請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47885完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | Hung Lo | en |
| dc.contributor.author | 羅鴻 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:42:33Z | - |
| dc.date.available | 2012-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-30 | |
| dc.identifier.citation | 1.Chapin, D.M., C.S. Fuller, and G.L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25(5): p. 676.
2.Green, M.A., et al., Solar cell efficiency tables (version 39). Progress in Photovoltaics: Research and Applications, 2012. 20(1): p. 12-20. 3.Mihailetchi, V.D., Device Physics of Organic Bulk Heterojunction Solar Cells. MSC Ph.D.-thesis series 2005-14, 2005. 4.Christoph J. Brabec, A.C., Dieter Meissner, N. Serdar Sariciftci, Thomas Fromherz, and L.S. Minze T. Rispens, and Jan C. Hummelen, Origin of the Open Circuit Voltage of Plastic Solar Cell. Adv. Funct. Mater., 2001. 11. 5.Peumans, P., A. Yakimov, and S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 2003. 93(7): p. 3693. 6.Cheknane, A., et al., An equivalent circuit approach to organic solar cell modelling. Microelectronics Journal, 2008. 39(10): p. 1173-1180. 7.R.Forrest, S., The Limits to Organic Photovoltaic Cell Efficiency. MRS Bulletin, 2005. 30: p. 28-32. 8.Yu, G. and A.J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. Journal of Applied Physics, 1995. 78(7): p. 4510. 9.Wang, J.-C., et al., Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer. Journal of Materials Chemistry, 2010. 20(5): p. 862. 10.Li, S.-S., et al., Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano, 2010. 4(6): p. 3169-3174. 11.Kim, Y.-H., et al., Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes. Thin Solid Films, 2006. 510(1-2): p. 305-310. 12.van de Lagemaat, J., et al., Organic solar cells with carbon nanotubes replacing In[sub 2]O[sub 3]:Sn as the transparent electrode. Applied Physics Letters, 2006. 88(23): p. 233503. 13.Liu, M.-Y., et al., Morphological evolution of the poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol–gel derived zinc oxide electron selective layer. Thin Solid Films, 2010. 518(17): p. 4964-4969. 14.Zimmermann, B., U. Wurfel, and M. Niggemann, Longterm stability of efficient inverted P3HT:PCBM solar cells. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 491-496. 15.Glatthaar, M., et al., Organic solar cells using inverted layer sequence. Thin Solid Films, 2005. 491(1-2): p. 298-300. 16.Xu, Z., et al., Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells. Advanced Functional Materials, 2009. 19(8): p. 1227-1234. 17.Dana C. Olson, S.E.S., Reuben T. Collins, and David S. Ginley, The Effect of Atmosphere and ZnO Morphology on the Performance of Hybrid Poly(3-hexylthiophene)/ZnO Nanofiber Photovoltaic Devices. J. Phys. Chem. C, 2007. 111: p. 16670-16678. 18.Liao, H.-H., et al., Highly efficient inverted polymer solar cell by low temperature annealing of Cs[sub 2]CO[sub 3] interlayer. Applied Physics Letters, 2008. 92(17): p. 173303. 19.Huang, J., G. Li, and Y. Yang, A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process. Advanced Materials, 2008. 20(3): p. 415-419. 