratory and field studies on the degradation of fipronil in a soil. Aust. J. Soil Res. 40:1095-1102. Zhang, Y.Q., W. J. Li, K. Y. Zhang, X. P. Tian, Y. Jiang, L. H. Xu, C. L.J iang, and R. La. 2006. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. Massilia lutea sp. nov., isolated from soils in China. Int. J. Syst. Evol. Microbiol. 56: 459-463. Zhu. G., H. Wu, J. Guo and F. M. E. Kimaro. 2004. Microbial degradation of fipronil in clay loam soil. Water Air Soil Pollution. 153: 35-44. Zhou P, Y. Lu, B. Liu, and J. J. Gan. 2004. Dynamics of fipronil residue in vegetable-field ecosystem. Chemosphere 57: 1691-1996. Zielezny, Y., J. Groeneweg, H. Vereecken and W. Tappe. 2006. Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Bio. Biochem. 38: 2372-2380. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47919 | - |
dc.description.abstract | 本研究旨在探討入侵紅火蟻(Red Imported Fire Ant, RIFA; Solenopsis invicta)防治用藥三種餌劑中的有效成分,包含百利普芬、芬普尼與賜諾殺施用於土壤環境中,經過長天數後之生物性降解與對土壤細菌族群結構之影響。
在添加不同濃度之藥劑的生物性降解結果顯示,對三種藥劑百利普芬、芬普尼與賜諾殺而言,當添加濃度為1 mg Kg-1時降解速率最快,其次為5 mg Kg-1添加,10 mg Kg-1添加時降解速率最慢;即藥劑濃度愈高,降解速率愈慢。 在不同溫度處理之生物性降解結果顯示,以添加10 mg Kg-1藥劑之處理為例,百利普芬在實驗初期,當溫度為40℃時之降解速率最快;實驗之第7天起,30℃處理之降解速度最快。芬普尼在實驗初期,不同溫度處理有相似之降解速率;實驗之第21天起,40℃處理之降解速度最快。賜諾殺在實驗全程中當溫度為30∼40℃時有較快之降解速率,特別是在實驗的第0∼21天。 在細菌族群結構的變遷方面,以聚合酶鏈鎖反應放大土壤細菌特定片段之DNA,結合變性梯度凝膠電泳(PCR-DGGE)的技術,再輔以Bio-Rad所發展之Quantity one軟體,並選用UPGMA法進行聚類分析,以進ㄧ步探討藥劑對土壤細菌族群結構之影響。添加10 mg Kg-1與1 mg Kg-1百利普芬在實驗早期菌相的相似度分別有59%與6 %。經過91天培養,10 mg Kg-1處理不同時期之細菌族群結構之相似度僅餘32%,(未添加藥劑之對照組仍有53%之相似度),在實驗過程中優勢的細菌族群包括Massilia albidiflava,與一些文獻上顯示無法在培養基中所培養的細菌(uncultured bacterium)。1 mg Kg-1處理經過91天培養與初期之相似度為57%,且細菌的族群數量較10 mg Kg-1處理豐富,顯示即便是低濃度百利普芬添加亦對土壤細菌族群造成影響。實驗全程中優勢的細菌族群包括Clostridium jejuense與尚有一些文獻上顯示無法在培養基中所培養的細菌;實驗晚期的優勢族群為Duganella sp. HF15。 添加10 mg Kg-1芬普尼於實驗第7天,細菌族群結構有明顯之改變,與其他時期相較僅有29%之相似度,顯示芬普尼對細菌族群的影響在實驗的早期即顯現。實驗全程中的優勢族群包括Acidobacteriacear bacterium Gsoil 1619, uncultured Acidobacterium sp., Methylobacterium sp. nac_9等;Rubrivivax gelatinosus是實驗第7天開始明顯存在之細菌族群;Nevskia soli是實驗後期之優勢細菌族群。添加1 mg Kg-1芬普尼經過91天培養,菌群間有55%之相似度。實驗全程中穩定的細菌族群包括uncultured gamma proteobacterium與一些uncultured bacterium;實驗初期的優勢族群有uncultured Chloroflexi bacterium;實驗第21天開始明顯存在之細菌族群有uncultured Methylobacillus sp., Acidobacteriaceae bacterium Gsoil 1619與uncultured Sinorhizobium sp.; 實驗初期與後期皆顯著的細菌族群有uncultured Pelobacter sp.。 添加10 mg Kg-1賜諾殺於實驗第7天起發現菌群結構發生變化,與其他培養天數相較相似度為46%;比較實驗第91天與第0天培養,相似度為71%,顯示經過長天數培養,實驗後期之菌群結構有恢復與初期相似之傾向。添加1 mg Kg-1 賜諾殺於實驗第0∼14天,菌相結構之相似度為66%。經過91天培養,細菌族群結構與實驗第0∼14天相較,仍有61%之相似度;Acidobacteriacear bacterium Gsoil 1619, uncultured Acidobacterium sp與uncultured Pseudomomadales bacterium,皆為實驗過程中穩定存在之細菌族群。添加50 mg Kg-1賜諾殺於實驗77∼91天與實驗0∼49天的相似度僅有44%。研究結果顯示:儘管賜諾殺是天然的發酵產物,但高濃度仍造成土壤細菌族群的影響。 結果顯示,添加百利普芬、芬普尼、賜諾殺於土壤環境中確實造成土壤細菌族群結構之改變,添加的濃度愈高所造成的影響愈劇,且其衝擊在實驗進行的早期即顯現。 | zh_TW |
