Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47914
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳希立
dc.contributor.authorNai-Wen Liangen
dc.contributor.author梁乃文zh_TW
dc.date.accessioned2021-06-15T06:42:54Z-
dc.date.available2016-07-25
dc.date.copyright2011-07-25
dc.date.issued2011
dc.date.submitted2011-07-06
dc.identifier.citation[1] 劉桂蘭,”地源熱泵空調的運用與設計探討”,廣西輕工業,2007,1,pp.57-58
[2] 魏欣,張迪川,李威,”瀋陽市推廣運用地源熱泵分析”,建築節能, 2007,35(201),
pp.53-56
[3] Mostafa H. Sharqawy,Esmail M.Hassan M. Badr,”Effective pipe-to-borehole thermal resistance for vertical ground heat exchangers,” Geothermics,2007,38,pp.271-277
[4] 胡建平,”土壤源熱泵系統設計方法”,暖通空調,2005,35(2),pp.82-85
[5] Hellstrom G, Ground heat source ,Thermal analysis of duct storage system [D] Doctor Thesis ,Department of mechanical physic ,University of Lund,Sweden,1991
[6] Yuan Ding-pei edited , Advanced Engineering Mathematics, Tung-Hwa Books ,Taipei,
1985.
[7] 莊迎春,孫友宏,謝康和,”直埋閉式地源熱泵回填土性能研究”,太陽能學報,2004,25(2),
pp.216-220
[8] 周學文,”地源熱泵豎直鑽孔的熱平衡問題及解決方案”,建築節能,2009,37(215),
pp.64-66
[9] 沈國民,張虹,”豎直U型埋管地熱熱交換器熱短路現象的影響參數分析”,太陽能學報,2007,28(6),pp.604-607
[10] 胡平放,朱娜,袁東立,江章寧,”地源熱泵鑽孔熱交換器熱堆積分析解”,華中科技大學學報,2008,25(1),pp.24-27
[11] Ball, D.A., R.D. Fischer, and D.L. Hodgett.. “Design methods for ground-source heat pumps”, ASHRAE Transactions, 1983,89(2),pp.416-440.
[12] Ingersoll, L.R., et al. “ Theory of earth heat exchangers for the heat pump”, ASHRAE Transactions, 1951,57,pp.167-188.
[13] Deerman, J.D. and S.P. Kavanaugh, 1991. Simulation of vertical U-tube ground-coupled heat pump systems using cylindrical heat source solution.
[14] 柳曉雷,王德林,方肇洪,”垂直埋管地源熱泵的圓柱面熱傳模型及簡化計算,”山東建築工程學院學報,2001,16(1),pp.47-51
[15] 曾和義,刁乃仁,方肇洪,”垂直埋管地熱熱交換器的穩態溫度場分析,”山東建築工程學院學報,2002,17(1),pp.1-6
[16] 刁乃仁,方肇洪著,鑽孔地源熱泵技術,高等教育出版社,北京,2006
[17] Fang Z H, Xie D L, Diao N R, et al. ,”A new method for solving the inverse conduction problem in steady heat flux measurement”, Int J Heat and Mass Transfer, 1997,40(16),
pp.3947-3954
[18] 刁乃仁,曾義和,方肇洪,”豎直U型管地熱熱交換器的准三維熱傳模型,”熱能動力工程,2003,18(4),pp.387-390
[19] Florides , G., Kalogious, S.,” Ground heat exchangers—a review of system, modes and applications”, Renewable energy ,2007,32,pp. 2461-2478.
[20] Paul,N.D., The Effect of Ground Thermal Conductivity on Vertical Geothermal Heat Exchanger Design and Performance [D]. South Dakoda, U S: South Dakota State University, 1996
[21] Gu, Y., Neal, D.L.,” Develop of an equivalent diameter expression for vertical u-tubes used in ground-coupled heat pump”, ASHRAE Transaction, 1989,104, pp.347-355.
[22] Shonders, J.A.,Beck,J.V.,” Field test of a new method for determining soil formation thermal conductivity and borehole resistance”, ASHRAE Transaction,1999,106, pp.843-850.
[23] Renumd, C.P.,” Borehole thermal resistance:Laboratory and field studies”, ASHRAE Transaction,1999,105,pp. 439-335.