20.Huang, J., Z. Xu, and Y. Yang, Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate. Advanced Functional Materials, 2007. 17(12): p. 1966-1973. 21.G. Li, C.-W.C., V. Shrotriya, J. Huang, and Y. Yang, Efficient inverted polymer solar cells. APPLIED PHYSICS LETTERS, 28 April 2006. 88: p. 253503. 22.Chen, L.-M., et al., Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Advanced Materials, 2009. 21(14-15): p. 1434-1449. 23.Zhang, F.J., et al., Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified Ag as anode. Solar Energy Materials and Solar Cells, 2010. 94(12): p. 2416-2421. 24.Lee, Y.-I., et al., Highly efficient inverted poly(3-hexylthiophene): Methano-fullerene [6,6]-phenyl C71-butyric acid methyl ester bulk heterojunction solar cell with Cs2CO3 and MoO3. Organic Electronics, 2011. 12(2): p. 353-357. 25.Zang, Y., et al., Effect of Molybdenum Oxide Anode Buffer Layer on the Performance of Inverted Small Molecular Organic Solar Cells. Energy Procedia, 2011. 12(0): p. 513-518. 26.Kline, R.J., et al., Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight. Advanced Materials, 2003. 15(18): p. 1519-1522. 27.Yuya Suzuki, K.H., and Keisuke Tajima, Synthesis of Regioregular Poly(p-phenylenevinylene)s by Horner Reaction and Their Regioregularity Characterization. Macromolecules, 2007. 40: p. 6521-6528. 28.Irwin, M.D., et al., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences, 2008. 105(8): p. 2783-2787. 29.Kim, H., W. So, and S. Moon, The importance of post-annealing process in the device performance of poly(3-hexylthiophene): Methanofullerene polymer solar cell. Solar Energy Materials and Solar Cells, 2007. 91(7): p. 581-587. 30.Kim, Y., et al., Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Applied Physics Letters, 2005. 86(6): p. 063502. 31.Robert A. Wilson and Heather A. Bullen, Basic Theory Atomic Force Microscopy (AFM). 32.Beran, A., The Reflectance Behaviour of Gold at Temperatures up to 500°C. TMPM Tschermaks Min. Petr. Mitt., 1985. 34: p. 211-215. 33.Bass, M., Van Stryland, E.W., Handbook of Optics vol. 2 (2nd ed.). McGraw-Hill, (1994). 34.Hoppe, H., et al., Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. Thin Solid Films, 2006. 511-512: p. 587-592. 35.Mao-Yuan Chiu, U.-S.J., Chiu-Hun Su, Keng S. Liang, and Kung-Hwa Wei, Simultaneous Use of Small- and Wide-Angle X-ray Techniques to Analyze Nanometerscale Phase Separation in Polymer Heterojunction Solar Cells. Adv. Mater., 2008. 20: p. 2573–2578. 36.Okraku, E.W., M.C. Gupta, and K.D. Wright, Pulsed laser annealing of P3HT/PCBM organic solar cells. Solar Energy Materials and Solar Cells, 2010. 94(12): p. 2013-2017. 37.Zhao, Y., et al., Effects of thermal annealing on polymer photovoltaic cells with buffer layers and in situ formation of interfacial layer for enhancing power conversion efficiency. Synthetic Metals, 2008. 158(21-24): p. 908-911. 38.Gholamkhass, B., N.M. Kiasari, and P. Servati, An efficient inverted organic solar cell with improved ZnO and gold contact layers. Organic Electronics, 2012. 13(6): p. 945-953. 39.Gholamkhass, B. and S. Holdcroft, Toward Stabilization of Domains in Polymer Bulk Heterojunction Films. Chemistry of Materials, 2010. 22(18): p. 5371-5376. 40.Kim, C.S., et al., Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer. Applied Physics Letters, 2009. 