dc.description.abstract | The objects of the study were to examine the dissipation rate of three kinds of ingredient in the baits for prevention and cure of the Red Imported Fire Ant (RIFA, Solenopsis invicta)as well as the change in the soil bacterial community. Residues of chemicals were measured using high performance liquid chromatography (HPLC) and the changes in bacterial community were determined by comparing the 16S rDNA bands on patterns by denaturing gradient gel electrophoresis (DGGE). The dissipation of three kinds of chemicals was affected by both the concentration applied and incubation temperature. Lower concentrations (1 mg Kg-1) and higher incubation temperatures (30 and 40ºC) showed more rapid dissipation rates.
The population of microbial community decreased rapidly after incubation with 10 mg Kg-1 of pyriproxyfen for 91 days, indicating the toxicity of pyriproxyfen toward bacterial communities in a closed soil ecosystem. Lower concentrations of chemicals showed less toxicity toward the microbial community. From cluster analysis, the structure of the bacterial community showed roughly a 53% similarity throughout the experiment period in the control experiment, indicating the relative stability within soil microbiota without chemical agitation. However, the similarity was lower than 38% both in the one and 10 mg Kg-1 of insecticide pyriproxyfen spiked experiment, indicating the soil bacterial community changed after the insecticide pyriproxyfen was applied. The analysis of the 16S rDNA sequence from soil total DNA according to the BCBI database showed the superiority of bacteria were including Massilia albidiflava and some kinds of uncultured bacteria in 10 mg Kg-1 treatment. The effects of fipronil showed that the similarity of the bacterial community throughout the experiment period was 29% and 55% in 10 mg Kg-1 and 1 mg Kg-1of insecticide fipronil spiked experiment respectively. The analysis of the 16S rDNA sequence from soil total DNA according to the BCBI database showed the superiority of bacteria were including Acidobacteriacear bacterium Gsoil 1619, uncultured Acidobacterium sp., Methylobacterium sp.nac_9, Rubrivivax gelatinosus and Nevskia soli in 10 mg Kg-1 treatment. The effects of spinosad showed that the similarity of the bacterial community throughout the experiment period was 46% and 44% in 10 mg Kg-1 and 50 mg Kg-1of insecticide spinosad spiked experiment respectively. The analysis of the 16S rDNA sequence according to the BCBI database showed the superiority of bacteria were including Ramlibacter sp. BXN5-27, Acidobacteriacear bacterium Gsoil 1619, Bacterium Ellin5078, uncultured gamma proteobacterium and some kinds of uncultured bacteria in 10 mg Kg-1 treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:42:58Z (GMT). No. of bitstreams: 1 ntu-100-D93623003-1.pdf: 1897665 bytes, checksum: e17cc9537d1f9eb226b8f394af87ac9b (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員審定書………………………………………………………………………I