[24] Steven P. Rottmayer , Simulation of Ground Coupled Vertical U-Tube Heat Exchangers, University of Wisconsin-Madison, 1997
[25] 唐志偉,”地源熱泵U型鑽孔熱交換器的數值模擬”,北京工業大學學報,2006,32(1),
pp62-66
[26] C.K. Lee.,“Computer simulation of borehole ground heat exchangers for geothermal hear pump systems”, Renewable Energy, 2006, 33(2008), pp.1286-1296
[27] 胡平放,”地源熱泵鑽孔換熱系統熱堆積分析”, 華中科技大學學報, 2008,25(1),
pp.24-27
[28] 郭軒志,”垂直埋設式U型管淺層土地溫能熱交換器之熱傳增強研究”, 國立台灣大學機械工程碩士論文, 2009
[29] Mitchell and Myers, Mitchell, J.W., Myers G.E.” An analytical model of the countercurrent heat exchange phenomena”, Biophysics Journal ,1968,8,pp.897–911.
[30] 范軍,刁乃仁,方肇洪,”豎直鑽孔熱交換器兩支管間熱量回流的分析”, 山東建築工程學院學報, 2009, 19(1),pp.1-4
[31] Kusuda T., and Archenbatch, P.R.” Earth Temperature and Thermal Diffusivity at Selected Stations in the United States”, ASHRAE Transaction, 1965, Vol.71, part I
[32] G. Mihalakakou, M. Santamouris, J.O. Lewis and D. Asimakopoulos.” On the application of the energy balance equation to predict ground temperature profiles”, Solar Energy,1997,60 , pp.181–190.
[33] 陳有明,王宇航,莫志姣,”土壤初始溫度模型”, 湖南大學學報, 2007, 34(7),pp.27-29
[34] S.P. Kavanaugh, Ground Source Heat Pump Design of Geothermal System for Commercial and Institutional Buildings, ASHRAE, Atlanta, Ca, 1997
[35] Gu and O’Neal, 1998 Y. Gu and D.L. O’Neal, Development of an equivalent diameter expression for vertical U-tubes used in ground-coupled heat pumps, ASHRAE Transactions,1998, 104, pp.347–355
[36] Allan, 2000M.L. Allan,” Materials characterization of superplasticized cement–sand grout”, Cement and Concrete Research , 2000,30, pp.937–942
[37] 莊迎春,孫友宏,謝康和,”直埋閉式地源熱泵回填土性能研究”,太陽能學報,2004,25(2),
pp.216-220
[38] 劉冬生,孫有宏,莊迎春,”增強地源熱泵豎直鑽孔地下熱交換器換熱性能的研究”,吉林大學學報,2004,34(4),pp.648-652
[39] 劉猛,何冰雪,劉憲英,”某住宅地源熱泵系統夏季運行測試研究”,暖通空調,HV&AC, 2005,.36(1),pp.118-121
[40] 魏唐隸,胡鳴朋,劉憲英,”地源熱泵地下埋管熱交換器的研究介紹”,中國冷凍空調雜誌,1999,12,pp.91-98
[41] 鄭紅旗,祝和虎,陳九法,”鑽孔回填材料與地源熱泵地下溫度場測試分析”,流體機械,2009,37(3):60-63
[42] A. Hepbasli, O. Akdemir, E. Hancioglu, “Experimental study of a closed loop vertical ground source heat pump system,” Energy Conversion and Management, 2003, 44, pp.527–548
[43] 舒海文,端木琳,谷彥新,”地源熱泵豎直鑽孔系統設計的簡明算法模型研究”,暖通空調 HV&AC,2006,36(12),pp.74-77
[44] 於仲義,胡平放,胡磊,袁旭東,”豎直U型鑽孔熱交換器熱傳特性研究”,煤氣與熱力, 2008,28(10), pp.A05-A07
[45] Kakac S., Shan, R. K. Augn, W., ed. 1997. Hand books of Single-phase Convective Heat Transfer. Wiley, New York
[46] 刁乃仁,”土熱換熱的熱傳問題研究及其工程運用”.清華大學航天航空學院,2004
[47] L. R.Ingersoll & H.J. Plass., “Theory of the ground pipe heat source for the heat pump”, HV&AC, 1984,20(7),pp.119-122
[48] Carslaw H S. , Jaeger J C. Conduction of heat in solids [M]. 2nd edition ,Oxford University Press ,1959
[49] 曾和義,刁乃仁,方肇洪,”地源熱泵垂豎直埋管的有限長線熱源模型”,熱能動力工程,2003,18(2),pp166-169
[50] MARKUS NICKOLAY,LUDGER FISCHER and HOLGER MARTIN,”Shape factors for conductive hear flow in circular and quadratics cross-sections”, Int. J. Heat and mass Transfer, 1989, 41(11), pp.1437-1444
[51] Hahne, E., and U. Grigull,”Formfaktor und Formwiderstand der stationaren mehr-
dimensionalen Warmeleitung”, Int. J. Heat and mass Transfer,1975,18, pp.751-767
[52] Arif Hepbasli, Ozay Akdemir, Ebru Hancioglu, “Experimental study of closed loop vertical ground source heat pump system”, Energy Conversion & Management, 2003, 44,pp.527-548.