94(11): p. 113302. 41.Ong, B., et al., Polythiophene-based field-effect transistors with enhanced air stability. Synthetic Metals, 2004. 142(1–3): p. 49-52. 42.Tao, C., et al., Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO[sub 3] buffer layer. Applied Physics Letters, 2008. 93(19): p. 193307. 43.Youngkyoo Kim, S.A.C., Jenny Nelson, and Donal D. C. Bradley, Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. APPLIED PHYSICS LETTERS, 2005. 86: p. 063502. 44.Cowie, J.M.G.a.A., V., Polymers: Chemistry and Physics of Modern Materials, 3rd Edn. CRC Press, 2007. 45.Wang, J.-C., et al., Efficient inverted organic solar cells without an electron selective layer. Journal of Materials Chemistry, 2011. 21(15): p. 5723. 46.Kumar, A., et al., High efficiency polymer solar cells with vertically modulated nanoscale morphology. Nanotechnology, 2009. 20(16): p. 165202. 47.Camaioni, N., et al., The Effect of a Mild Thermal Treatment on the Performance of Poly(3alkylthiophene) /Fullerene Solar Cells. Advanced Materials, 2002. 14(23): p. 1735-1738. 48.Ma, W., et al., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials, 2005. 15(10): p. 1617-1622. 49.Zhokhavets, U., et al., Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells. Chemical Physics Letters, 2006. 418(4-6): p. 347-350. 50.Kim, H.J., et al., The effect of Al electrodes on the nanostructure of poly(3-hexylthiophene): Fullerene solar cell blends during thermal annealing. Organic Electronics, 2009. 10(8): p. 1505-1510. 51.H. Neugebauer, C.B., J.C. Hummelen, N.S. Sariciftci, Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Solar Energy Materials & Solar Cells, 2000. 61: p. 35-42. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47885 | - |
| dc.description.abstract | 在本論文中,第一部分主要是碳酸銫在倒置有機太陽能電池中作為陰極緩衝層對整體元件的電性研究。利用溶液調配一定濃度的碳酸銫,並旋轉塗佈在氧化銦錫(ITO)電極上,使氧化銦錫功函數有效下降,從原本陽極角色轉變為陰極角色,形成倒置結構太陽能電池中的透明陰極。所使用的主動層有機材料是在有機太陽能電池領域中已成經典的電子施體材料『聚三己烷塞吩(P3HT)』與電子受體材料『苯基碳61丁酸甲酯(PCBM)』。將兩種有機材料在溶劑中均勻混合,再使用旋轉塗佈的方式成膜,就是太陽能電池中的主動層。由介面光譜分析可得知,經碳酸銫修飾後,氧化銦錫電極與受體材料『苯基碳61丁酸甲酯(PCBM)』之間的電子注入能障大幅減少。修飾後的氧化銦錫電極在光生電流、開路電壓等特性皆比沒有使用碳酸銫修飾的電極好,主要歸因於極薄的碳酸銫層有效降低受體材料與陰極間的電子注入能障以及碳酸銫層幾乎沒有光耗損,因此不影響元件的光電流,並完成高效率的倒置太陽能電池。
第二部分是倒置太陽能電池效率演進的探索。不同的倒置太陽能電池有不同的效率演進的成因。為了清楚了解這種新開發的倒置結構,其效率演進的成因也是探索的重點。藉由X-ray繞射儀與原子力顯微鏡,我們清楚了解微觀的有機層所發生的變化。此外,藉由介面光譜分析,電極的變化也得以清楚觀察。不同種類的量測方式讓我們可以清楚規納倒置太陽能電池效率演進的原因。 | zh_TW |
| dc.description.abstract | Excellent performance has been demonstrated of inverted organic solar cells (IOSCs) with indium tin oxide (ITO) modified by cesium carbonate. The IOSCs with modified ITO as cathodes exhibit a much longer life time as compared to organic solar cells (OSCs) with the regular structure. Using a solution-based cesium carbonate, the work function of ITO can be reduced from 4.8eV to 3.4eV to approach a relatively lower electron injection barrier. The reduction of electron injection barrier with modified ITO is also indicated by ultraviolet photoemission spectroscopy. The improvement of open circuit voltage and photo-induced current is attributed to both the reduction of electron injection barrier and the almost non-reduced light intensity. A highly efficient inverted OSC is fabricated.
Evolution of device performance is also investigated. This new structure of inverted OSC leads different factors of performance evolution. To discover the aging process, several analytical methods are utilized to realize the morphology of organic layer and surface property of modified electrodes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:42:33Z (GMT). No. of bitstreams: 1 ntu-101-R99941012-1.pdf: 2136041 bytes, checksum: 01d68001d8449a83bba2b242576138c0 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 iv ABSTRACT v CONTENTS vi LIST of FIGURES ix LIST of TABLES xiii Chapter 1 Introduction 1 1.1 Overview 1 1.2 Development and Marketing 2 1.2.1 Inorganic Solar Cell 2 1.2.2 Organic Solar Cell 4 1.2.3 Mechanism and Basic Principle 8 Chapter 2 Research Background and Motivation 14 2.1 The Reason to Invert Organic Solar Cell 14 2.2 Pros and Cons 17 2.3 Cesium Carbonate as Cathode Buffer Layers 18 2.4 Cesium Carbonate by Solution Process 20 2.5 Motivation 23 Chapter 3 Experimental Setup 24 3.1 Flow Chart 24 3.2 Device Fabrication 25 3.2.1 Substrate 25 3.2.2 Cesium Carbonate Solution 25 3.2.3 Active Layer Blend Solution 26 3.2.4 Thermal Evaporation 28 3.2.5 Standard Device Fabrication 29 3.3 Equipment 30 3.3.1 Glove Box integrated with Solar Simulator 30 3.3.2 Ultraviolet & X-Ray Photoelectron Spectroscopy 32 3.3.3 X-Ray Diffraction 35 3.3.4 Atomic force Microscopy 35 Chapter 4 Key Points to the Inverted Structure 37 4.1 Introduction 37 4.2 Manipulation of Cesium Carbonate Layers 37 4.2.1 Solvent 37 4.2.2 Concentration and Spin Coating Speed 39 4.2.3 Temperature of Annealing 41 4.2.4 Result Comparison and Analysis 42 4.3 Anode Structures 44 4.3.1 Thickness of Molybdenum Trioxide 44 4.3.2 Material for Electrodes 47 4.3.3 Result Comparison and Analysis 50 4.4 Active Layer 51 4.4.1 Concentration 51 4.4.2 Spin Coating Speed & Evaporation 54 4.4.3 Annealing temperature 56 4.4.4 Filter to Active Layer Blend Solution 56 Chapter 5 Reason for Growth and Degradation 59 5.1 Observation 59 5.2 Post Treatment of Device 65 5.2.1 Introduction 65 5.2.2 Motivation 67 5.2.3 Two or Multiple Stages of Annealing 70 5.2.4 Result and Discussion 72 5.2.5 Conclusion 81 5.3 Pre-Treatment of Blend Solution 81 5.3.1 Motivation 81 5.3.2 Experiment 82 5.3.3 Result and Discussion 82 5.3.4 Conclusion 88 5.4 Deliquescence of Cesium Carbonate 89 5.4.1 Motivation 89 5.4.2 Experiment & Observation 89 5.4.3 Conclusion 96 Chapter 6 What Is The Future? 97 6.1 A Novel Idea- Hybrid Organic Solar Cell 97 6.2 Future Work 99 Reference 100 | |
| dc.language.iso | en | |
| dc.subject | 效率演進 | zh_TW |
| dc.subject | 碳酸銫 | zh_TW |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | 聚合物太陽能電池 | zh_TW |
| dc.subject | device performance evolution | en |
| dc.subject | cesium carbonate | en |
| dc.subject | inverted organic solar cell | en |
| dc.subject | ultraviolet photoemission spectroscopy | en |
| dc.subject | electron injection barrier | en |
| dc.subject | aging process | en |
| dc.title | 反相有機太陽能電池效率及其界面電子結構研究 | zh_TW |
| dc.title | Investigation of Device Performance and Interfacial Electronic Structures of Inverted Organic Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(I-Chun Cheng),何志浩(Jr-Hau He),陳美杏(Mei-Hsin Chen) | |
| dc.subject.keyword | 碳酸銫,有機太陽能電池,聚合物太陽能電池,效率演進, | zh_TW |
| dc.subject.keyword | cesium carbonate,inverted organic solar cell,ultraviolet photoemission spectroscopy,electron injection barrier,aging process,device performance evolution, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