誌謝…………………………………………………………………………………II 中文摘要……………………………………………………………………………III 英文摘要……………………………………………………………………………V 目錄………………………………………………………………………………VIII 圖目錄………………………………………………………………………………..X 表目錄……………………………………………………………………………..XIII 一、前言………………………………………………………………………………1 (一) 台灣地區入侵紅火蟻之危害…………………………………………………1 (二) 台灣地區入侵紅火蟻之防治…………………………………………………2 (三) 施用餌劑對土壤環境可能造成之影響………………………………………7 (四) 以分子生物學方法探討土壤微生物菌相之改變…………………..………12 1. 聚合酶鏈鎖反應……………………………………………………………13 2. 變性梯度凝膠電泳…………………………………………………………14 (五) 利用生物復育降解環境中殺蟲劑之可行性………………………………16 二、研究方法…………………………………………………………………………18 (一) 試樣土壤置備與分析………………………………………………………18 1. 土壤採樣…………………………………………………………………..18 2. 土壤性質分析……………………………………………………………..18 (二) 供試藥劑之分析方法………………………………………………………18 1. 檢量線之建立……………………………………………………………..18 2. 推薦用藥在土壤培育中之萃取與回收率測定…………………………..19 (三) 土壤管柱淋洗實驗…………………………………………………………19 (四) 試驗藥劑在土壤管柱中的移動……………………………………………19 (五) 不同理化因子對生物性降解之影響………………………………………20 1. 不同添加濃度之處理………………………………………………………20 2. 不同培養溫度之處理………………………………………………………20 (六) 聚合酶鏈鎖反應…………………………………………………………….20 (七) 變性梯度凝膠電泳…………………………………………………………..22 1. 樣品之置備…………………………………………………………………22 2. PCR-DGGE實驗步驟 …………………………………………………….22 (八) 以UPGMA法進行DGGE膠片上亮帶之聚類分析……………………….23 (九) DGGE膠片上亮帶之核酸序列分析………………………………………..24 1. 待測樣品置備………………………………………………………………24 2. 待測樣品之量化與純化……………………………………………………24 3. PCR產物之純化……………………………………………………………24 4. 核酸序列之定序分析………………………………………………………25 5. 核酸序列分析結果之比對…………………………………………………26 三、研究目的……………………………………………………………………29 四、結果與討論…………………………………………………………………….30 (一) 土壤基本性質與試驗藥劑之分析…………………………………………30 (二) 土壤管柱淋洗實驗…………………………………………………………33 (三) 試驗藥劑在土壤管柱中的移動 …………………………………………...35 (四) 降解實驗……………………………………………………………………38 (五) 土壤細菌族群結構分析…………………………………………………….46 (六) DGGE膠片上細菌族群之分析…………………………………………….68 參考文獻…………………………………………………………………………….74 附錄…………………………………………………………………………………82 | |
dc.language.iso | zh-TW | |
dc.title | 入侵紅火蟻防治用藥影響土壤生態環境之研究 | zh_TW |
dc.title | The effect of red imported fire ant controlling insecticides on soil ecosystem | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 顏瑞泓 | |
dc.contributor.oralexamcommittee | 李國欽,劉秀美,張碧芬 | |
dc.subject.keyword | 百利普芬,芬普尼,賜諾殺,聚合酶,鏈鎖反應,變性梯度凝膠電泳,細菌族群結構, | zh_TW |
dc.subject.keyword | Pyriproxyfen,Fipronil,Spinosad,PCR,DGGE,bacterial community structure, | en |
dc.relation.page | 83 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-07 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。