[53] Bose JE, Parker FC, McQuiston FC.,” Design/data manual for closed-loop ground-couple heat pump system”, Atlanta, ASHRAE ,1985
[54] Halozan H, Heat pump and the environment [C], Beigin Proceeding of 7th TEA conference on heat pumping technologies, 2002, pp.61-65
[55] Diao N R, Cui P, Fang Z H., “ The thermal resistance in a borehole of geothermal heat exchanger”, In: Proc 12th International Heat Transfer Conference , France,2002,
pp.339-343.
[56] Sharqawy,M. H.,et al. Effective pipe-to-borehole thermal resistance for vertical ground heat exchangers. Geothermics (2009),doi:10.1016/J.geothermics.2009.02.001
[57] E. Hahne and U. Grigull, FORMFAKTOR UND FORMWIDERSTAND DER STATIONAREN MEHRDIMENSIONALEN WARMELLEITUNG, Int. J. Heat and mass Transfer, 1975,18, pp.751-767
[58] 陳輝俊,陳希立編著,空調系統最佳化設計與節能技術,台科大圖書股份有限公司,2010
[59] 高桂芝,王桂娟,田濟民,”某別墅鑽孔地源熱泵空調系統設計與測試分析”,暖通空調HV&AC, 2006,36(9),pp.65-67
[60] 余樂淵,趙軍,李新國,周軍,”豎埋螺旋管地熱換熱器理論模型與實驗研究”,太陽能學報,2004,25(5),pp.690-694
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47914-
dc.description.abstract本研究主要目的是探討地埋管熱交換器(BHE:Borehole Heat Exchangers)之理論分析與運用,地埋管熱交換器一般是以U型鑽孔熱交換器(UBHE)為主要探討標的,本研究亦以U型鑽孔熱交換器為主要研究對象。首先在理論分析部份包含:UBHE熱傳分析模式之確定、UBHE溫度分佈與出口溫度之計算、使用映像法(mapping)以及形狀因子法(shape factor)計算UBHE之熱阻、UBHE無因次熱傳分析等四大部份。在運用部份包含加裝隔熱版之效應以及八支管型UBHE之運用等。本研究亦採用實際之實驗數據以為模擬預估之基本數據以驗證本研究之正確性,進而探討各相關變數對出口溫度之影響,以得知BHE之一般設計準則,並且找出熱回流效應之影響變數,以期在設計BHE時能有最佳之熱傳效率。
地埋管熱交換器之熱傳分析可分為兩個部份,即鑽孔內部及鑽孔外部,鑽孔外部是使用有限長線熱源理論,來計算穩定狀態與非穩態時鑽孔壁面之溫度,而鑽孔內部是用準三維之熱傳理論,計算地埋管熱交換器中U型管內流體之溫度分佈。結果顯示使用映像法計算熱阻,再代入準三維之熱傳理論,所計算出之出口溫度,在散熱狀況時,比使用Hellstorm G. 的熱阻計算方法有1.33%之準確度提昇,且在單一U型管熱交換器之測試數據中,此模式計算之結果準確度在3.1%以內。
對於U型鑽孔熱交換器中加裝隔熱板之效應,結果顯示在鑽孔正中央處裝一隔板,對於有嚴重熱回流之情況,有降低出口溫度之功效,但對熱回流較不嚴重之情況反而會使出口溫度上昇降低了熱傳效率。會有熱回流之狀況為,兩支管間距(2D)較小以及鑽井深度(H)較深,且Q(流率)較小時之狀況,因此增加兩支管間距會比加裝隔熱板較有效率。
本研究也進一步的探討八支管型BHE之熱傳效率,經由理論分析顯示,在相同之總流率下,八支管型BHE比單一U型BHE,能量效率提升了23.5%(低總流率)至44.7%(高總流率),而總熱傳率則提升了23.63% (低總流率)至42.18%(高總流率),故此八支管型BHE為一良好之熱傳效率提升之新方法;相同的在設計八支管型BHE時應避免熱回流之效應發生,在鑽井深度較深且流率較小,若再加上D值較小時,則熱回流之效應就會更明顯,此時選用絕熱之中央上昇支管則會有顯著的提昇熱傳效率之效果。
本研究之貢獻主要包含下列各項:
1.找出簡單又正確之UBHE溫度分佈及出口溫度之預估模式。
2.用Matlab編輯一簡單之預估程式,可縮短預估時間。
3.提供mapping 及shape factor 熱阻之計算法。
4.提供設計UBHE之一般基本準則,以及影響熱回流效應之相關變數。
5.提供UBHE無因次之熱傳分析。
6.發展新型UBHE,即八支管型BHE,提高UBHE之熱傳效能。
zh_TW
dc.description.abstractThe aim of this study is to explore the theoretical analysis and application of Borehole Heat Exchangers (BHE). The U-shaped Borehole Heat Exchangers (UBHE) is usually used for the main subject of research of BHE. There, this study also uses the UBHE as its main research subject. The four major parts of the theoretical analysis are: determination of UBHE heat transfer analysis model, calculation of temperature distribution and outlet temperature of UBHE, using the mapping method and the shape factor method to calculate thermal resistance of UBHE, dimensionless UBHE heat transfer analysis. In this study, the applications of UBHE include installation of adiabatic plate and design of eight-branch-pipes UBHE.
