Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47836
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor周楚洋(Chu-Yang Chou)
dc.contributor.authorI-Chung Loen
dc.contributor.author羅一中zh_TW
dc.date.accessioned2021-06-15T06:21:30Z-
dc.date.available2010-08-16
dc.date.copyright2010-08-16
dc.date.issued2010
dc.date.submitted2010-08-09
dc.identifier.citation參考文獻
1. 陳國誠。2000。生物固定化技術與產業應用。初版,33-36,417-423。台北:茂昌。
2. 陳姍玗、張嘉修。2002。處理含染料廢水之固定化生物觸媒。國科會計畫:NSC-89-2214-E-035-015。
3. Behera, M. and M.M. Ghangrekar. 2009. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology 100:5114-5121.
4. Cheng, S., H. Liu, and B.E. Logan. 2006. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications 8:489-494.
5. Chou, C.Y. 1989. Computer control of anaerobic reaactor untilizing a nonlinear self-turning regulator. Ph.D. Dissertation. University of Florida.
6. Dumas, C., A. Mollica, D. Fe´ron, R. Basse´guy, L. Etcheverry and A. Bergel. 2007. Marine microbial fuel cell:Use of stainless steel electrodes as anode and cathode materials. Electrochemical Acta 53:468-473.
7. Fan, Y., H. Hu, and H. Liu. 2007. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources 171:348-354.
8. Ghangrekar, M.M., and V.B. Shinde. 2007. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology 98:2879-2885.
9. Hu, Zhiqiang. 2008. Electricity generation by a baffle-chamber membraneless microbial fuel cell. Journal of Power Sources 179:27-33.
10. He, Z., Y. Huang, A.K. Manohar, and F. Mansfeld. 2008. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74:78-82.
11. Jang, J., K,T.H Pham, I.S. Chang, K.H. Kang, H. Moon, K.S. Cho and B.H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemical 39:1007-1012.
12. Jadhav, G.S., and M.M. Ghangrekar. 2008. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology 100:717-723.
13. Kim, J.R., G. C. Premier, F.R. Hawkes, R.M. Dinsdale, and A.J. Guwy. 2009. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Journal of Power Sources 187:393-399.
14. Li, Z., X. Zhang, Y. Zeng, and L. Lei. 2009. Electricity production by an overflow-type wetted-wall microbial fuel cell. Bioresource Technology 100:2551-2555.
15. Lee, H.S., P. Parameswaran, A. Kato-Marcus, C.I. Torres, and B.E. Rittmann. 2008. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Research 42:1501-1510.
16. Liu, Z.D., and H.R. Li. 2007. Effects of bio- and abio-factors on electricity production in a mediator microbial fuel cell. Biochemical Engineering Journal 36:209-214.
17. Liu, H., S.H. Cheng, and B.E. Logan. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental science & Technology 39:5488-5493.
18. Liu, H., and B.E. Logan. 2004. Electricity generation using an air-cathode single camber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental science & Technology. 38(14): 4040-4046.
19. Logan, B.E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey. 2006. Microbial Fuel Cells: Methodology and Technology. Environmental science & Technology. 40(17): 5181-5192.
20. Min, B., J.R. Kim, S.E. Oh, J.M. Regan and B.E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Research 39:4961-4968.
21. Mohan, S.V., and R. Saravanan. 2007. Bioelectricity production from wastewater treatment in duel chambered microbial fuel cell (MFC) using selectively enriched mixed microflora:effect of catholytes. Bioresource Technology 99:596-603.
22. Oh, S.E., and B.E. Logan. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research 39:4673-4682.
23. Rabaey, K., and W. Verstraete. 2005. Microbial fuel cell:biotechnology for energy generation. Trends Biotechnol 23:291-298.
24. Rodrigo, M.A., P. Canizares, H. Garcia, J.J. Linares, and J. Lobato. 2009. Bioresource Technology 100:4704-4710.
25. Raghavulu, S.V., S.V. Mohan, R.K. Goud, and P.N. Sarma. 2009. Effct of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochemistry Communications 11:371-375.
26. Phosphate Buffer Calculator. 2007. A Javascript that calculates the amount of monosodium phosphate and disodium phosphate necessary to achieve a buffer at a given pH and buffer strength. Available at: http://home.fuse.net/clymer/buffers/phos2.html. Accessed 20 September 2009.
27. Wang, Y., X. Yang, H. Li, and W. Tu. 2006. Immobilization of acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Polymer Degradation and Stability 91:2408-2414.
28. Wen, Q., Y. Wu, D. Cao, L. Zhao, and Q. Sun. 2009. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresource technology 100:4171-4175.
29. Wagner, R., J.M. Regan, S.E. Oh, T. Zuo, and B.E. Logan. 2009. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Research 43:1480-1488.
30. Yang, S., B. Jia, and H. Liu. 2009. Effect of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresource technology 100:1197-1202.
31. You, S., Q. Zhao, J. Zhang, J. Jiang, C. Wan, M. Du, and S. Zhao. 2007. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. Journal of Power Sources 173:172-177.
32. Zhang, T., T. Zeng, S. Chen, X. Ai, and H. Yang. 2007. Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochemistry communications 9:349-353.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47836-
dc.description.abstract本研究係利用固定化菌種顆粒填充於空氣陰極式的微生物燃料電池,以探討菌種接種量與進流液酸鹼值對微生物燃料電池效能的影響。該燃料電池利用碳布做為陽極,白金鈦網做為陰極,養豬厭氧底泥經熱前處理當做菌種;而固定菌種的材料則是醋酸纖維,固定成片狀後切割為1 cm × 1 cm大小的顆粒,選取170個固定化顆粒均勻放置於陽極槽內,並利用人工廢水當做基質,實驗設計為兩種菌種接種量:10 g、20 g與30 g,五種進流液酸鹼值:pH 4, 5, 6, 7, 9。
實驗結果顯示,操作於中性環境(pH 7)時,接種量20 g有最大的開路電壓1.04 V,而接種量10 g與30 g的開路電壓皆為0.76 V 。在pH 4時,接種量30 g的最大功率密度與最大庫倫效率都較其他兩種接種量來的大,分別為6.33% 與14.97 mW/m2。而在pH 5時,菌種接種量20 g的最大功率密度與最大庫倫效率都較菌種接種量30 g與10 g來的大,分別為:14.19 mW/m2與4.15%。然而,在pH 6、7時,接種量20 g的系統卻比接種量30 g與10 g來的小,在進流液pH 9時,菌種接種量30 g的功率密度與庫倫效率分別為1.13 mW/m2 與0.23 %,其庫倫效率明顯小於接種量20 g (1.53%)與10 g (1.99%),這樣的結果說明菌種非常容易受到進流液酸鹼值的影響。
此外,本研究尚針對菌種前處理進行探討,在相同的操作程序與接種量(30 g)下分別製造兩批不同菌種來源的固定化顆粒,一為有經過100 oC連續沸騰15分鐘的熱前處理,另一則無。經試驗發現,菌種前處理並沒有明顯效果,前處理後的菌種與未處理的菌種相比,最大功率密度分別為3.17 mW/m2與2.43 mW/m2,平均的COD去除率分別為43.43±14.788%及34.81±3.947%。此結果說明本實驗所使用的前處理方式或是菌種來源並不適合製造出胞外產電菌,建議使用別種前處理方式以降低處理成本。
zh_TW
dc.description.abstractIn this study, the performance of microbial fuel cells (MFCs) was investigated by applying immobilized cells entrapped treated anaerobic sludge with cellulose acetate at three different inoculum sizes (10 g, 20 g and 30 g) and five feeding pHs (4, 5, 6, 7, 9) , respectively. A mediatorless single air-cathode MFC was constructed where Carbon paper was used as anode electrode, Pt-Ti net as cathode and synthetic wastewater was the substrate.
When the feeding was pH 4, the optimum performance of power output and coulombic efficiency (CE) at inoculum sizes of 30 g were the highest at 14.97 mW/m2 and 6.33 %. But in the feeding of pH 5, they were 14.19 mW/m2 and 4.15 % when inoculum sizes was 20 g. In pH 6, there were no apparently differences between these three systems. However in feeding pH 7, the highest power output was observed in inoculum sizes of 10 g at 8.18 mW/m2. The power output and CE in inoculum sizes 30 g were the lowest in pH 9, they were 1.13 mW/m2 and 0.23 %, respectively. These results showed the performance of MFCs would be strongly affected by the feeding pH.
Besides, this study focused on the investigation of the pre-treatment of sludge. Two groups of immobilized cells with different sludge supplier but the same inoculum sizes of 30 g were made. One was produced by heat pre-treatment which means the sludge was boiled at 100oC for 15 min, and the other was no heat pre-treatment. The results showed the maximum power output in pre-treatment and un-treatment system were 3.17 mW/m2 and 2.43 mW/m2. The average COD removal efficiencies were 43.43±14.788 % and 34.81±3.947 %. According to these observations, we found heating pre-treatment was no apparently effects on the performance of MFCs. It is better to use another pre-treatment method or select different kinds of sludge to decrease the cost of MFC in real application.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:21:30Z (GMT). No. of bitstreams: 1
ntu-99-R97631006-1.pdf: 1299346 bytes, checksum: 5ad0cac5d47a9d8a7fefc485f9803784 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言及研究目的 1
第二章 文獻探討 2
2-1微生物燃料電池的基本原理 2
2-2 MFC的反應機制 3
2-3 陽極反應程序 5
2-3-1微生物 5
2-3-2基質的微生物氧化 6
2-4影響MFC操作效能的參數 7
2-4-1電學參數 7
2-4-2物質傳遞 8
2-4-3活化能損失(activation losses) 8
2-5 MFC反應槽 9
2-5-1典型的MFC –雙槽式 9
2-5-2單槽無中介質無膜式MFC 10
2-5-3 Air-Cathode MFC 11
2-5-4 MFC系統綜合比較 13
2-6微生物固定化技術 17
第三章 材料與方法 19
3-1實驗材料 19
3-1-1菌種 19
3-1-2廢水成分與酸鹼緩衝液的配製 20
3-1-2固定化陽極之製作 21
3-1-3 Air-Cathode MFC反應槽結構 24
3-1-4 菌種接種 25
3-1-5電化學分析儀器 26
3-2實驗方法 26
3-3 分析與計算 28
第四章 結果與討論 29
4-1菌種接種量對MFC效能之影響 29
4-1-1開路電壓 29
4-1-2 電流密度 32
4-1-3庫倫效率 35
4-1-4極化曲線 (Polarization curve) 37
4-1-5最大功率密度 41
4-1-6廢水處理 43
4-2菌種接種量對MFC效能之影響 45
4-2-1 開路電壓 45
4-2-2 電流密度 47
4-2-3 庫倫效率 49
4-2-4 最大功率密度 51
4-2-5 廢水處理 53
4-3進流液 pH對MFC效能之影響 55
4-3-1 開路電壓 55
4-3-2 電流密度 57
4-3-3 庫倫效率 58
4-3-4 最大功率密度 60
4-3-5 廢水處理 61
4-4菌種前處理對MFC效能之影響 62
4-4-1產電效率 62
4-4-2極化曲線 (Polarization curve) 64
4-4-3廢水處理 66
第五章 結論與建議 67
參考文獻 68

圖目錄
圖2- 1細菌或粒線體中葡萄醣代謝與電子傳遞鏈 (Rabaey et al., 2004) 3
圖2- 2雙槽式MFC (Liu and Li, 2007) 9
圖2- 3單槽式無膜無中介質MFC (Jang et al., 2004) 10
圖2- 4 air-cathode MFC (Liu and Logan, 2004) 11
圖2- 5固定化酵素或完整菌體細胞之一般分類法(陳, 2000) 17
圖3- 1固定化微生物顆粒製作流程圖 22
圖3- 2菌種與丙酮均勻攪拌 23
圖3- 3醋酸纖維 15 g 23
圖3- 4將菌種與溶解的醋酸纖維均勻攪拌 23
圖3- 5均勻混和溶液 23
圖3- 6硬化成型 23
圖3- 7裁切成1 cm × 1 cm的正方形並洗淨丙酮 24
圖3- 8 air-cathode固定化陽極反應槽 25
圖3- 9將固定化微生物顆粒填充至陽極槽中 25
圖3- 10定電壓電流儀 (Potentiostat) 26
圖3- 11 MFC操作系統 27
圖4- 1開路電壓(OCV):(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 31
圖4- 2電流密度:(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 34
圖4- 3庫倫效率:(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 36
圖4- 4菌種接種量30 g時的極化曲線: 38
圖4- 5菌種接種量20 g時的極化曲線: 39
圖4- 6菌種接種量10 g時的極化曲線: 40
圖4- 7最大功率密度:(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 42
圖4- 8 COD去除率:(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 44
圖4- 9開路電位:(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 46
圖4- 10電流密度:(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 48
圖4- 11庫倫效率:(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 50
圖4- 12最大功率密度:(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 52
圖4- 13 COD去除率:(a) pH 4, (b) pH 5, (c) pH 6, (d) pH 7, (e) pH 9 54
圖4- 14不同進流pH對開路電位的比較:(a) 10 g, (b) 20 g, (c) 30 g 56
圖4- 15不同進流pH對電流密度的比較:(a) 10 g, (b) 20 g, (c) 30 g 57
圖4- 16不同進流pH對最大功率密度的比較:(a) 10 g, (b) 20 g, (c) 30 g 59
圖4- 17不同進流pH對最大庫倫效率的比較:(a) 10 g, (b) 20 g, (c) 30 g 60
圖4- 18不同進流pH對COD去除率的比較:(a) 10 g, (b) 20 g, (c) 30 g 61
圖4- 19菌種前處理對MFC效能的影響:(a) OCV , (b)電流密度 63
圖4- 20操作於pH 5菌種前處理極化曲線的比較: 65
圖4- 21操作於pH 5菌種前處理COD去除率的比較 66
表目錄
表2- 1 MFC系統比較 13
表2- 2固定化方法在廢水處理之應用(陳, 2000) 18
表3- 1經前處理後之菌種基本性質 20
表4- 1三種接種量平均COD去除率總整理(單位:%) 53
dc.language.isozh-TW
dc.subject微生物燃料電池zh_TW
dc.subject菌種接種量zh_TW
dc.subject固定化顆粒zh_TW
dc.subject進流液pHzh_TW
dc.subjectImmobilized cellsen
dc.subjectFeeding pHen
dc.subjectMicrobial Fuel Cellen
dc.subjectInoculums sizeen
dc.title接種量及進料pH對固定化微生物燃料電池效能之影響zh_TW
dc.titleEffects of Inoculum Size and Feeding pH on Performance of Immobilized Air-Cathode Microbial Fuel Cellen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳林祈(Lin-Chi Chen),陳力麒(Richie Chen)
dc.subject.keyword微生物燃料電池,固定化顆粒,菌種接種量,進流液pH,zh_TW
dc.subject.keywordMicrobial Fuel Cell,Immobilized cells,Inoculums size,Feeding pH,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2010-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
Appears in Collections:生物機電工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
1.27 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved