請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47860
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁建均 | |
dc.contributor.author | Ke-Jie Liao | en |
dc.contributor.author | 廖科傑 | zh_TW |
dc.date.accessioned | 2021-06-15T06:22:58Z | - |
dc.date.available | 2013-08-12 | |
dc.date.copyright | 2010-08-12 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-09 | |
dc.identifier.citation | A. Review Paper
[1] M.-H. Yang, D.J. Kriegman, N. Ahuja, Detecting Faces in Images: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, January 2002, pp. 34-58. [2] W. Zhao, R. Chellappa, A. Rosenfeld, P.J. Phillips,”Face Recognition: A Literature Survey”, ACM Computing Surveys, 2003, pp. 399-458. [3] P. Kakumanu, S. Makrogiannis, N. Bourbakis, A survey of skin-color modeling and detection methods, Pattern Recognition, Volume 40, Issue 3, March 2007, Pages 1106-1122. [4] Shen, L., and Bai, L., “A review on Gabor wavelets for face recognition', Pattern Anal. Appl., 2006, 9, (2), pp. 273–292 B. Feature-Based Approaches [5] G. Yang and T. S. Huang, “Human Face Detection in Complex Background,” Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994 [6] C. Kotropoulos and I. Pitas, “Rule-Based Face Detection in Frontal Views,” Proc. Int’l Conf. Acoustics, Speech and Signal Processing, vol. 4, pp. 2537-2540, 1997. [7] A. Yuille, P. Hallinan, and D. Cohen, “Feature Extraction from Faces Using Deformable Templates,” Int’l J. Computer Vision, vol. 8, no. 2, pp. 99-111, 1992. [8] K. Huang and S. Aviyente, “Sparse Representation for Signal Classification,” Neural Information Processing Systems, 2006. [9] Wiskott, L.; Fellous, J.-M.; Kuiger, N.; von der Malsburg, C., 'Face recognition by elastic bunch graph matching,' Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.19, no.7, pp.775-779, Jul 1997 [10] Rein-Lien Hsu; Abdel-Mottaleb, M.; Jain, A.K., 'Face detection in color images,' Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.24, no.5, pp.696-706, May 2002 [11] K.C. Yow and R. Cipolla, “Feature-Based Human Face Detection,” Image and Vision Computing, vol. 15, no. 9, pp. 713-735, 1997. [12] T.K. Leung, M.C. Burl, and P. Perona, “Finding Faces in Cluttered Scenes Using Random Labeled Graph Matching,” Proc. Fifth IEEE Int’l Conf. Computer Vision, pp. 637-644, 1995. [13] Saber, E., Tekalp, A.M., Eschbach, R. and Knox, K., 1996. Automatic image annotation using adaptive color classification. Graphical Models and Image Process. 58, pp. 115–126 [14] H. Wu, Q. Chen, and M. Yachida, “Face Detection from Color Images Using a Fuzzy Pattern Matching Method,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 6, pp. 557-563, June 1999. [15] D.H. Ballard, 'Generalizing the Hough Transform to Detect Arbitrary Shapes', Pattern Recognition, Vol.13, No.2, p.111-122, 1981 [16] Eli Saber; A. Murat Tekalp, 'Frontal-view face detection and facial feature extraction using color, shape and symmetry based cost functions,' Pattern Recognition Letters, vol.19, no.5, pp.669-680, 1998. [17] Otsu, N. , 'A Threshold Selection Method from Gray-Level Histograms,' Systems, Man and Cybernetics, IEEE Transactions on , vol.9, no.1, pp.62-66, Jan. 1979 C. Holistic Approaches [18] M. Turk and A. Pentland,”Eigenfaces for Recognition”, J. Cogn. Neurosci.,vol. 3, no. 1, pp. 71–86, 1991. [19] P. Viola and M. J. Jones, “Robust Real-Time Face Detection”, International Journal of Computer Vision 57(2), p.137-154, 2004. [20] Freund, Y. and Schapire, R.E. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. In Computational Learning Theory: Eurocolt 95, Springer-Verlag, pp.23–37. [21] Jian Yang; Zhang, D.; Frangi, A.F.; Jing-yu Yang, 'Two-dimensional PCA: a new approach to appearance-based face representation and recognition,' Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.26, no.1, pp.131-137, Jan. 2004 [22] K.-K. Sung and T. Poggio, “Example-Based Learning for View-Based Human Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39-51, Jan. 1998. [23] S. Agarwal and D. Roth. Learning a sparse representation for object detection. In Proc. ECCV, pages 113–130, 2002. [24] E. Osuna, R. Freund, and F. Girosi, “Training Support Vector Machines: An Application to Face Detection,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 130-136, 1997. D. Pattern Recognition Books [25] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification. New York: Wiley-Intersciance, 2001. [26] Bishop, Christopher M, Pattern recognition and machine learning, New York : Springer, c2006. [27] Gong, shaogang, Dynamic vision: from images to face recognition, London: Imperial College Press, 2000. E. Image Processing Books [28] R. C. Gonzalez, R. E. Woods, Digital Image Processing, 3rd Ed., Pearson, 2008. [29] R. C. Gonzolez, R. E. Woods, S. L. Eddins, Digital Image Processing Using Matlab, Prentice Hall, New Jersey, 2004. [30] W. K. Pratt, Digital Image Processing 4nd Edition, John Wiley & Sons, Inc., Los Altos, California, 2007. F. Fuzzy Logic Books [31] W. Pedrycz, F., Gomide, Fuzzy Systems Engineering: Toward Human-Centric Computing, J. Wiley, Hoboken, NJ, 2007. G. Symmetry Transform [32] Reisfeld, D., Yeshurun, Y., 'Robust detection of facial features by generalized symmetry,' Pattern Recognition, 1992. Vol.I. Conference A: Computer Vision and Applications, Proceedings., 11th IAPR International Conference on , vol., no., pp.117-120, 30 Aug-3 Sep 1992 [33] D. Reisfeld, H. Wolfson, and Y. Yeshurun, “ Context-Free Attentional Operators: The Generalized Symmetry Transform,” International Journal of Computer Vision, vol. 14, pp. 119-130, 1995. [34] Heidemann, G.; , 'Focus-of-attention from local color symmetries,' Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.26, no.7, pp.817-830, July 2004 [35] Zabrodsky, H.; Peleg, S.; Avnir, D.; , 'Symmetry as a continuous feature,' Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.17, no.12, pp.1154-1166, Dec 1995 H. Pixel-based Human Skin Color Detection [36] Phung, S.L.; Bouzerdoum, A., Sr.; Chai, D., Sr.; , 'Skin segmentation using color pixel classification: analysis and comparison,' Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.27, no.1, pp.148-154, Jan. 2005. [37] M.J. Jones and J.M. Rehg, Statistical Color Models with Application to Skin Detection, Int'l J. Computer Vision, vol. 46, no. 1, pp. 81-96, Jan. 2002. [38] Garcia, C.; Tziritas, G., 'Face detection using quantized skin color regions merging and wavelet packet analysis,' Multimedia, IEEE Transactions on , vol.1, no.3, pp.264-277, Sep 1999. [39] M. Fleck, D. Forsyth and C. Bregler, Finding Naked People, Proc. European Conf. Computer Vision, vol. 2, pp. 592-602 Apr. 1996. [40] Shin, M.C.; Chang, K.I.; Tsap, L.V., 'Does colorspace transformation make any difference on skin detection?,' Applications of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop on , vol., no., pp. 275- 279, 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47860 | - |
dc.description.abstract | 由於人臉相較於其他身份識別系統如虹膜識別較不會有隱私權的問題,因此自動化人臉識別在物件識別的領域當中是一個非常重要的課題。但是,再做進一步的識別之前,我們首先需要將人臉從一張給定的影像中切割出來以供後端處理之用。而人臉偵測,在現今依舊是一個非常困難的問題。
人臉偵測系統大致分為兩類,以特徵為基礎或是以整體為基礎。在以整體為基礎的偵測方法中,給定的影像並未藉由尋找某種特定的特徵來偵測人臉而是做整體考量。這樣的方法具有較能找出較小人臉與解析度較差人臉的優勢。相反地,以特徵為基礎的方法先找出給定的影像中是否有人臉特徵的存在,再藉由這些人臉特徵做出是否有人臉出現在給定的影像之中的判斷。 在本篇論文中,我們對於靜態彩色影像的人臉偵測問題提出了一個以特徵為基礎的偵測方法。我們的方法先偵測出給定影像中類膚色的像素並基於空間關係做分群。每個互斥的類膚色區域將被檢測其邊界形狀是否呈現橢圓,若是,該區域將被進一步的判斷其內是否包含有合法的人臉特徵三角形。為了達到這樣的目標,我們結合了色彩、模糊邏輯與加伯小波以偵測眼睛與嘴巴的候選點。合法的三角形將被儲存起來並用來做為顯示人臉及其眼睛、嘴巴所在位置。 在我們依據加州理工大學之資料庫子集合所做的實驗結果中,我們的方法對於一張大小為 的彩色影像平均只需 秒即可完成偵測(使用英特爾 Q6600 2.4GHz 處理器)。有95%的人臉被成功找到且同時只有一個非人臉的區域被判斷為人臉。 本篇論文的架構如下,在第二章到第四章,我們將回顧一些物件識別的演算法,在第五章到第十章,將深入討論我們所提出的人臉偵測系統之方法。 | zh_TW |
dc.description.abstract | Automatic human face recognition is a very important subject in pattern recognition fields. This is due to the fact that face has less privacy problems against other identification systems such as iris recognition. Before doing further processing, we need first to segment the face from a given image and it is still a very difficult problem.
Face detection systems can be roughly classified into two approaches, feature-based and holistic-based. In holistic-based method, given image is processed without analyzing it into several smaller features. It has the advantage of finding small faces and faces in poor-quality images. On the other side, feature-based method is first to detect the existence of facial features in the given image and then based on the extracted features to declare whether a face is presented. In this thesis, we will concern the problem of finding a face in a still color image and proposed a feature-based face detection scheme. Our scheme is first to find skin-like pixels and group them based on spatial relation. Each disjoint skin-like region will be examined to see whether the boundary of it is like an ellipse or not. If the answer is yes, the region will further processed to check whether it contains a valid facial feature triangle. For doing this, we combined color, fuzzy logic and Gabor wavelets to detect eye candidates and mouth candidates. Valid triangles will be stored and used for displaying the location of the face with labeled eyes and mouth. In our experimental results based on a subset of Caltech database, our processing time for detecting faces in a color image with size is in average seconds (Intel Q6600 2.4GHz). The detection rate is 95% while only one false positive is found. The thesis is organized as below. In chapter 2-4, we will review some pattern recognition algorithms. In chapter 5-10, we will discuss our proposed face detection system in deep details. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:22:58Z (GMT). No. of bitstreams: 1 ntu-99-R97942101-1.pdf: 5518098 bytes, checksum: b662f438f7fb7ba159f3ec5ae5d3b8b7 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xix Chapter 1 Introduction 1 Chapter 2 Review of Some Common Algorithms for Pattern Recognition 3 2.1 Principal Component Analysis 3 2.1.1 Two Dimensional PCA 4 2.2 Linear Discriminant Analysis 6 2.3 Support Vector Machine 8 2.3.1 SVM for Linearly Separable Classes 9 2.3.2 SVM for Nonlinearly Separable Classes 11 2.3.3 Kernel Method for SVM 13 2.4 Two Dimensional Matched Filter 13 2.5 Symmetry Transform in Object Detection System 15 2.5.1 Definitions of Symmetry 16 2.5.2 Symmetry Transform Using Edge Information 16 2.5.3 Templates matching for symmetry transform 20 2.5.4 Mirror-Symmetry Transform 20 2.5.5 Application of finding locally symmetric regions 23 2.6 Optimal Global Thresholding Using Otsu’s Method 24 2.7 Neural networks 25 2.7.1 4.2.1 Multilayer Feedforward Neural Networks 26 Chapter 3 Facial Feature Detection Methods 29 3.1 Human Skin Detection 29 3.1.1 Statistical approach 29 3.1.2 Fuzzy approach 31 3.2 Human Face Outline Detection 33 3.2.1 Generalized Hough Transform 33 3.2.2 Skin Cluster-Based Approach 36 Chapter 4 Case Studies 39 4.1 Knowledge-Based Methods 39 4.2 Deformable Template Matching 41 4.3 Learning a Sparse Representation for Object Recognition 46 4.4 Face Recognition by Elastic Bunch Graph Matching 50 4.5 Face Detection Using Color Information 53 4.6 Real-Time Face Detection using Haar-like features and Adaboost algorithm 55 4.7 Feature-Based Human Face Detection 59 4.8 Distribution-Based Approach 62 Chapter 5 Overview of Our Proposed Algorithm 65 Chapter 6 Skin Detection using Bayesian Theory 66 6.1 HSI Color Model 66 6.2 Bayesian Decision Theory with Histogram Estimation 68 6.3 Experimental Results for Pixel-based Skin Detection 69 6.4 Refinements on Skin Detection Results 71 6.5 Filling Holes of Each Disjoint Region 72 Chapter 7 Human Face Outline Verification 75 7.1 Relation between PCA and Gaussian Random Variable 75 7.2 Estimating the Major and Minor Radius 76 7.3 Similarity Measure 79 7.4 Performance Analysis 82 Chapter 8 Facial Feature Detection 85 8.1 Human Eye Detection using Color and Fuzzy Concept 85 8.1.1 Computation of the Eyemap using fuzzy concept 85 8.1.2 Triangular Norms and Negations 86 8.1.3 Computation of Eyemapl, Eyemapc and Eyemapt 89 8.1.4 Using Correlation and Hough Transform to Find Eye Candidates 94 8.2 Mouth Detection using Color and t-norms 96 8.3 Eye-Mouth Pairs Verification 99 Chapter 9 Experimental Results 103 Chapter 10 Conclusions and Future Work 107 10.1 Conclusions 107 10.2 Future Work 107 REFERENCE 109 | |
dc.language.iso | en | |
dc.title | 運用輪廓色彩和五官的人臉偵測技術 | zh_TW |
dc.title | Face Detection by Outline, Color, and Facial Features | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭景明,曾易聰,許文良 | |
dc.subject.keyword | 物件識別,自動化人臉偵測系統,HSI貝式模型,橢圓估計,主成分分析,模糊邏輯,三角形範數,加伯小波,霍式轉換, | zh_TW |
dc.subject.keyword | Pattern recognition,automatic face detection,HSI Baysian Model,ellipse estimation,principle component analysis,fuzzy logic,triangular norms,Gabor wavelets,the Hough transform, | en |
dc.relation.page | 113 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-09 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。