In addition, this research paper also compares the results with practical experimental data for verification, and further discusses the influences from related variables on outlet temperature of UBHE, so that can understand the general design criteria of UBHE. Moreover, this study investigated the influence variables of heat backflow for the optimal heat transfer performance of UBHE.
In this study, the heat transfer analysis includes measurements of both outside and inside of the borehole. Outside the borehole, the finite line-source theory is applied to calculate wall temperature of the borehole in the steady and unsteady state. Inside the borehole, the quasi-three-dimensional theory is applied to evaluate temperature distribution of the working fluid. The research results show that mapping method were more accurate than Hellstorm G. method in the case of heat dissipation. Furthermore, compare calculated results with four cases of experimental data, and the accuracy range is within 3.1% for single UBHE. The study proposes a new thermal resistances calculation method to solve the heat transfer of UBHE.
In this study, the effect of adiabatic plate in the middle of borehole was also considered. The major purpose of adiabatic plate was to prevent heat backflow which would cause raised of outlet temperature of UBHE and decrease the heat dissipation rate. The heat backflow would occur when the distance between two branch pipes (2D) was shorter and the depth of well (H) was deeper, and when the flow rate (Q) of working fluid was lower. For the condition of serious heat backflow, adiabatic plate can be added in the middle of borehole to increase the heat transfer rate. However, if the heat backflow is not so much, the adiabatic plate will block the heat transfer from one to the other side of borehole and result in temperature raise in outlet of UBHE. Hence, the increasing of D value is more efficient to raise the heat transfer of UBHE than using the adiabatic plate.
This study takes one step further to investigate heat transfer of 8-branch-pipes BHE. Our theoretical analysis showed that, the energy efficiency of 8-branch-pipes BHE raised from 23.5% (low total flow rate) to 44.7 % (high total flow rate) when comparing with the single U-tube in the same total flow rate; and the total heat transfer rate of 8-branch-pipes BHE raised from 23.63 % (low total flow rate) to 42.18% (high total flow rate). Hence the 8-branch-pipes BHE proved to be a good design for increasing heat transfer rate of UBHE. Similarly, for the design of 8-branch-pipes BHE, it should try to avoid the occurrence of heat backflow. When the depth of well is deeper, the distance of downward branch pipe and central upward branch pipe is smaller, and the flow rate is lower, the effect of heat backflow will become more obvious. In this condition, the use of central upward branch pipe coated with adiabatic material will increase the heat transfer rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:42:54Z (GMT). No. of bitstreams: 1
ntu-100-D96522018-1.pdf: 8928889 bytes, checksum: 1e061e4ac72bdc89f2ba662b48192cfc (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents謝 誌 II
摘 要 III
ABSTRACT V
目 錄 VII
圖目錄 XI
符號說明 XVIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-3 研究動機與目的 9
1-4 研究方法 10
第二章 U型鑽孔熱交換器基本熱傳理論 14
2-1 前言 14
2-2.1 1-D 熱傳導模型 14
2-2.2 2-D 熱傳導模型 15
2-2.3 準三維熱傳導模型 21
2-3 鑽孔外之熱傳分析 27
2-3.1 一維無限長線熱源模型(一維非穩態) 27
2-3.2 一維無限長圓柱面熱源模型(一維非穩態) 29
2-3.3 有限長線熱源之二維穩態溫度場分析 31
2-3.4 有限長線熱源之二維非穩態溫度場分析 33
2-4 U型鑽孔熱交換器出口溫度之計算 36
2-4.1 U型鑽孔熱交換器穩態時出口溫度之計算 36
2-4.2 U型鑽孔熱交換器非穩態時出口溫度之計算 38
第三章 映像法及形狀因子計算UBHE之熱阻 42
3-1 前言 42
3-2 映像法求解單U型鑽孔熱交換器之熱阻 42
3-3 形狀因子法求解單U型鑽孔熱交換器之熱阻 46
第四章 UBHE二維熱傳分析熱阻之計算 54
4-1 前言 54
4-2 鑽孔內二維熱傳分析模式之熱阻計算 55
4-2.1 Mapping 熱阻計算法 55
4-2.2 Hellstorm G. 熱阻計算法 57
4-3 R^011,R^012與Rpp,Rpb間之關係 57
4-4 Mapping 及Hellstorm G. 熱阻計算值與其他文獻分析 62
4-5 各變數(D,rb,ro)對R^*b,eff值之影響 63
4-6 各變數(D,Rb,Ro )對R^011,R^012值之影響 64
第五章 UBHE無因次穩態熱傳分析 73
5-1 前言 73
5-2 鑽孔外之無因次穩態熱傳分析 73
5-2.1 各項變數對Θ1 影響之探討 75
5-3 鑽孔內之無因次穩態熱傳分析 75
5-3.1 各項變數對Θ2影響之探討 78
5-4 綜合討論 79
5-5 無因次出口溫度之求法 79
5-5.1 實例說明 80
5-6 相關變數對UBHE無因次溫度分佈之影響 81
5-7 UBHE之無因次穩態熱傳率分析 86
5-7.1 實例說明 92
第六章 UBHE各相關變數對出口溫度之影響 100
6-1 各相關變數之介紹 100
6-2 H值改變對UBHE出口溫度之影響(Q固定) 101
6-3 D值改變對UBHE溫度分佈之影響 101
6-4 kb值對UBHE溫度分佈之影響(H及D值固定) 102
6-5 Q值對UBHE溫度分佈之影響 102
6-6 結果與討論 103
第七章 實際測試數據驗證 116
7-1 散熱工況(不同之Kb與 Ks值) 116
7-2 不同材質之回填土 117
7-3 三井串聯 118
7-4吸熱工況(相同之Kb與Ks值) 119
7-5 散熱工況(不同之入口溫度) 119
7-6 非定穩狀態之熱傳分析 120
7-6.1 進水溫度改變之影響 120
7-6.2 進水流率改變之影響 121
7-6.3 鑽孔深度H改變之影響 122
7-7 結果與討論 123
第八章 UBHE加裝隔熱板之熱傳分析 136
8-1 加裝隔熱板之理論分析 136
8-2 UBHE加裝隔熱板之出口溫度計算 138
8-3 UBHE加裝隔熱板之討論 139
第九章 八支管型BHE之研究 145
9-1 簡介 145
9-2 理論分析 145
9-2.1 中央上昇支管為絕熱之情況 146
9-2.2 中央上昇支管為非絕熱之情況 149
9-3 各變數間之關係 152
9-4 實例分析與探討 153
9-5 八支管型BHE各項變數之影響 157
9-5.1 八支管型BHE流率對溫度分佈之影響 157
9-5.2 八支管型BHE間距(D)對溫度分佈之影響 158
9-5.3 八支管型BHE鑽井深度(H)對溫度分佈之影響 158
9-5.4 八支管型BHE流率(Q)對總熱傳率之影響 159
9-5.5 八支管型BHE流率(Q)對單位井深熱傳率之影響 160
9-5.6 八支管型BHE流率(Q)對能量效率之影響 160
9-6 八支管型BHE取代冷卻水塔之探討 161
9-6.1 選用八支管型BHE中央支管為非絕熱之狀況 162
9-6.2 選用八支管型BHE中央支管為絕熱之狀況 164
9-7 八支管型BHE之結果與討論 167
第十章 結論與建議 181
10-1 結論 181
10-2 建議 184
參考文獻 186
附錄A 八支管型BHE相關數據表 191
dc.language.isozh-TW
dc.title地埋管熱交換之理論分析與運用zh_TW
dc.titleTheoretical analysis and Application of Borehole Heat Exchangersen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳輝俊,卓清松,陳文亮,江沅晉,張西龍,李文興,張至中
dc.subject.keyword熱阻,U型鑽孔熱交換器,映像法,形狀因子,能量效率,zh_TW
dc.subject.keywordthermal resistance,U-shaped borehole heat exchangers,mapping method,shape factor,energy efficiency,en
dc.relation.page200
dc.rights.note有償授權
dc.date.accepted2011-07-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
8.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved